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Abstract:

Textile reinforced concrete (TRC) is an eco-friendly material with a high freedom in design. As soon as complex

curved parts are to be designed, the question of the drapability of the reinforcing materials arises. Different

process parameters can be modified in the production of the reinforcing textiles which strongly influence the

handling and the draping behaviour. To be able to choose a textile structure in the design stage which fulfils the

requirements concerning drapability, a new test method was developed. This article describes this test method

and shows results of a test series on different textile structures, including a brief discussion of the results. Finally,

a transfer to a sample geometry is shown.
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Introduction

Textile reinforced concrete (TRC) is an eco-friendly material
with a high freedom in design. Unlike steel reinforced concrete,
the thickness of TRC is determined only by the load-bearing
capacity as the used textiles are not corrosive. Therefore
thicknesses of 1 cm are possible, which leads to a saving of
concrete of up to 80% [4, 7]. Thus, building with TRC is climate-
friendly because cement manufacturing is one of the highest
CO2 sources worldwide. The possible savings are especially
high as the building sector is the largest energy consumer (40
%) and CO2 emitter (36 %) within the EU [5].

Textiles for TRC are open-meshed structures that consist of a
0°- and a 90°-layer of reinforcement yarns made of alkali-
resistant glass or carbon fibres. The yarns in the textile structure
are straight to achieve good performance due to a low structural
deformation. The open mesh is necessary to enable the
concrete to penetrate the structure. The choice of a suitable
reinforcement depends on the part geometry and the
manufacturing process. These two aspects also affect the
necessary textile tests. As soon as complex parts which are
curved in more than one direction are to be designed, the
question of the drapability of the reinforcing materials arises.
Drapability is defined as the wrinkle-free application of planes
on surfaces of a free dimensional geometry [1]. In the
manufacturing process of textile reinforced materials, the

reinforcing textile needs to be adjusted according to the flow of
forces and therefore preferably to be wrinkle-free. Therefore
the drapability is an important characteristic to check the
feasibility of three-dimensionally formed parts on the one hand,
and to analyse the load bearing-behaviour due to different fibre

orientations on the other hand. The drapability depends on
different characteristics. Among these are the bending
stiffness, the shearing behaviour, the stress-strain behaviour
and other characteristics such as thickness and the build-up
sequence.

In the manufacturing process of the textile structures, different
process parameters can be modified. Among these are the
stitch length and the type of binding of the interlacing yarns. To
test the influence of these parameters and to be able to predict

the applicability of different textiles structures for various part
geometries, a new test set-up was developed.

Methodology

Test set-up

In this test the textiles are positioned in a spherically curved
bowl of a radius of either 300 mm or 1000 mm. The 1000 mm
radius form is the standard form; the 300 mm form is only
used when no draping problems occur in the larger form. Even
though most buildings have much larger radii, testing with the
mentioned radii is suitable for two reasons: first, the test set-
up is not too large and second, more distinct differences can
be found for the textile structures. This is useful for a
classification of the textile structures. The procedure method
of the draping test is shown in Figure 1.
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Figure 2 visualises the test procedure in more detail.

The starting length of the textiles depends on the test form.
This was set as 500 x 500 mm for the form with 300 mm radius
and 1200 x 1200 mm for the form with 1000 mm radius. In the
test the dimensions of the textiles are reduced in steps of

50 mm until draping without wrinkles becomes possible.
Afterwards the edge lengths are measured. The drapability is
the better the less the specimen needs to be reduced in size.
In Figure 2 the small (left) and large (right) draping bowls are
shown. In both cases textiles are placed in a way that causes

wrinkles in the chosen dimensions. Therefore the edges need
to be cut until a wrinkle-free alignment becomes possible.

Figure 1. Procedure method of draping test.
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Prediction of applicability for various part geometries

Draping problems mainly occur when the parts are curved in
two directions. Therefore the draping bowl used for the tests is
spherically curved. Depending on the drapable end length l

and the radius r of the draping bowl, the height h can be
calculated (Figure 3) [2].

This is done by first calculating the angle α depending on the
drapable end length l and the radius r:
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Figure 2. Test procedure of draping test.

Figure 3. Small (left) and large (right) draping bowl, both with textile structures that cause wrinkles in the chosen dimensions and need to be

shortened to achieve a wrinkle-free alignment.
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Having α, the height h can be obtained in the following way:

(3)

(4)

Having calculated h the quotient h/l can be generated. This
quotient can also be generated for all kinds of part geometries
independently from the type of curvature. This way it is possible
to make a first choice of textile structure which fulfils the
requirements concerning draping. To guarantee a wrinkle-free
application, the quotient h/l of the part needs to be smaller
than or equal to the quotient h/l of the chosen textile.

(5)
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Figure 4. Draping bowl with drapable end length of textile l, radius r
and height h.
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Figure 5. Textiles investigated.

Results and discussion

Tested material

In concrete parts mainly non-crimp fabrics (NCFs) with rovings
in 0°- and 90°-direction are used. The material used is mainly
AR-glass due to the lower price in comparison to carbon. The
rovings are integrated in the mesh system as straight yarns.
The mesh system is only responsible for maintaining the
positions of the rovings during further processing. But the mesh
system strongly influences the geometry of the roving and the
mechanical behaviour. Therefore textiles with different types of
lacing and different stitch lengths are investigated concerning
their draping behaviour [3].

Two types of lacing were investigated: plain stitch and tricot
stitch and a combination of the two. In addition two different
finenesses of the rovings (1200 tex and 2400 tex) and three
different stitch lengths (2.1 mm, 2.4 mm and 6.3 mm) were
considered. Images of the different types of lacing are shown
in Figure 4.

The textiles were investigated in the small draping bowl as a
wrinkle-free alignment could be achieved for some of the
textiles in the large draping bowl right from the beginning.

Test results and discussion

The test results are shown in Figure 5. It can be clearly seen
that the textile with the plain stitch has the longest drapable
end length with approx. 500 mm. There is no significant
difference with the different stitch lengths. For the tricot stitch,
two different finenesses were investigated (1200 tex and 2400
tex). For the stitch length of 2.1 mm the drapable end length is
the same for the different finenesses, with approx. 300 mm.
For increasing stitch lengths, the drapable end length
increases for both finenesses ending at approx. 400 mm for
the textile with 1200 tex and approx. 350 mm for the textile with
2400 tex.
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The following equations can be created when considering a
linear coherence.

The equations are valid for a stitch length in the investigated
field of 2.1 to 6.3 mm. An extrapolation to smaller or longer
stitch lengths is likely for small aberrations. For the combination
of the two types of lacing, only one textile structure with 1200
tex glass rovings and a stitch length of 4.2 mm was tested.
With a drapable end length of 450 mm, it can be positioned
between the two types of lacing, plain stitch and tricot stitch.
The following aspects can be summarized:

• The continuous mesh system of the tricot stitch prevents

large yarn movement.

• For the tricot stitch, the higher stitch length leads to a less

tight mesh system. This allows more yarn movement and
increased shearability, resulting in greater drapable end
lengths.

• For the plain stitch, the yarns have a greater sliding ability

independent from the stitch length.

• Different finenesses only have a small effect.

Using the equations described above, the relation h/l of the

height h of the textiles in the draping bowl and the drapable
end length l can be generated. For the investigated textiles this

relation is shown in Table 1.

Table 1. Relation h/l of the investigated textiles.

7. The demonstrator consists of four basic modules with
dimensions of 7 x 7 m. The lowest point is 0.865 m below the
highest point, leading to a relation h/l of 0.124.

Figure 6. Test results of non-crimp fabrics with different types of

lacing and different stitch lengths.
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Textile 
Stitch length 

2.1 mm 4.2 mm 6.3 mm 

1200 tex Tricot stitch 0.122 0.138 0.158 

1200 tex Combination  0.175  

2400 tex Tricot stitch 0.122 0.121 0.138 

2400 tex Plain stitch 0.195 0.191 0.192 

These relations can be used for a first choice of textiles in the
design stage of textile reinforced concrete parts, taking into

account the aspect of drapability. This is shown in the following.

Transfer to example part

Within the Collaborative Research Center 532: Textile
Reinforced Concrete - Development of a new technology project
a large demonstrator is being built with a two-dimensionally

curved roof. An image of this demonstrator is shown in Figure

In cross-sections parallel to the edges, the cross-sectional
profile consists of two straight lines meeting in the middle of
the structure (Figure 8, Section A). This leads to a curved cross-
sectional profile in the diagonal direction (Figure 8, Sections B
and C).

At first, it was planned to take a textile structure with AR-glass

1200 tex in tricot stitch with a stitch length of 4.2 mm. For this
structure a wrinkle-free positioning can be guaranteed for the

existing relation h/l.

Due to the high degree of reinforcement in the edges and with

the very thin 6 cm part thickness in this area, it was not possible
to include the necessary number of reinforcement layers in
preliminary tests. Therefore it was decided to take a carbon
yarn with 800 tex and the same textile configurations instead,
leading to a reduction of the number of layers from 16 to 12.

The drapability of this structure can be assumed as sufficient,
as the textile parameters were not varied.

Conclusions

The developed test method described in this article enables
the designer of complex curved TRC parts to make a first choice
of the reinforcing textiles, taking the aspect of drapability into

account. The tests performed on textile structures with different
process parameters have shown that the drapability of textiles
with a plain stitch is much greater than with a tricot stitch. For

Figure 7. Demonstrator of Collaborative Research Center 532:

Information pavilion located next to the building of the faculty of civil
engineering (up), basic module (down) [6].
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textiles with tricot stitch, the drapability increases with increasing
stitch length. For the plain stitch, no such influence can be
measured. The changeover to different finenesses has no
major effect.
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Figure 8. Cross-sectional profiles of the demonstrator [6].
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