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Abstract:

In recent years, the importance of the Radio Occultation Method (ROM), an observation procedure of atmospheric quantities such

as temperature, density, pressure, and water vapor, increased in value. Based on the global distribution and the high accuracy of

the measurements between the Earth's surface up to 35km altitude, ROM offers new perspectives for climate monitoring. In order to

compare the measurements, the data have to be visualized. This paper gives the basic definitions and theorems of spline approximation

on the sphere. Via its adjustable smoothing parameters, ROM can be suitably adapted to approximate the given data. Further on, it

demonstrates, splines as approximation structures realizing a minimal bending energy of their graphs provide a good approximation of

the data at hand. Our results demonstrate that spherical spline approximation is an appropriate method to visualize the change over

time of a given layer and to illustrate the vertical composition of the Earth's atmosphere. Moreover, ROM enables us to compare the

layers of the atmosphere at different points in time as well as the approximation of parameters between the measurements on arbitrary

points on the Earth.
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1. Introduction

Over the past years, discussions about climate change grew in

importance. In order to prove or disprove the arguments used in

these discussions, a large globally distributed dataset is required.

RO (Radio Occultation), a satellite based measuring technique,

came into play. RO, first suggested by a group at Stanford Uni-

versity in 1962, was developed in order to provide atmospheric

data of distant planets in our solar system. The method provides

a globally distributed dataset of vertical profiles of atmospheric

parameters such as density, pressure, temperature, and water

vapor. Several satellites equipped with these measuring instru-

ments were launched into the Earth's atmosphere, one of them

the German CHAllenging Minisatellite Payload (CHAMP) provided

∗E-mail: blick@mathematik.uni-kl.de
†E-mail: freeden@mathematik.uni-kl.de

the data used in this paper. CHAMP was launched in July 2000

and collected the first measurements in February 2001. CHAMP

operated until September 2010 and collected measurements over

the whole operating period.

ROM has several advantages over other measuring techniques to

obtain atmospheric data in comparison to radiosondes and aircraft

basedmeasurement techniques. These benefits consist ofweather

independency of the measuring technique, global distribution of

the data from the Earth's surface up to 35km altitude and high

precision.

In order to compare the climate data provided by ROM, the data

have to be visualized via mathematical methods. The procedures

applied so far such as binning and linear interpolation ([16], [2]

and [14]) provide results but don't produce a smooth approximat-

ing function. Interpolation by higher order polynomials tend to

oscillate which is not desired in scattered data approximation. The

purpose of this paper is to introduce spherical splines which are

applied to the data provided by CHAMP. So far, spherical splines
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with respect to the Laplace- Beltrami operator were hard to calcu-

late since there computation involved the evaluation of the Green

function of the iterated Beltrami operator given only as a bilinear

series ([3]). Weuse the fact, that thebilinear function has an explicit

representation, which shortens the computation time immensely

and makes spherical splines numerically and economically effi-

cient. To demonstrate the effectiveness of the approximation

method, the (spline) distribution of atmospheric parameters for

a specific layer is visualized. The visualization consists of several

illustrations, which show the vertical composition of the Earth's

atmosphere. In addition, the spline approximation method is ap-

plied to document the difference in climate change over different

years at the same layer. ROM using spherical splines is successfully

applied to compute vertical profiles of atmospheric parameters at

positions between the measurements.

Thenotationalbackgroundused for thedescriptionofROMfollows

the conventional approach to be found in the literature. The

spherical spline approximation is based on the mathematical

settings introduced by [6].

2. Experimental procedure

2.1. Physical Background of ROM

The Radio Occultation method is a measuring technique in planet

research, which probes the atmosphere of a planet in order to

retrieve atmospheric parameters. In 1962, the method was first

suggestedbyagroupatStanfordUniversityduring thepreparation

of NASA's Mars missions Marianer 3 and 4 [19], [12]. Today, the

ROM is an important tool in remote sensing of the atmosphere of

distant planets and the Earth itself. Nearly every planet in our solar

system, including some of the moons and ring systems, has been

probed with the aid of Radio Occultation Missions.

The method was applied on Earth via Low Earth Orbiters (LEOs,

400-1300km altitude), which were equipped with a GPS receiver

in order to measure signals send out by GPS satellites at 20,000km

altitude. The first GPS Radio Occultation concept has been suc-

cessfully applied by the GPS/MET (MicroLab-1) experiment in 1995

[17]. Due to the success of the GPS/MET experiment, the German

CHAllengingMinisatellite Payload (CHAMP, launched in July 2000)

[13], and Argentina's SAC-C (launched in November 2000) were set

into space, which carried a new generation of GPS-flight receivers

("Blackjack"). These satellites provide quasi-continuous GPS Oc-

cultation measurements. Further on, the US-German GRACE mis-

sion (launched in March 2002) and the Taiwan-U.S. multi-satellite

Constellation Observing System for Meteorology, Ionosphere and

Climate (COSMIC, launched inApril 2006) [1] provideadditional op-

portunities for continuous observation of the Earth's atmosphere.

The basic idea to retrieve atmospheric parameters is to measure

the bending angle and phase delay due to the Doppler Shift

of the GPS signal, while the LEO is setting or rising above the

Earth's atmosphere, see Figure 1. From these measurements,

temperature, density, pressure and water vapor can be calculated

by assuming appropriate boundary conditions.

Inorder togiveabasicunderstandingof theGPS-RadioOccultation

method a simplification consists of the assumption of a spherical

symmetric distributed atmosphere in order to apply Snell's law

and the assumption, that not more than one ray arrives at every

observation point on the LEO trajectory. This method is straight

forward and is usually applied in regions with nomulti path effects

such as in the upper troposphere and stratosphere. For more

information about the methods used in multi path regions as well

as correction methods the reader is referred, e.g., to [18], [7] and

[10].

In geometric optics, the path of an electromagnetic wave is

modeled as rays connecting the transmitter and receiver of the

wave. Assuming a spherical symmetrically distributed atmosphere

described by Snell's law, the measured Doppler frequency along

the orbit of the LEO is used to compute the incident ray direction

at each point on the orbit. Via geometric considerations, the

bending angel α of the ray can be computed. The bending angel

will be dependent on the impact factor p which is a specific

constant for each ray. Thereafter, an inverse Abel-transformation

is applied in order to calculate the refractive index of the Earth's

atmosphere, finally followed by the calculation of atmospheric

pressure, density, temperature and humidity.

The equations and calculations leading to the equation of the

refractive index can be found in either [18] or [7]. The equation

for the refractive index reads,

n(r0) = exp [ 1
π

∫ p=∞
p=p0

α(p)√
p2 − p20 dp

]
, (1)

where p denotes the impact factor and α the bending angle.

Since the gas in the Earth's atmosphere has a refractive index close

to 1, the refractivityN is definedviaN = (n−1)×106 . Different
gases contribute differently to the refractivity of the atmosphere.

Assuming a neutral atmosphere, the refractivity can be expressed

as a function of pressure, temperature and humidity content. In

meteorology, the equation for the refractivity is often given as

N = c1PT + c2PwT 2 . (2)

Here,T is the atmospheric temperaturegiven inKelvin andP rep-

resents the total atmospheric pressure, whereas Pw represents

the partial pressure of the water vapor in the atmosphere. The

pressure is given in hPa. The constants are usually valid for radio

frequencies less than 20GHz and have the values c1 = 77.60
and c2 = 3.73 × 105 . The equation is also known as the Smith-

Weintraub equation [15]. In the neutral atmosphere, the dry as

well as themoist air contribute to the total refractivity. Especially in

the lower part of the atmosphere and in tropic regions, the moist
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Figure 1. Exemplary position of the two satellites during one occultation

air contributes to a large part of the refractivity and should be con-

sidered carefully. For the upper atmosphere and regions, where

the moist air has a negligible effect, the atmospheric parameters

can be derived easily from Equation (2) with the help of the ideal

gas law:

P = ρRT
m = ρRmT , Rm = R

m, (3)

ρ is the air density, R is the universal gas constant (R =8.3155Jmol−1K−1), m the mean molecular mass of the gas

andRm the specific gas constant.

Assuming that the air is dry, Equation (2) simplifies to

N = c1PT . (4)

The simplification (4) is necessary in order to calculate atmospheric

parameterswithout further knowledge about current atmospheric

conditions and leads to only small errors in the upper troposphere

and stratosphere. After combining (4) with (3), an equation for the

Earth's density is obtained by

ρd(z) = md

Rc1N(z), (5)

where z indicates the height above a reference surface. Further on,
inserting Equation (5) in the hydrostatic equation, which is given

by

∂P
∂z = −ρ(z)g(z), (6)

Figure 2. Example of a density profile near Berlin, Germany

whereg(z) is thegravity acceleration at height z and finally inte-

grating Equation (6) leads to a representation of the atmospheric

pressure:

P(z) = ∫ ∞
z

g(z′)ρd(z′)dz′ = md

Rc1
∫ ∞
z

g(z′)N(z′)dz′. (7)

Inserting the last result into Equation (4) yields an equation for the

atmosphere's temperature:

T (z) = md

RN(z)
∫ ∞
z

g(z′)N(z′)dz′. (8)

With the help of (5), (7) and (8), atmospheric parameters can be

derived from the refractivity profile under the assumption of a dry
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(a) (b)

Figure 3. Exemplary pressure (a) and temperature profiles (b) near Berlin, Germany

atmosphere.

Until now,weneglected thewater vapor in theEarth's atmosphere.

This can be done with small error in the upper troposphere and

stratosphere. For the lower troposphere and the warmer tropical

regions, thewater vapor contributes significantly to the refractivity

and can be up to 30% of the total refractivity. Hence, it cannot

be neglected. In order to calculate the exact density, pressure

and temperature, the water vapor pressure Pw is required. From

Equation (2) it can be seen that it is not possible to calculate

the atmospheric parameters without independent or a priori in-

formation. Such independent information may come from the

NCEP (National Center for Environmental Prediction) or ECMWF

(European Center for Medium-range Weather Forecast) meteoro-

logical analyses or forecast models. Further on, the hydrostatic

equation can only be applied to the total pressure.

By useof theprior equations, an iterativeprocess [8] canbe applied

in order to calculate water vapor profiles. However, this algorithm

suffers from a high sensitivity to even small errors in the analyzed

temperatures, which result in large uncertainties of the derived

water vapor profiles [11].

InsertingEquation (3) intoEquation (6) andsubsequent integration

leads to

P(z) = P(z∗) exp(∫ z∗

z

g(z′)
RdTv (z′)dz′

)
. (9)

After reordering Equation (2), Pw (z) can be calculated, if P(z) is
known:

Pw (z) = T 2(z)N(z)− c1 P(z)
T (z)

c2 . (10)

Based on this result, the specific humidity q can be calculated,

which is defined as:

q(z) = εPw (z)
P(z)− (1− ε)Pw (z) , (11)

whereε is usuallygiven thevalueof0.622. The iterativeprocedure
is shown in Figure 4.

2.2. Spherical Spline Approximation

In this section, spherical spline approximation is introduced. In

the next section the method is used in order to approximate the

RO data provided by the GFZ (GeoForschungsZentrum) Potsdam.

The mathematics behind the method is based on a new setting

developed in [6], namely the explicit representation of the Green

function to the iterated Beltrami operator. It enables us to develop

spherical spline approximation in close similarity to the one-

dimensional cubic spline approach. The analogy is obvious: The

spline is a piecewise polynomial which after certain differentiation

becomes singular in its nodal points. The singularity is that of the

fundamental solution of the Laplace-Beltrami operator. In other

words, in one-dimensional theory, the singularity is just a jump

so that the spline is an integrated step function. On the sphere

the singularity is of logarithmic nature and splines are integrated

logarithmically singular Green's functions.

The advantage of the spherical spline approximation compared to

currently applied methods for visualization of Radio Occultation

data, such as binning and linear interpolation (e.g. [16], [2] and

[14]) is the smoothness of the approximating function. In contrast

to polynomial interpolation, undesiredoscillations canbe avoided.

Since the dataset provided by the Radio Occultation method is
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Figure 4. The iterative process for the calculation of the humidity

not dense enough in order to obtain accurate results by themeth-

ods mentioned above, this specific method was developed with

the intend, that the approximating function prevents undesired

oscillations by minimizing the mean curvature.

Up until now, spherical splines were difficult to generate since the

entries of the matrix used for its computation (Equation (60)) was

approximatedbya truncatedbilinear series. In thispaper,we show,

that those entries are given by an explicit formula, which makes

the computationof spherical splinesnumerically andeconomically

efficient.

2.2.1. Notation

In this section, the following notation shall be used: Let R3
denote the three dimensional Euclidean space. The variables x ,
y,... shall be used to denote points in R3 with x = (x1, x2, x3)T ,
y = (y1, y2, y3)T as their Cartesian coordinates. The inner

product and norm are defined as usual via

x · y = x1y1 + x2y2 + x3y3, x2 = x · x, |x| = √x2.
(12)

Using polar coordinates, for all x ∈ R3 with |x| 6= 0 the following

representation can be found:

x = rξ, r = |x|, |ξ| = 1. (13)

The set Ω = {ξ ∈ R3| |ξ| = 1} denotes the unit sphere with

the surface element dω(ξ).
Let Γ̄ denote a closed subset of Ω. Then the set Γ̄ can be

decomposed in the following way:

Γ̄ = Γ ∪ ∂Γ, (14)

where Γ = Γ̄\∂Γ is an open set and ∂Γ denotes the boundary ofΓ̄. With e1 , e2 , e3 as the canonical orthonormal basis in R3 , the
points on the unit sphereΩ can be represented by

ξ = te3 +√1− t2(e1 cos(φ) + e2 sin(φ)) (15)
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with −1 ≤ t ≤ 1, −π ≤ φ < π, t =cos(θ), 0 ≤ θ ≤ π. Functions denoted by capital letters

F, G, S, . . . stand for scalar functions, whereas functions de-

notedby lowercase letters f , g, . . . shall indicate vector fields. The
set of all k-times continuously differentiable scalar functions

defined on a setM is denoted by

C (k)(M), (16)

whereas the setofallk-timescontinuouslydifferentiablevector

fields defined on a setM is denoted by

c(k)(M), (17)

The gradient is defined as

∇x = ( ∂
∂x1 ,

∂
∂x2 ,

∂
∂x3
)T

. (18)

Using polar coordinates and the following definitions

εr (φ, t) = (√1− t2 cos(φ), √1− t2 sin(φ), t)T ,
εφ(φ, t) = (− sin(φ), cos(φ), 0)T ,
εt (φ, t) = (−t cos(φ), −t sin(φ), √1− t2)T ,

(19)

the gradient can be rewritten as

∇x = εr ∂∂r + 1
r ∇

∗
ξ , (20)

where∇∗ξ is called surface gradient and is defined as:

∇∗ξ = εφ 1√1− t2 ∂
∂φ + εt

√1− t2 ∂∂t . (21)

The Laplace-Operator

∆x = ( ∂
∂x1
)2 +( ∂

∂x2
)2 +( ∂

∂x3
)2

(22)

can be rewritten by using polar coordinates as

∆x = 1
r2 ∂
∂r r

2 ∂
∂r + 1

r2 ∆∗ξ , (23)

where ∆∗ξ = ∂
∂t (1− t2) ∂∂t + 11− t2

(
∂
∂φ

)2
(24)

denotes the (Laplace-) Beltrami operator on the unit sphere Ω.

The definitions above yield

∇x · ∇x = ∆x

∇∗ξ · ∇∗ξ = ∆∗ξ . (25)

2.2.2. Spherical Harmonics

The definitions and theorems in this section are standard material

in spherical approximation theory. The proofs for the theorems

can be found in either [5] or [6].

Definition 2.1.
Let n ∈ N and let Hn : R3 → R be a homogeneous

harmonic polynomial inR3, i.e.
i) ∆xHn(x) = 0, x ∈ R3
ii) Hn(x) = H(rξ) = rnHn(ξ), ξ ∈ Ω.

Then the function Yn : Ω → R defined by Yn = Hn |Ω is

called a spherical harmonic of degree n.

Definition 2.2.
The linear space of all spherical harmonics of degree n is

denoted as Hn(Ω). By H0,...,m(Ω) we denote the direct sum

of the spacesH0(Ω)⊕ . . . ⊕Hm(Ω).
Lemma 2.1.
Every spherical harmonic Yn of degree n is an everywhere

infinitely differentiable eigenfunction of the Beltrami operator∆∗ corresponding to the eigenvalue λn = n(n+ 1):
(∆∗ξ + λn)Yn(ξ) = 0, ξ ∈ Ω. (26)

The spectrum of∆∗ξ is defined as the set of all eigenvalues:

S(Ω) = {λn = n(n+ 1) | n = 0, 1, 2, . . .} . (27)

Remark 2.1.
The collection of all finite linear combinations of elements

of the orthogonal direct sum

∞⊕
n=0 Hn = H0(Ω)⊕H1(Ω)⊕ . . . ⊕Hm(Ω)⊕ . . . (28)

is dense in the space C (Ω) of all continuous functions onΩ
with respect to the L2(Ω)-norm. Moreover, the set is dense

in the Hilbert space L2(Ω) of all square-integrable functions
on Ω.

Lemma 2.2.
There exist 2n+ 1 linear independent spherical harmonics of

degree n. Hence, there exists a set {Yn,j} n=0,1,...
j=1,...,2n+1 of spherical

harmonics of degreen and order j , which is orthonormalwith

respect to the inner L2(Ω)-product (·, ·)L2(Ω).
(Yn,j , Ym,k )L2(Ω) = ∫Ω Yn,j (η)Ym,k (η)dω(η) = δnmδjk (29)

Moreover, {Yn,j} n=0,1,...
j=1,...,2n+1 is a closed and complete basis in

L2(Ω).
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Theorem 2.1 (Addition Theorem of Spherical
Harmonics).
Let {Yn,j}j=1,...,2n+1 be an orthonormal system inHn(Ω) with

respect to (·, ·)L2(Ω). For any two points ξ, η ∈ Ω the following

equation holds:

Pn(ξ · η) = 4π2n+ 1 2n+1∑
k=1 Yn,k (ξ)Yn,k (η). (30)

Here,Pn represents the Legendre polynomial of degree n.

Definition 2.3.
A system η1, . . . , ηN of N-points ηk ∈ Ω with N ≥ M is

called fundamental system of order m, if the rank of the

M ×N- matrix

A =



Y0,1(η1) · · · Y0,1(ηN )
Y1,1(η1) · · · Y1,1(ηN )

...
...

Y1,3(η1) · · · Y1,3(ηN )
...

...

Ym,1(η1) · · · Ym,1(ηN )
...

...

Ym,2m+1(η1) · · · Ym,2m+1(ηN )


(31)

is equal toM .

2.2.3. Green’s Function with Respect to the Beltrami Operator

The spherical spline approximationmethod is based on the theory

of Green's function. In this section, Green's functionwith respect to

the Beltrami operator∆∗ shall be introduced. Further on, an exact

as well as a bilinear representation shall be discussed. Based on

that, Green's function to the iterated Beltrami operator is defined.

Its explicit structure and some properties are derived.

Someproofs are notmentioned since the corresponding theorems

are well known in the literature, e.g. [5] and [6]. The fundamental

part of this section is Lemma2.6, hence, theproof is givenexplicitly.

Definition 2.4.
The functionG(∆∗; ·, ·) : (ξ, η) 7→ G(∆∗; ξ, η), −1 ≤ ξ ·η <1 is calledGreen's functiononΩwith respect to theBeltrami

operator ∆∗, if it satisfies the following properties:

i) (Differential equation) for every fixed ξ ∈ Ω, η 7→
G(∆∗; ξ, η) is infinitely continuously differentiable

on the set {η ∈ Ω| − 1 ≤ ξ · η < 1} such that

∆∗ηG(∆∗; ξ, η) = − 14π − 1 ≤ ξ · η < 1. (32)

ii) (Characteristic singularity) for every ξ ∈ Ω, the

function

η 7→ G(∆∗; ξ, η)− 14π ln(1− ξ · η). (33)

is continuously differentiable on Ω.

iii) (Rotational symmetry) for all orthogonal transforma-

tions A the following equation holds:

G(∆∗;Aξ,Aη) = G(∆∗; ξ, η). (34)

iv) (Normalization) for every ξ ∈ Ω we have∫
Ω G(∆∗; ξ, η)dω(η) = 0. (35)

Lemma 2.3.
The functionG(∆∗; ξ, η) is uniquelydeterminedby its defining

properties i) - iv)

Theorem 2.2.
Green's functionG(∆∗; ξ, η) has the bilinear expansion
G(∆∗; ξ, η) = 14π ∞∑

m=1
2m+ 1
λm

Pm(ξ·η), −1 ≤ ξ·η < 1.
(36)

Lemma 2.4.
Forξ, η ∈ Ωwith−1 ≤ ξ ·η < 1Green'sfunctionwithrespect

to the Beltrami operator∆∗ has the following expression:

G(∆∗; ξ, η) = 14π ln(2)− 14π ln(1− ξ · η)− 14π . (37)

Proof. The function given in the lemma satisfies the

definition of Green's function and hence is uniquely deter-

mined by Lemma 2.3.

Definition 2.5.
LetG((∆∗)2; ξ, η) be defined by

G((∆∗)2; ξ, η) = ∫Ω G(∆∗; ξ, ζ)G(∆∗; ζ, η)dω(ζ). (38)

The function G((∆∗)2; ξ, η) is called Green's function with

respect to the iterated Beltrami operator (∆∗)2.
Lemma 2.5.
The bilinear expansion of Green's function to the iterated

Beltrami operator reads

G((∆∗)2; ξ, η) = 14π ∞∑
m=1

2m+ 1
λ2
m

Pm(ξ·η), −1 ≤ ξ·η ≤ 1.
(39)
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Lemma 2.6.
The Green's function corresponding to the iterated Beltrami operator (∆∗)2 is continuous and can be represented in explicit form

G((∆∗)2; ξ, η) =


14π , 1− ξ · η = 0
14π (1− ln(1− ξ · η)(ln(1 + ξ · η)− ln(2))
−L2( 1−ξ·η2 )− (ln(2))2 + ln(2) ln(1 + ξ · η)) , 1± ξ · η 6= 0,

14π − π24 , 1 + ξ · η = 0
(40)

where the functionL2 is the dilogarithm and it is defined as

L2(x) = − ∫ x

0
ln(1− t)

t dt = ∞∑
k=1

xk
k2 . (41)

Proof. From the bilinear representation of the iterated Green's function (Lemma 2.5) we get

G((∆∗)2; ξ, η) = 14π ∞∑
k=1

2k + 1(k(k + 1))2Pk (ξ · η) = 14π ∞∑
k=1
( 1
k2 − 1(k + 1)2

)
Pk (ξ · η). (42)

Then it follows for all ξ ∈ Ω:

G((∆∗)2; ξ, ξ) = 14π
( ∞∑

k=1
1
k2 −

∞∑
k=1

1
k2 + 1) = 14π . (43)

Further on, we get

G((∆∗)2; −ξ, ξ) = 14π
( ∞∑

k=1
1
k2Pk (−1)− ∞∑

k=1
1(k + 1)2Pk (−1)) . (44)

The well known equation Pk (−1) = (−1)k leads to:
14π
( ∞∑

k=1
1
k2Pk (−1)− ∞∑

k=1
1(k + 1)2Pk (−1)) = 14π

( ∞∑
k=1

1
k2 (−1)k − ∞∑

k=1
1(k + 1)2 (−1)k) (45)

= 14π

∞∑
k=1

1
k2 (−1)k︸ ︷︷ ︸
−π212

+ ∞∑
k=1

1
k2 (−1)k︸ ︷︷ ︸
−π212

+1
 = 14π − π24 . (46)

G(∆∗; ξ, η) is a zonal function i.e. the function depends only on the scalar product of ξ and η. Hence, with∆∗ξG((∆∗)2; ξ, η) = −G(∆∗; ξ, η), we get with the help of Lemma 2.4:

d
dt (1− t2) ddt G((∆∗)2; t) = G(∆∗; t) = 14π ln(1− t) + 14π − 14π ln(2). (47)

Integrating the equation above, we get with the help of the fundamental theorem of integral calculus:

∫ t

−1
d
dτ (1− τ2) ddτ G((∆∗)2; τ)dτ = (1− t2) ddt G(2)(∆∗; t) = − 14π (1− t) ln(1− t) + ln(2)4π (1− t). (48)



Journal of Geodetic Science 387

The fundamental theorem of integral calculus and Equation (48) lead further on to:

G((∆∗)2; 1)−G((∆∗)2; t) = ∫ 1
t

d
dτ G((∆∗)2; τ)dτ

= − 14π
∫ 1
t

11 + τ ln(1− τ)dτ + ln(2)4π
∫ 1
t

11 + τ dτ.
(49)

By substituting 1− τ = u in the first integral, we get

14π
∫ 1
t

11 + τ ln(1− τ)dτ + ln(2)4π
∫ 1
t

11 + τ dτ = 14π
∫ 0

1−t
12− u ln(u)du+ ln(2)4π

∫ 1
t

11 + τ dτ. (50)

Using a table of integrals [9] we get:

14π
∫ 0

1−t
12− u ln(u)du+ ln(2)4π

∫ 1
t

11 + τ dτ

= − ln(u) ln(2− u2
)
− L2 (u2 ) + (ln(2))24π − ln(2)4π ln(1 + t), (51)

where the dilogarithm L2 is defined as in Equation (41). With the help of Equation (49) we get

G((∆∗)2; 1)−G((∆∗)2; t) =14π
(ln(1− t)(ln(1 + t)− ln(2)) + L2

(1− t2
) + (ln(2))2 − ln(2) ln(1 + t)) . (52)

Continuity follows finally from the two equations

lim
t→1
t<1 ln(1− t)(ln(1 + t)− ln(2)) = 0 (53)

and lim
t→−1
t>−1 (ln(1− t)(ln(1 + t)− ln(2))− ln(2) ln(1 + t)) = −(ln(2))2. (54)

2.2.4. Spherical Spline Functions

Next, spherical splines are defined with the aim to determine

the interpolating spline function in a unique way for any given

dataset. With the help of the reproducing kernel of the space

H (2)(Ω), whichwill be defined in this section, it will be shown, that

the unique interpolating spline function has a minimum "bending

energy". The proofs not stated in this section can be found in e.g.

[6], [3] or [4].

Definition 2.6.
In the class of all twice continuouslydifferentiable functions

on Ω, the inner product (·, ·)H is defined by

(F,G)H = ∫Ω F (η)Y0,1(η)dω(η) ∫Ω G(η)Y0,1(η)dω(η)
+ ∫Ω(∆∗ηF (η))(∆∗ηG(η))dω(η) (55)

for allF,G ∈ C (2)(Ω). ByH (2)(Ω)wedenote the completion

of the space C (2)(Ω) with respect to the norm
∥·∥H =√(·, ·)H .

Definition 2.7.
Let the N points η1, . . . , ηN be a fundamental system of
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order 0 on the unit sphere Ω. Then the function

S(η) = Y0,1(η)− N∑
k=1 akG((∆∗)2; η, ηk ), η ∈ Ω, c = const.

(56)

is called natural spherical spline function inH (2)(Ω) of order0 corresponding to the nodes η1, . . . , ηN , if the vector

a = (a1, . . . , aN )T satisfies the linear equation system

Aa = 0, where A is given in Definition 2.3. The class of

all natural spherical spline functions in H (2)(Ω) of order0 corresponding to the nodes η1, . . . , ηN is denoted by

S(η1, . . . , ηN ).
Theorem 2.3.
Let η1, . . . , ηN be a fundamental system of order 0 and

y = (y1, . . . , yN ) be an arbitrary R-vector. Then there exists

a unique splineS ∈ S(η1, . . . , ηN ), such that the equation

S(ηk ) = yk (57)

is satisfied for k = 1, . . . , N .

The proof of Theorem 2.3 can also be found in the literature given

at the beginning of this section but since it reveals the linear

equation system which is essential in order to compute the spline

function in combinationwith its explicit solution, the proof is given

here.

Proof. Weget from the definition of the spline function,

that we need to determine N + 1 coefficients. For these

coefficients we obtain N equations of the following kind:

cY0,1(ηk )− N∑
i=1 aiG((∆∗)2; ηk , ηi) = yk (k = 1, . . . , N).

(58)

Equation (58) can be rewritten in matrix formulation via:

= AT c −Ga = y, (59)

where c is a constant, A is defined in Definition 2.3 and G
is defined as

G =

G((∆∗)2; η1, η1) · · · G((∆∗)2; η1, ηN )

...
...

G((∆∗)2; ηN , η1) · · · G((∆∗)2; ηN , ηN )
 .

(60)

The linear equation system

Aa = 0 (61)

provides one further equationwhich leads to the (N+1)×(N + 1) equation system(
−G AT

A 0
)(

a
c

) = (y0
)
. (62)

Since

G((∆∗)2; ηi, ηk ) = ∫Ω G(∆∗; ηi, ζ)G(∆∗; ζ, ηk )dω(ζ), (63)

the N × N matrix G is of Gram type. Furthermore, the

functionsG((∆∗)2; η1, η), . . . , G((∆∗)2; ηN , η) are linearly in-
dependent. Hence det(G) > 0 and we get

a = G−1AT c −G−1y with c = (AG−1AT )−1AG−1y,
(64)

which is the unique solution of the linear system.

Theorem 2.4.
The function

K (ξ, η) = P0(ξ · η)−G((∆∗)2; ξ, η) ξ, η ∈ Ω (65)

is the unique reproducing kernel of the Sobolev space(H (2)(Ω), (·, ·)H ), i.e.:
i) For each fixedξ ∈ Ω, K (ξ, η) consideredasa function

of η is an element ofH (2)(Ω).
ii) For every function F ∈ H (2)(Ω) and for every point

ξ ∈ Ω the reproducing property holds:

F (ξ) = (F (η), K (ξ, η))H . (66)

Lemma 2.7.
LetA be given as inDefinition 2.3. If the equationAa = 0 = c
is fulfilled, then, for all S ∈ S(η1, . . . , ηN ), i.e. S(η) =
cY0,1(η) −∑N

k=1 akG((∆∗)2; η, ηk ), and all F ∈ H (2)(Ω), the
following equation holds:

∫
Ω ∆∗ηS(η)∆∗ηF (η)dω(η) = N∑

k=1 akF (ηk ). (67)

Theorem 2.5.
Let (η1, y1), . . . , (ηN , yN ) beN data points, whereη1, . . . , ηN
is a fundamental system of order 0 on Ω. Let SN ∈
S(η1, . . . , ηN )be the unique natural splinewhich interpolates

the data points y1, . . . , yN . Then, for all twice continuously

differentiable functions F on Ω, which interpolate the data

points y1, . . . , yN , the following equation holds true:

∫
Ω(∆∗ηSN (η))2dω(η) ≤ ∫Ω(∆∗ηF (η))2dω(η) (68)

with equality if and only ifF = SN .
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Proof. From Lemma 2.7 we obtain for every natural spline S ∈ S(η1, . . . , ηN ) the following equation:

∫
Ω(∆∗ηS(η))(∆∗ηS(η))dω(η) = N∑

k=1 akS(ηk ). (69)

Combining the equation above with Lemma 2.7 leads to:

∫
Ω(∆∗ηS(η)− ∆∗ηF (η))2dω(η) = N∑

k=1 akS(ηk )− 2 N∑
k=1 akF (ηk ) + ∫Ω(∆∗ηF (η))2dω(η). (70)

Now let SN ∈ S be the unique interpolating spline. Then, with F (ηk ) = yk = SN (ηk ) for all k = 1, . . . , N , it follows:

∫
Ω(∆∗ηSN (η)− ∆∗ηF (η))2dω(η) = − N∑

k=1 a
S
k F (ηk ) + ∫Ω(∆∗ηF (η))2dω(η), (71)

where aSk are the coefficients of SN . From Lemma 2.7 and rearranging the equation above follows:

∫
Ω(∆∗ηSN (η))2dω(η) = ∫Ω(∆∗ηF (η))2dω(η)− ∫Ω(∆∗ηSN (η)− ∆∗ηF (η))2dω(η)︸ ︷︷ ︸

≥0
, (72)

which proves the theorem.

Remark 2.2.
Theorem 2.5 suggests that the interpolating spline consid-

eredas an infinitesimal thinmembranewhich is spannedby

the data points has minimum bending energy. This inter-

pretation is reflected by the one-dimensional cubic spline

interpolation, where the interpolating spline shows min-

imal "curvature energy" (understood in linearized sense).

Furthermore, we do not make an attempt to use splines of

orders> 0 (as proposed by [4]). As in the one-dimensional

case, higher order splines tend to show more oscillations

for a scattered data set, thus, we restrict ourselves to the

spherical counterpart of cubic splines.

2.2.5. Smoothing Splines

The interpolating spline function introduced in Section 2.2.4 will

be slightly modified in order to allow the smoothing of the

data. It turns out that the smoothing spline is still uniquely

definedandminimizes a functional thatmeasures the fitnessof any

approximating function, however, under additional statistically

oriented prerequisites.

Definition 2.8.
The problemof fitting a smooth function to a given dataset(η1, y1), . . . , (ηN , yN ) is given by determining a function F ,

such that the functional

σβ,δ (F ) = N∑
k=1
(
F (ηk )− yk

βk

)2 + δ
∫

Ω(∆∗ηF (η))2dω(η)
(73)

isminimized inH (2)(Ω), whereβk aregivenpositiveweights

and δ ≥ 0 an arbitrary parameter, which give a measure

for the desired smoothness (for more details concerning

smoothness see [3]).

Remark 2.3.
Choosing δ = 0 in the spherical spline approximation

method leads to strict interpolation.

Theorem 2.6.
Letδ, β1, . . . , βN begivenpositiveconstantsand(ηk , yk ), 1 ≤
k ≤ N be given data points. Then there exists a unique spline

functionS ∈ S(η1, . . . , ηN ) such that the inequality

σβ,δ (S) ≤ σβ,δ (F ) (74)

is valid forallF ∈ H (2)(Ω)withequalityonly ifF = S. Further
on, ifS isgivenbyDefinition2.7, thenS isuniquelydetermined

by the equation system

S(ηk ) + δβ2
kak = yk (k = 1, . . . , N). (75)
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condition for n=100

condition for n=1000

condition for n=6000

condition for n=12000

δ=0 δ=10⁻⁵ δ=10⁻³δ=10⁻⁴ δ=10⁻² δ=10⁻¹ δ=10⁰
12,851,2302*10³2,4963*10⁴1,0267*10⁵1,7697*10⁵8,8420*10⁵7,5262*10⁶

2,2019*10¹⁴ 6,5501*10⁷ 5,5149*10⁶ 2,4274*10⁶ 6,8239*10⁵ 4,0629*10⁴ 670,08

1,6900*10¹⁶ 3,2347*10⁸ 1,1966*10⁸ 4,9563*10⁷6,3276*10⁷ 1,5428*10³ 158,39

287,702,5740*10³4,5924*10⁷1,5511*10⁸2,4297*10⁹1,8897*10¹⁰7,3958*10¹⁶

Figure 5. Condition of the linear equation system (76) for n randomly distributed data points on the sphere.

The proof of the last theorem can be found in either [4] or [6].

Remark 2.4.
Equation (75) can be rewritten in matrix formulation as(

−G + δB AT

A 0 )(ac) = (y0) , (76)

where G, A, a, c, y are defined as in the proof of Theorem

2.3 and

B =
β

21 0
. . .0 β2

N

 . (77)

It is obvious, that by adding the positive diagonal matrix B

toG, the condition of the linear equation system decreases

dramatically even for small δ . An example for the condition

of the linear equation system for randomly distributed data

points on the sphere can be found in Figure 5.

3. Results

In this section, the spline approximation method introduced in

the last section is applied to Radio Occultation data in order to

produce illustrations demonstrating the vertical composition as

well as the change in selected layers of the Earth's atmosphere

over time. Further on, some pictures are produced in order to

compare different years for a given season and layer among each

other. The parameter used in the approximation is the tempera-

ture. Nevertheless, it should be observed, that any atmospheric

parameter can be approximated by this method.

3.1. Zoom through the Atmosphere

In this part, illustrationswere created, which show the temperature

of the Earth's atmosphere, starting at 35km height above mean

sea level and zooming in to 7km height above mean sea level in

the time period June 2007 until August 2007, in order to show

the vertical composition of the atmosphere. The time period is

chosen in such a way, that the dataset is sufficiently large to

smooth out short lived atmospheric states while maintaining the

characteristics of the current season. Themethod used to calculate

the individual pictures is the smoothing spline approximation. The

parameters have to be chosen in such a way, that they provide

a balance between smoothing and representing the data exactly.

Since all data points should be weighted equally, βk was chosen

to be equal to one for all k . Since the number of data points has

a magnitude of circa 104 , δ = 0.05 seems a reasonable choice

because it smooths the data sufficiently while still representing

adequate detailed information. The pictures, which show the

temperature of the Earth for selected altitudes in summer 2007,

can be found in Figure 6.

Figure 7 shows that the temperature varies drastically. Starting at35.0km altitude the temperature is located between −59.5◦C
and −28.8◦C and drops until 21.2km altitude, while increasing

the difference between the minimum (−90.8◦C ) and maximum

value (−42.9◦C ) to 47.9◦C . From 21.2km altitude to 16.2km,

the minimum temperature starts to rise up to −84.9◦C , while

the maximum temperature in those layers decreases further to

−44.0◦C , which leads to a smaller difference of −40.9◦C be-

tween minimum and maximum temperature. From there on up

to 12.0km height, both, the minimum and maximum temper-

ature increase again so that the temperature lies in the interval[−76.8◦C,−42.9◦C ]at12.0kmheight. Since theminimumtem-

perature increases faster as the maximum temperature, the differ-

ence between those temperatures decreases further to 33.9◦C .

In the final height interval between 12.0km and 7km altitude,

the temperature increases further, but the difference between

minimum (−56.7◦C ) and maximum value (−12.7◦C ) increases

again to 44.0◦C .

3.2. Approximation over Time

In this section, the dataset was interpolated over time in order

to show the change of the temperature at 7km altitude over

the seasons. Since the number of data points utilized in the

approximation is significantly smaller than in the last section, the

parameter δ can be chosen as δ = 0.005. This has the benefit

that the produced graphical illustrations show more details as in

the previous section. The same βk are used as in the last section,

βk = 1 for all k . All individual pictures consist of the data of seven
consecutive days in order to provide a sufficient dense dataset

and even out the influence from the day-night alteration. Figure 8

shows the plots of the temperature distribution at 7km altitude.



Journal of Geodetic Science 391

Temperature in °C, summer 2007: height= 35km
(minimum value: −59.5, maximum value: −28.8, difference: 30.7)

longitude

la
tit

ud
e

 

 

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

−90

−80

−70

−60

−50

−40

−30

−20

−10

(a)

Temperature in °C, summer 2007: height= 21.2km
(minimum value: −90.8, maximum value: −42.9, difference: 47.9)
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(b)

Temperature in °C, summer 2007: height= 16.2km
(minimum value: −84.9, maximum value: −44.0, difference: 40.9)
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(c)

Temperature in °C, summer 2007: height= 12km
(minimum value: −76.8, maximum value: −42.9, difference: 33.9)
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(d)

Temperature in °C, summer 2007: height= 7km
(minimum value: −56.7, maximum value: −12.7, difference: 44.0)
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Figure 6. Temperature distribution in summer 2007 for selected heights.
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Figure 7. Behavior of the minimum and maximum values and its difference of the temperature in summer 2007.

3.3. Comparison of Different Years using Spherical Spline Approxi-
mation

The spherical spline approximation method is uniquely suited for

the comparison of different years, since the comparison involves

only the subtraction of the spline functions of the two different

years. Hence, if the spline function is once computed for a given

height, time period and year, it can be compared to any other

year with the same time period and height. Figure 9 shows the

temperature at 20km altitude in spring 2006 compared with

the corresponding temperatures in spring in the years 2002 until2008. The figure indicates, that, comparedwith theotheryears, the

temperature above Greenland and North Canada in spring 2006
at 20km altitude was the lowest in the time period mentioned

above, while the temperature at the south pole was the highest.

3.4. Computation of Atmospheric Profiles

Byuseof thespherical splineapproximationmethod,weareable to

compute atmospheric profiles for arbitrary locations on the Earth.

Inorder to compute thoseprofiles, the spherical spline functionhas

to be computed for several layers of the Earth's atmosphere. The

data at hand provides atmospheric profiles with measurements in

200mintervals. By computing the spherical spline function foreach

of those layers and evaluating this function at the desired position

on the Earth, the atmospheric profile canbe computed. Exemplary,

a vertical temperature profile for Kaiserslautern, Germany was

computed. The city is located at 49.424◦N , 7.745◦O. The

nearest measurement is located at 50.514◦N , 8.769◦O, which

corresponds to a distance of 141.23km to the desired location.

For the calculation, all measurements in July 2007 were taken into

account. The smoothing parameter δ was selected as 0.01. In

order to weight the measurements close to the desired location,

theparametersβk where selected as2−η·ηk . Theηk indicate the
positions of the measurements on the unit sphere, η the position

of the desired location. The results of the computations can be

seen in Figure 10.

4. Discussion

The results from the last section show, that the spherical spline ap-

proximationmethod is anadequatemethod for theapproximation

of the given Radio Occultation data. Further on, the numerical ex-

periments showed, that the spherical splinemethod is numerically

stable even for vast linear equation systems, which contributes

further to the usefulness of the method. In addition, the pa-

rameters of the method provide a vast adaptivity for adjusting the

method to a given approximationproblem. It could be shown, that

spherical splines are uniquely suited for approximating scattered

data. However, as for any other method, the approximation can

be improved by a larger dataset. The ideal dataset should consist

of measurements, where all measurements taken within an hour

would be evenly distributed over the whole sphere, which would

require several measuring satellites.
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(minimum value: −55.3, maximum value: −11.0, difference: 44.3)
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(a) 1. week 2007
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Temperature in °C,  9. week 2007, height= 7km 
(minimum value: −55.7, maximum value: −11.2, difference: 44.5)
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(d) 27. week 2007
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(f) 44. week 2007

Figure 8. Temperature distribution at 7km altitude for selected times.
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Figure 9. Temperature in spring 2006 (top) compared with the spring temperatures in 2002 to 2008 at 20km altitude.
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Figure 10. Temperature profile for Kaiserslautern, Germany in July
2007.
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