CONTENTS

PREFACE	vii
CHAPTER I. PRELIMINARIES	1
1. Notation	1
2. Nature and purpose of differential geometry	2
3. Concept of mapping. Coordinates in Euclidean space	3
4. Vectors in Euclidean space	9
5. Basic rules of vector calculus in Euclidean space	11
CHAPTER II. THEORY OF CURVES	17
6. The concept of a curve in differential geometry	17
7. Further remarks on the concept of a curve	20
8. Examples of special curves	23
9. Arc length	25
10. Tangent and normal plane	29
11. Osculating plane	31
12. Principal normal, curvature, osculating circle	34
13. Binormal. Moving trihedron of a curve	36
14. Torsion	37
15. Formulae of Frenet	40
16. Motion of the trihedron, vector of Darboux	43
17. Spherical images of a curve	46
18. Shape of a curve in the neighbourhood of any of its points (canonical representation)	47
19. Contact, osculating sphere	49
20. Natural equations of a curve	55
21. Examples of curves and their natural equations	60
22. Involutes and evolutes	64
23. Bertrand curves	67
CHAPTER III. CONCEPT OF A SURFACE. FIRST FUNDA- MENTAL FORM. FOUNDATIONS OF TENSOR CALCULUS	72
24. Concept of a surface in differential geometry	72
25. Further remarks on the representation of surfaces, examples	76
26. Curves on a surface, tangent plane to a surface	79
27. First fundamental form. Concept of Riemannian geometry. Summation convention	82
28. Properties of the first fundamental form	85
29. Contravariant and covariant vectors	88
30. Contravariant, covariant, and mixed tensors	93

xii CONTENTS

31.	Basic rules of tensor calculus	99
32.	Vectors in a surface. The contravariant metric tensor	101
33.	Special tensors	105
34.	Normal to a surface	107
35.	Measurement of lengths and angles in a surface	109
3 6.	Area	111
37.	Remarks on the definition of area	115
	TER IV. SECOND FUNDAMENTAL FORM. GAUSSIAN	
	AND MEAN CURVATURE OF A SURFACE	118
	Second fundamental form	118
39.	Arbitrary and normal sections of a surface. Meusnier's theorem. Asymptotic lines	121
4 0.	Elliptic, parabolic, and hyperbolic points of a surface	124
41.	Principal curvature. Lines of curvature. Gaussian and mean curvature	128
	Euler's theorem. Dupin's indicatrix	132
	Torus	135
	Flat points. Saddle points of higher type	136
	Formulae of Weingarten and Gauss	138
46.	Integrability conditions of the formulae of Weingarten and Gauss. Curvature tensors. Theorema egregium	142
47.	Properties of the Christoffel symbols	148
	Umbilies	152
Снаі	PTER V. GEODESIC CURVATURE AND GEODESICS	154
49.	Geodesic curvature	154
50.	Geodesics	157
51.	Arcs of minimum length	160
	Geodesic parallel coordinates	162
53.	Geodesic polar coordinates	165
54.	Theorem of Gauss-Bonnet. Integral curvature	168
55.	Application of the Gauss-Bonnet theorem to closed surfaces	172
Снаі	PTER VI. MAPPINGS	175
56.	Preliminaries	175
57.	Isometric mapping. Bending. Concept of intrinsic geometry of a surface	176
	Ruled surfaces, developable surfaces	179
	Spherical image of a surface. Third fundamental form. Isometric mapping of developable surfaces	186
60.	Conjugate directions. Conjugate families of curves. Developable sur-	_
	faces having contact with a given surface	190
61.	Conformal mapping	193
62.	Conformal mapping of surfaces into a plane	195

CONTENTS	xiii
63. Isotropic curves and isothermic coordinates	198
64. The Bergman metric	200
65. Conformal mapping of a sphere into a plane. Stereographic and Mercator projection	204
66. Equiareal mappings	208
67. Equiareal mapping of spheres into planes. Mappings of Lambert, Sanson, and Bonne	210
68. Conformal mapping of the Euclidean space	212
CHAPTER VII. ABSOLUTE DIFFERENTIATION AND	
PARALLEL DISPLACEMENT	219
69. Concept of absolute differentiation	219
70. Absolute differentiation of tensors of first order	220
71. Absolute differentiation of tensors of arbitrary order	223
72. Further properties of absolute differentiation	225
73. Interchange of the order of absolute differentiation. The Ricci identity	226
74. Bianchi identities	229
75. Differential parameters of Beltrami	229
76. Definition of the displacement of Levi-Cività	231
77. Further properties of the displacement of Levi-Cività	236
78. A more general definition of absolute differentiation and displacement	
of Levi-Cività	239
CHAPTER VIII. SPECIAL SURFACES	243
79. Definition and simple properties of minimal surfaces	243
80. Surfaces of minimum area	244
81. Examples of minimal surfaces	246
82. Relations between function theory and minimal surfaces. The formulae of Weierstrass	250
83. Minimal surfaces as translation surfaces with isotropic generators	253
84. Modular surfaces of analytic functions	255
85. Envelope of a one-parameter family of surfaces	262
86. Developable surfaces as envelopes of families of planes	268
87. Envelope of the osculating, normal, and rectifying planes of a curve, polar surface	270
88. Centre surfaces of a surface	273
89. Parallel surfaces	277
90. Surfaces of constant Gaussian curvature	279
91. Isometric mapping of surfaces of constant Gaussian curvature	280
92. Spherical surfaces of revolution	282
93. Pseudospherical surfaces of revolution	285
94. Geodesic mapping	290
95. Geodesic mapping of surfaces of constant Gaussian curvature	291
96. Surfaces of constant Gaussian curvature and non-Euclidean geometry	293

TENTS

SUPPLEMENTARY PROBLEMS	301
ANSWERS TO PROBLEMS	320
ANSWERS TO ODD-NUMBERED SUPPLEMENTARY PROBLEMS	347
COLLECTION OF FORMULAE	353
BIBLIOGRAPHY	368
INDEX	373

DIFFERENTIAL GEOMETRY

B 6867

