Home The simultaneous efect of extrusion and T6 treatment on the mechanical properties of Al-15wt.%Mg2Si composite
Article
Licensed
Unlicensed Requires Authentication

The simultaneous efect of extrusion and T6 treatment on the mechanical properties of Al-15wt.%Mg2Si composite

  • N. Soltani , A. Bahrami , F. M. Moghimi , M. I. Pech-Canul and A. Hajaghasi
Published/Copyright: May 2, 2013

Abstract

This article investigates the simultaneous efect of extrusion ratio and T6 heat treatment on microstructure and mechanical properties of in-situ Al-15wt.%Mg2Si composite. his composite has already been introduced as a new class of light materials but the brittle structure of the primary Mg2Si which is formed during solidiication limits its application. As-cast composite was directly extruded as rod by using three diferent dies. Ater T6 heat treatment on extruded samples, microstructure was studied by optical and scanning electron microscopy. Results demonstrated that extruded and heat treated composite possesses considerably higher strength and enhanced ductility in comparison with the as-cast samples. It was also found that heat treatment and extrusion processes change the primary Mg2Si morphology considerably and its size increases as extrusion ratio decreased. Fracture surface examinations revealed a transition from brittle fracture mode in as-cast composite to ductile fracture in heat treated and extruded specimens. his can be attributed to the changes in size and morphology of Mg2Si intermetallics and porosity content.

Kurzfassung

Die vorliegende Arbeit untersucht den kombinierten Einluss verschiedener Umformgrade beim Strangpressen und einer T6-Wärmebehandlung auf Gefüge und mechanische Eigenschaten eines Al-15 Ma.-%Mg2Si-Verbundwerkstofs. Dieser gehört zu einer bereits bekannten Klasse neuer Leichtbauwerkstofe, deren Einsatzbereich jedoch durch die Sprödigkeit der primären Mg2Si-Partikel, die sich während der Erstarrung bilden, eingeschränkt ist. Das gegossene Ausgangsmaterial wurde mithilfe von drei verschiedenen Stempeln direkt in Stangenform gepresst. Nach der T6-Wärmebehandlung an extrudierten Proben wurde die Mikrostruktur durch Lichtund Rasterelektronenmikroskopie untersucht. Die Ergebnisse zeigten, dass extrudierte und wärmebehandelte Proben wesentlich höhere Festigkeit und erhöhte Duktilität im Vergleich zu den Proben im gegossenen Zustand besitzen. Ferner wurde beobachtet, dass Prozesse, die Strangpressen und Wärmebehandlung kombinieren, die Morphologie der primären Mg2Si-Ausscheidungen signiikant verändern, wobei ihre Gräße mit abnehmendem Umformgrad ansteigt. Eine Untersuchung der Bruchflächen zeigte einen Übergang des Bruchmodus von Sprödbruch beim Ausgangsmaterial zu duktilem Bruch in den extrudierten und wärmebehandelten Proben. Dies kann den Änderungen der Größe und Morphologie der Mg2Si-Phasen und der Porosität zugeschrieben werden.


(Corresponding author/Kontakt)

References

1. Zhang, J.; Fan, Z.; WangY.Q.; Zhoub, B. L.: Microstructural development of Al-15wt.%Mg2Si in situ composite with mischmetal addition. Mater. Sei. Eng. A281 (2000), p. 10410.1016/S0921-5093(99)00732-7Search in Google Scholar

2. Stelling0.; Ellendt, N.; Uhlenwinkel, V; KrugP.; Keäler, 0.; Zoch, H.-W.; Commandern, B,. Influence of the primary Mg2Si precipitated fraction and its distribution on the properties of spray formed AlMgSiCu alloys. HTM J. Heat Treatm. Mater.63 (2008), p. 276Search in Google Scholar

3. Schmid, E. E.; von Oldenburg, K; Forommeyer, G.: Microstructure and properties of as-cast intermetallic Mg2Si-Al alloys. Z. Metallkd.81 (1990), p. 809Search in Google Scholar

4. Qin, Q. D.; Zhao, Y. G.; Zhou, W; CongP.}.: Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si-/Al composite. Mater. Sei. Eng. A 447 (2007), p. 186Search in Google Scholar

5. Khorshidi, R.; Honarbakhsh Raouf, A.; Emamy, M.; Campbell, }.: The study of Li effect on the microstructure and tensile properties of cast Al-Mg2Si metal matrix composite. J. Alloys & Compd.509 (2011), p. 902610.1016/j.jallcom.2011.07.012Search in Google Scholar

6. Ghorbani, M. R.; Emamy, M.; Nemati, N.: Microstructural and mechanical characterization of Al-15%Mg2Si composite containing chromium. J. Mater. Design32 (2011), p. 426210.1016/j.matdes.2011.04.020Search in Google Scholar

7. Radian, R.; Emamy, M.; Varahram, N.; Nemati, N.: The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite. Mater. Sei. Eng. A409 (2008), p. 250Search in Google Scholar

8. Emamy, M.; Khorshidi, R.; Honarbakhsh Raouf, A.: The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite. Mater. Sei. Eng. A528 (2011), p. 433710.1016/j.msea.2011.02.010Search in Google Scholar

9. Zhao, Y G.; Qin, Q. D.; Zhao, Y Q; Liang, Y H; Jiang, Q C: In situ Mg2Si/Al-Si composite modified by K2TiF6. Mater. Letters58 (2004), p. 219210.1016/j.matlet.2004.01.016Search in Google Scholar

10. Zhou, Y G.; Qin, Q D.; Zhou, W.; Liang, Y H,: Microstructure of the Ce-modified in situ Mg2Si/Al-Si-Cu composite. J. Alloys & Compd.389 (2005), p. 110.1016/j.jallcom.2004.08.003Search in Google Scholar

11. Qin, Q D.; Zhao, Y G.; Liu, C; CongP. }.; Zhou, W.: Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite. J. Alloys & Compd.454 (2007), p. 14210.1016/j.jallcom.2006.12.074Search in Google Scholar

12. Emamy, M.; Nemati, N.; Heidarzadeh, A.: The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al-15%Mg2Si composite. Mater. Sei. Eng. A527 (2010), p. 299810.1016/j.msea.2010.01.063Search in Google Scholar

13. Emamy, M.; Jafari Nodooshan, H R.; Malekan, A.: The microstructure, hardness and tensile properties of Al-15%Mg2Si in situ composite with yttrium addition. J. Mater. Design32 (2011), p. 455910.1016/j.matdes.2011.04.026Search in Google Scholar

14. Li, C; Liu, X; Zhang, G.: Heterogeneous nucleating role of TiB2 or AlP/TiB2 coupled compounds on primary Mg2Si in Al-Mg-Si alloys. Mater. Sei. Eng. A497 (2008), p. 43210.1016/j.msea.2008.07.034Search in Google Scholar

15. Li, C; Wu, Y; Li, H; Liu, X.: Microstructural formation in hypereutectic Al-Mg2Si with extra Si. J. Alloys & Compd.477 (2009), p. 21210.1016/j.jallcom.2008.10.061Search in Google Scholar

16. Borrego, A.; Fernandez, R.; Cristina, M. D. C.; Ibanez, }.; Gonzalez-Dencel, G.: Influence of extrusion temperature on the microstructure and the texture of 6061A1-15 vol.% SiCw PM composites. Comp. Sei. Technol.562 (2002), p. 731Search in Google Scholar

17. Them, L. M.; Gupta, M.; Cheng, M.: Effect of reinforced volume fraction on the evolution of reinforced size during the extrusion of Al-SiC composites. Mater. Sei. Eng.A326(2002), p. 355Search in Google Scholar

18. Hong, S. H; ChungK H; Lee, C. H: Effects of hot extrusion parameters on the tensile properties and microstructures of SiCw-2124Al composites. Mater. Sei. Eng.A206 (1996), p. 225Search in Google Scholar

19. Tekmen, C; Ozdemir, I.; Cöcen, Ü.; Onel, K: The mechanical response of Al-Si-Mg/ SiCp composite: influence of porosity. Mater. Sei. Eng. A360 (2003), p. 365Search in Google Scholar

20. Cöcen, Ü.; Onel, K: Ductility and strength of extruded SiCp/aluminum-alloy composites. Comp. Sei. Technol.62 (2002), p. 275Search in Google Scholar

21. Rahmani Fard, R.; Akhlaghi, F.: Effect of extrusion temperature on the micro-structure and porosity of A356-SiCp composites. J. Mater. Process Technol.187188 (2007), p. 433Search in Google Scholar

22. Bahrami, A.; Razaghian, A.; Emamy, M.; Jafari, H. R.; Mousavi, G. S.: Microstructure and tensile properties of Al-15wt% Mg2Si composite after hot extrusion and heat treatment. KEM 471–472 (2011), p. 1171Search in Google Scholar

23. Bahrami, A.; Razaghian, A.; Emamy, M.; Khorshidi, R.: The effect of Zr on the microstructure and tensile properties of hot-extruded Al-Mg2Si composite. Mater. Design36 (2012), p. 32310.1016/j.matdes.2011.11.045Search in Google Scholar

24. McHugh, P. E.; Asaro, R.; Asaro, J.; Shih, C. E: Computational modeling of metal matrix composite materials. II: Isothermal stress-strain behavior. Ada Metall. Mater.41 (1993), p. 1477Search in Google Scholar

25. Griffith, A. A.: The phenomena of rupture and flow in solid material. Philos. Trans. R. Soc. London22JA (1921), p. 163Search in Google Scholar

26. Babout, L.; Breche, Y; Make, E.; Fougeres, R.: On the competition between particle fracture and particle decohesion in metal matrix composites. Ada Mater.52 (2004), p. 4517Search in Google Scholar

27. Chawla, N.; Shen, Y L.: Mechanical behavior of particle reinforced metal matrix composites, Advanced Eng. Mater.3 (2001), p. 357Search in Google Scholar

28. Xu, C. L.; Wang, H Y; YangY E; JiangQ. C.: Effect of Al-P-Ti-TiC-Nd203 modifier on the microstructure and mechanical properties of hypereutectic Al-20 wt.%Si alloy. Mater. Sei. Eng. A452–453 (2007), p. 341Search in Google Scholar

Published Online: 2013-05-02
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/105.110158/html
Scroll to top button