«1(4) » 2011 » 379-396 DOI: 10.2478/v10156-011-0017-8 «

Journal of Geodetic Science

Spherical Spline Application to Radio

Occultation Data
Research article

Ch. Blick'*, W. Freeden'?

1 Geomathematics Group, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

Abstract:

In recent years, the importance of the Radio Occultation Method (ROM), an observation procedure of atmospheric quantities such
as temperature, density, pressure, and water vapor, increased in value. Based on the global distribution and the high accuracy of
the measurements between the Earth's surface up to 35km altitude, ROM offers new perspectives for climate monitoring. In order to
compare the measurements, the data have to be visualized. This paper gives the basic definitions and theorems of spline approximation
on the sphere. Via its adjustable smoothing parameters, ROM can be suitably adapted to approximate the given data. Further on, it
demonstrates, splines as approximation structures realizing a minimal bending energy of their graphs provide a good approximation of
the data at hand. Our results demonstrate that spherical spline approximation is an appropriate method to visualize the change over
time of a given layer and to illustrate the vertical composition of the Earth’s atmosphere. Moreover, ROM enables us to compare the
layers of the atmosphere at different points in time as well as the approximation of parameters between the measurements on arbitrary

points on the Earth.
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1. Introduction

Over the past years, discussions about climate change grew in
importance. In order to prove or disprove the arguments used in
these discussions, a large globally distributed dataset is required.
RO (Radio Occultation), a satellite based measuring technique,
came into play. RO, first suggested by a group at Stanford Uni-
versity in 1962, was developed in order to provide atmospheric
data of distant planets in our solar system. The method provides
a globally distributed dataset of vertical profiles of atmospheric
parameters such as density, pressure, temperature, and water
vapor. Several satellites equipped with these measuring instru-
ments were launched into the Earth’s atmosphere, one of them
the German CHAllenging Minisatellite Payload (CHAMP) provided
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the data used in this paper. CHAMP was launched in July 2000
and collected the first measurements in February 2001. CHAMP
operated until September 2010 and collected measurements over
the whole operating period.

ROM has several advantages over other measuring techniques to
obtain atmospheric data in comparison to radiosondes and aircraft
based measurement techniques. These benefits consist of weather
independency of the measuring technique, global distribution of
the data from the Earth's surface up to 35km altitude and high
precision.

In order to compare the climate data provided by ROM, the data
have to be visualized via mathematical methods. The procedures
applied so far such as binning and linear interpolation ([16], [2]
and [14]) provide results but don't produce a smooth approximat-
ing function. Interpolation by higher order polynomials tend to
oscillate which is not desired in scattered data approximation. The
purpose of this paper is to introduce spherical splines which are
applied to the data provided by CHAMP. So far, spherical splines
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with respect to the Laplace- Beltrami operator were hard to calcu-
late since there computation involved the evaluation of the Green
function of the iterated Beltrami operator given only as a bilinear
series ([3]). We use the fact, that the bilinear function has an explicit
representation, which shortens the computation time immensely
and makes spherical splines numerically and economically effi-
cient. To demonstrate the effectiveness of the approximation
method, the (spline) distribution of atmospheric parameters for
a specific layer is visualized. The visualization consists of several
illustrations, which show the vertical composition of the Earth's
atmosphere. In addition, the spline approximation method is ap-
plied to document the difference in climate change over different
years at the same layer. ROM using spherical splines is successfully
applied to compute vertical profiles of atmospheric parameters at
positions between the measurements.

The notational background used for the description of ROM follows
the conventional approach to be found in the literature. The
spherical spline approximation is based on the mathematical
settings introduced by [6].

2. Experimental procedure

2.1. Physical Background of ROM

The Radio Occultation method is a measuring technique in planet
research, which probes the atmosphere of a planet in order to
retrieve atmospheric parameters. In 1962, the method was first
suggested by a group at Stanford University during the preparation
of NASA’s Mars missions Marianer 3 and 4 [19], [12]. Today, the
ROM is an important tool in remote sensing of the atmosphere of
distant planets and the Earth itself. Nearly every planet in our solar
system, including some of the moons and ring systems, has been
probed with the aid of Radio Occultation Missions.

The method was applied on Earth via Low Earth Orbiters (LEOs,
400-1300km altitude), which were equipped with a GPS receiver
in order to measure signals send out by GPS satellites at 20,000km
altitude. The first GPS Radio Occultation concept has been suc-
cessfully applied by the GPS/MET (MicroLab-1) experiment in 1995
[17]. Due to the success of the GPS/MET experiment, the German
CHAllenging Minisatellite Payload (CHAMP, launched in July 2000)
[13], and Argentina’s SAC-C (launched in November 2000) were set
into space, which carried a new generation of GPS-flight receivers
("Blackjack"). These satellites provide quasi-continuous GPS Oc-
cultation measurements. Further on, the US-German GRACE mis-
sion (launched in March 2002) and the Taiwan-U.S. multi-satellite
Constellation Observing System for Meteorology, lonosphere and
Climate (COSMIC, launched in April 2006) [1] provide additional op-
portunities for continuous observation of the Earth’s atmosphere.

The basic idea to retrieve atmospheric parameters is to measure
the bending angle and phase delay due to the Doppler Shift
of the GPS signal, while the LEO is setting or rising above the
Earth’s atmosphere, see Figure 1. From these measurements,
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temperature, density, pressure and water vapor can be calculated

by assuming appropriate boundary conditions.

In order to give a basic understanding of the GPS-Radio Occultation
method a simplification consists of the assumption of a spherical
symmetric distributed atmosphere in order to apply Snell’s law
and the assumption, that not more than one ray arrives at every
observation point on the LEO trajectory. This method is straight
forward and is usually applied in regions with no multi path effects
such as in the upper troposphere and stratosphere. For more
information about the methods used in multi path regions as well
as correction methods the reader is referred, e.g., to [18], [7] and
[10l.

In geometric optics, the path of an electromagnetic wave is
modeled as rays connecting the transmitter and receiver of the
wave. Assuming a spherical symmetrically distributed atmosphere
described by Snell’s law, the measured Doppler frequency along
the orbit of the LEO is used to compute the incident ray direction
at each point on the orbit. Via geometric considerations, the
bending angel o of the ray can be computed. The bending angel
will be dependent on the impact factor p which is a specific
constant for each ray. Thereafter, an inverse Abel-transformation
is applied in order to calculate the refractive index of the Earth's
atmosphere, finally followed by the calculation of atmospheric
pressure, density, temperature and humidity.

The equations and calculations leading to the equation of the
refractive index can be found in either [18] or [7]. The equation
for the refractive index reads,

1T (= _alp)
n(ro) = exp —/ dp|, (1)
7 Jo=ps /' P* = Pj
where p denotes the impact factor and a the bending angle.

Since the gas in the Earth’s atmosphere has a refractive index close
to 1, the refractivity N is definedvia N = (n —1) x 10°. Different
gases contribute differently to the refractivity of the atmosphere.
Assuming a neutral atmosphere, the refractivity can be expressed
as a function of pressure, temperature and humidity content. In
meteorology, the equation for the refractivity is often given as

N=C1§+C2%. (2)
Here, T is the atmospheric temperature givenin Kelvin and P rep-
resents the total atmospheric pressure, whereas P,, represents
the partial pressure of the water vapor in the atmosphere. The
pressure is given in hPa. The constants are usually valid for radio
frequencies less than 20GHz and have the values ¢; = 77.60
and ¢; = 3.73 x 10°. The equation is also known as the Smith-
Weintraub equation [15]. In the neutral atmosphere, the dry as
well as the moist air contribute to the total refractivity. Especially in
the lower part of the atmosphere and in tropic regions, the moist
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Figure 1. Exemplary position of the two satellites during one occultation

air contributes to a large part of the refractivity and should be con-
sidered carefully. For the upper atmosphere and regions, where
the moist air has a negligible effect, the atmospheric parameters
can be derived easily from Equation (2) with the help of the ideal
gas law:

_ PRT

P=""" = pR,T, R, =
—=r

R
—, (3)
m

p is the air density, R is the universal gas constant (R =
8.3155/mol~' K="}, m the mean molecular mass of the gas
and R, the specific gas constant.

Assuming that the air is dry, Equation (2) simplifies to

N = ¢ (4)

—l T

The simplification (4) is necessary in order to calculate atmospheric
parameters without further knowledge about current atmospheric
conditions and leads to only small errors in the upper troposphere
and stratosphere. After combining (4) with (3), an equation for the
Earth's density is obtained by

pal2) = %N<z>, (5)

where z indicates the height above a reference surface. Further on,
inserting Equation (5) in the hydrostatic equation, which is given
by

oP

¥ —p(2)g(2), (6)

“
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Figure 2. Example of a density profile near Berlin, Germany

where g(z) is the gravity acceleration at height z and finally inte-
grating Equation (6) leads to a representation of the atmospheric
pressure:

Pl = [ glipal)dz = 52 [ g 0
z G J,

Inserting the last result into Equation (4) yields an equation for the
atmosphere’s temperature:

mgy
RN(z)

T(z) = / g(Z)N(Z)dZ'. (8)
z
With the help of (5), (7) and (8), atmospheric parameters can be
derived from the refractivity profile under the assumption of a dry
\//
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Figure 3. Exemplary pressure (a) and temperature profiles (b) near Berlin, Germany

atmosphere.

Until now, we neglected the water vapor in the Earth’s atmosphere.
This can be done with small error in the upper troposphere and
stratosphere. For the lower troposphere and the warmer tropical
regions, the water vapor contributes significantly to the refractivity
and can be up to 30% of the total refractivity. Hence, it cannot
be neglected. In order to calculate the exact density, pressure
and temperature, the water vapor pressure P,, is required. From
Equation (2) it can be seen that it is not possible to calculate
the atmospheric parameters without independent or a priori in-
formation. Such independent information may come from the
NCEP (National Center for Environmental Prediction) or ECMWF
(European Center for Medium-range Weather Forecast) meteoro-
logical analyses or forecast models. Further on, the hydrostatic
equation can only be applied to the total pressure.

By use of the prior equations, aniterative process [8] can be applied
in order to calculate water vapor profiles. However, this algorithm
suffers from a high sensitivity to even small errors in the analyzed
temperatures, which result in large uncertainties of the derived
water vapor profiles [11].

Inserting Equation (3) into Equation (6) and subsequentintegration
leads to

_ P T 97
P =Prew | [ L) o
After reordering Equation (2), P,,(z) can be calculated, if P(z) is
known:
N(z) — ¢; 2@
Pul) = Tz M)~ T (10)
(]
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Based on this result, the specific humidity q can be calculated,
which is defined as:

_ eP,(2)
W= B — (1 - Pl

amn

where €is usually given the value of 0.622. The iterative procedure
is shown in Figure 4.

2.2. Spherical Spline Approximation

In this section, spherical spline approximation is introduced. In
the next section the method is used in order to approximate the
RO data provided by the GFZ (GeoForschungsZentrum) Potsdam.
The mathematics behind the method is based on a new setting
developed in [6], namely the explicit representation of the Green
function to the iterated Beltrami operator. It enables us to develop
spherical spline approximation in close similarity to the one-
dimensional cubic spline approach. The analogy is obvious: The
spline is a piecewise polynomial which after certain differentiation
becomes singular in its nodal points. The singularity is that of the
fundamental solution of the Laplace-Beltrami operator. In other
words, in one-dimensional theory, the singularity is just a jump
so that the spline is an integrated step function. On the sphere
the singularity is of logarithmic nature and splines are integrated
logarithmically singular Green’s functions.

The advantage of the spherical spline approximation compared to
currently applied methods for visualization of Radio Occultation
data, such as binning and linear interpolation (e.g. [16], [2] and
[14]) is the smoothness of the approximating function. In contrast
to polynomial interpolation, undesired oscillations can be avoided.
Since the dataset provided by the Radio Occultation method is
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Assume the airisdry: g(z) = 0 ‘

l

Calculate the virtual temperature profile 7, (z) = T(z) - (1 + 0.608q(z)) ‘

l

‘ Calculate the pressure profile P(z) (Equation (9)) ‘

l

‘ Calculate the partial vapor pressure profile P, (z) (Equation (10)) ‘

l

‘ Calculate the specific humidity profile g(z) (Equation (11)) ‘

Figure 4. The iterative process for the calculation of the humidity

not dense enough in order to obtain accurate results by the meth-
ods mentioned above, this specific method was developed with
the intend, that the approximating function prevents undesired
oscillations by minimizing the mean curvature.

Up until now, spherical splines were difficult to generate since the
entries of the matrix used for its computation (Equation (60)) was
approximated by a truncated bilinear series. In this paper, we show,
that those entries are given by an explicit formula, which makes
the computation of spherical splines numerically and economically
efficient.

2.2.1. Notation

In this section, the following notation shall be used: Let R3
denote the three dimensional Euclidean space. The variables x,
y,... shall be used to denote points in R3 with x = (x1, x2, X3)T,
y = (Y1, Y2, y3)" as their Cartesian coordinates. The inner

Convergence?

No

product and norm are defined as usual via

X -y =x1y1 + Xy + Xx3y3, x* =x-x, [x] = Vx2.
(12)

Using polar coordinates, forall x € R3 with |x| # 0 the following

representation can be found:

(13)

x=ré, r=|x

=1,

Theset Q = {& € R3| |&] = 1} denotes the unit sphere with
the surface element d w(&).

Let I denote a closed subset of Q). Then the set [ can be
decomposed in the following way:

F=ruvr, (14)
where [ = ['\dI" is an open set and A" denotes the boundary of
I". With e, e,, e3 as the canonical orthonormal basis in R3, the
points on the unit sphere Q) can be represented by

& =tes+ V1 —t%(eq cos(¢) + ez sin(¢)) (15)
e
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< 1, -1 < ¢ < m, t =
0 < 6 < 7. Functions denoted by capital letters

with —1 < ¢t
cos(6),
F, G, S, ... stand for scalar functions, whereas functions de-
noted by lowercase letters f, g, . . . shall indicate vector fields. The
set of all k-times continuously differentiable scalar functions
defined on a set M is denoted by

chm), (16)

whereas the set of all k-times continuously differentiable vector
fields defined on a set 901 is denoted by

cm), (17)
The gradient is defined as
a o o9\’
Vi=|=— — =— . 1
( 6x1 aXz 6X3 ) ( 8)

Using polar coordinates and the following definitions

(1) = (\/1 — 2 cos(), V1 — 2 sin(g), t)T,
€?(¢, t) = (—sin(¢), cos(¢), 0)", (19)
T

(¢, 1) = (—tcos(¢), —tsin(¢), V1 — t2)
the gradient can be rewritten as

A -
Vi=e o+ Vi (20)

where V' is called surface gradient and is defined as:

1 a0 9
— 1—t2—. 21
ﬁ_tza(p—i-e T (21)

The Laplace-Operator

a\? a\? a\?
sz(a—)q) +(6—X2) +(0—X3) (22)

can be rewritten by using polar coordinates as

V}=e¢

10,0 1
=22 A 2
2ar or + e 3)
where )
0 0 1 0
Ar=—(1-t)= — 24
€= 5 )6t+1—t2(6¢) 24

denotes the (Laplace-) Beltrami operator on the unit sphere Q.

The definitions above yield
Vi - Vy=A
*X *X *X (25)
Ve V=A%

~
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2.2.2. Spherical Harmonics

The definitions and theorems in this section are standard material
in spherical approximation theory. The proofs for the theorems
can be found in either [5] or [6].

Definition 2.1.
let n € N and let H, : R® —» R be a homogeneous
harmonic polynomial in R3, i.e.

i) AvHa(x) =0, x e R3

i) Ho(x) = H(r&) = r"H, (&), &€ Q.

Then the function Y, : Q — R defined by Y, = H,|q is
called a spherical harmonic of degree n.

Definition 2.2.

The linear space of all spherical harmonics of degree n is
denoted as H,(Q). By Hy, ..»(Q) we denote the direct sum
of the spaces Hy(Q) @ ... & H,,(Q).

Lemma 2.1.

Every spherical harmonic Y, of degree n is an everywhere
infinitely differentiable eigenfunction of the Beltrami operator
A* corresponding to the eigenvalue A, = n(n + 1):

(A +24)Ya(&) =0, &€ (26)

The spectrum of Ay is defined as the set of all eigenvalues:
SQ={A=nn+1)|n=01,2..}. (27)

Remark 2.1.
The collection of all finite linear combinations of elements
of the orthogonal direct sum

o]

PH, =H(Q)oH(Q@...0H,(Q)@... (28)
n=0

is dense in the space C(Q) of all continuous functions on Q)
with respect to the [(Q)-norm. Moreover, the set is dense
in the Hilbert space L?(Q) of all square-integrable functions
on Q.

Lemma 2.2.

There exist 2n + 1 linear independent spherical harmonics of

degree n. Hence, there exists a set { Y, ;} n=01,. of spherical
j=1,..2n+

harmonics of degree n and order j, which is orthonormal with

respect to the inner L*(Q)-product (-, -) 2

(Yn,j: Ym,k)LZ(Q) = ]Q Yn,j(n) Ym,k(n)dw(']) = 6nm6jk (29)

.. is a closed and complete basis in
..... 2n+1

L2(Q).



Theorem 2.1 (Addition Theorem of Spherical
Harmonics).

2n+1 be an orthonormal system in H,, (Q) with
- Forany two points §, n € Q the following

Let { Y }j=1...
respect to (-, -)2q
equation holds:

2n+1

o 3 Vosl@utn) GO

+1

Here, P, represents the Legendre polynomial of degree n.

Definition 2.3.

A system n, ..., ny of N-points n, € Q with N > M is
called fundamental system of order m, if the rank of the
M x N- matrix

Yo,1(m1) Yo,1(n1n)
Yi1(mq) Yia(ny)
Yis3(m) Yis(ny)
A= . . (31
Ya(m) Yoa(ny)
Ym,2m+1(’]1) Ym,2m+1(’]/\/)

is equal to M.

2.2.3. Green’s Function with Respect to the Beltrami Operator

The spherical spline approximation method is based on the theory
of Green's function. In this section, Green’s function with respect to
the Beltrami operator A* shall be introduced. Further on, an exact
as well as a bilinear representation shall be discussed. Based on
that, Green's function to the iterated Beltrami operator is defined.
Its explicit structure and some properties are derived.

Some proofs are not mentioned since the corresponding theorems
are well known in the literature, e.g. [5] and [6]. The fundamental
part of this section is Lemma 2.6, hence, the proofis given explicitly.

Definition 2.4.

The function G(A*;-,-) : (&, n) — G(A*; &, n), =1 < &-n<
1is called Green’s function on Q with respect to the Beltrami
operator A*, if it satisfies the following properties:

i) (Differential equation) for every fixed & € Q, n +—
G(A*; &, n) is infinitely continuously differentiable
ontheset {n € Q| —1< & n< 1} such that

ALG(AY & ) = —1<&-n<. (32)

4
ii) (Characteristic singularity) for every & € Q, the
function
1
A%, ——1In(1—-¢&-n).
n= GATGE ) — 5 In(1—&-n) (33)

Journal of Geodetic Science

is continuously differentiable on Q.

i) (Rotational symmetry) for all orthogonal transforma-
tions A the following equation holds:

G(A*; A&, An) = G(A*; &, n). (34)

iv) (Normalization) for every & € Q) we have
/ G(A*; & n)dw(n) = 0. (35)
0

Lemma 2.3.
The function G(A*; &, n) is uniquely determined by its defining
properties i) - iv)

Theorem 2.2.
Green’s function G(A*; &, n) has the bilinear expansion

G(A"; &, n) = Pn(&-n), -1<&n< .

(36)

1 o
rZ

m=1

Lemma 2.4.
For&, n € Qwith—1 < &-n < 1Green’sfunction withrespect
to the Beltrami operator A* has the following expression:

1 1 1
GA5en =@ — (1 —q-n)— 5~ (37)

Proof. The function given in the lemma satisfies the
definition of Green’s function and hence is uniquely deter-
mined by Lemma 2.3. O

Definition 2.5.
Let G((A*)%; &, n) be defined by

C((A*)z;f,n)=IQC(A*;€, QGA" ¢ n)dw(C).  (38)

The function G((A*)?; &, n) is called Green’s function with
respect to the iterated Beltrami operator (A*)2.

Lemma 2.5.
The bilinear expansion of Green’s function to the iterated
Beltrami operator reads

1 2 1
(o 4—Z P pa(En), 1< En<.

39
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Lemma 2.6.
The Green'’s function corresponding to the iterated Beltrami operator (A*)? is continuous and can be represented in explicit form

41—" , 1-&-n=0

(1= In(1 = & m(In(1 + & - n) — n(2))

CUAYEE M = 25 80y 1n2) + ) (1 + &) . 12 &-n 0,

1 —
Lz L 14+& =0

where the function £, is the dilogarithm and it is defined as

Lo(x) = — /l”(1 dt_Zk2 @1)

Proof. From the bilinear representation of the iterated Green's function (Lemma 2.5) we get
1 & 2k+1 1= 1
47 ' i - Pi(§ - n). 42
Gl 47T k(k+1 Ps-n) 4]TZ(k2 (k+1)2) (& - n) (42)

Then it follows for all & € Q:

*\2 _ 17 - l_ = l —l
G((A),f,f)—4ﬂ(; . ; ;1] =4 43)
Further on, we get
wo_sa- Vs e oy ] _
(e “)—4]1(; 3 P=1) ;(k+1)zpk( 1)) (44)
The well known equation P(—1) = (—1)* leads to
1 < 1 = 1 _ 1 . a0 - 1 _1\k
4 k2Pk(_1)_Z(k+1)2Pk(_1)) T an (Z Pl Z(k+1)2( R ) (43)
k=1 k=1 k=1 k=1
1 &1 > 1
= 0 | W :G‘%' (46)
k=1 =
12 12

G(A*; &, n) is a zonal function i.e. the function depends only on the scalar product of ¢ and . Hence, with
G((A*)% &, n) = —G(A*; &, i), we get with the help of Lemma 2.4:

LI (47)

d 2 d *\2. _ * ., _l _ _
dt“_t)dtG((A)'t)_G(A't)_ an In(1 t)+4n in

Integrating the equation above, we get with the help of the fundamental theorem of integral calculus:

/_: %(1 - rz)%c((A*)z; T)dt = (1 - tz)%G(z)(A*; t) = —417(1 —t)n(1—t)+ “'4—(5)(1 —1). (48)

\‘//
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The fundamental theorem of integral calculus and Equation (48) lead further on to:

T d
G((A")% 1) — G((A") t)=[ EG((A*)Z: T)dt

1 (1 n@) [ 1 “9
n
=—— —— In(1 — 7)d — d
4N[1+Tn( ndr+ 47T/t1+TT
By substituting 1 — 7 = wv in the first integral, we get
1 In@2) " 1 1 (% n@2) " 1
. 1— i = — — .
4 ), 1+Tln( Tt + 4 /, 1—1—1’d‘r 4 1_t2_uln(u)du+ 4 /, 1+Td‘r (50)
Using a table of integrals [9] we get:
100 1 2) (M1
1 nwyde + @ / dt
4 )iy 2—u n ) 147 (51)
B 2—u u (In(2)>  In(2)
- ln(u)ln( . ) £2(§)+ =+ 1),
where the dilogarithm £, is defined as in Equation (41). With the help of Equation (49) we get
G((A")%51) = G(AY); 1) =
1 11—t 2 (52)
I In(1 —t)(In(1 4+ t) — In(2)) + £, 5 + (In(2))" = @) n(1 + 1) | .
Continuity follows finally from the two equations
limn(1 —t)(In(1 +¢) —n(2)) =0 (53)
<
and
tl'uE (In(1 = )(In(1 + 1) — In(2)) — In(2) In(1 + 1)) = —(In(2))%. (54)
t>—1
O
[
2.2.4. Spherical Spline Functions on ), the inner product (-, ) is defined by
Next, spherical splines are defined with the aim to determine
the interpolating spline function in a unique way for any given (F, C)n = /Q F(n)Yoa(n)dw(n) /Q G(n)Yoa(n)dw(n)
dataset. With the help of the reproducing kernel of the space (55)
H(z)(Q),whichwiIIbedefinedinthissection,itwillbeshown,that +[Q(AHF(”))(AHG('7))CIW(’7)

the unique interpolating spline function has a minimum "bending
energy". The proofs not stated in this section can be found in e.g.

@ 2 i
(6], 131 or [4]. forall F, G € CY(Q). By H'9(Q) we denote the completion

of the space C?(Q) with respect to the norm I-lly =

NARRLE
Definition 2.6. Definition 2.7.
In the class of all twice continuously differentiable functions Let the N points n,, ..., ny be a fundamental system of

\‘//
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order 0 on the unit sphere Q. Then the function

N
S(n) = Yoa(m—=)_ axG((A*); n,ny),
k=1 (56)

is called natural spherical spline function in H?(Q) of order
0 corresponding to the nodes n,, ..., ny, if the vector
a = (ay,...,an)" satisfies the linear equation system
Aa = 0, where A is given in Definition 2.3. The class of
all natural spherical spline functions in H?(Q) of order
0 corresponding to the nodes n,, ..., ny is denoted by

S(ny, ..., ny)-

Theorem 2.3.

Let n,,...,ny be a fundamental system of order 0 and
y = (y1,...,yn) be an arbitrary R-vector. Then there exists

auniquespline S € S(n,, . .., ny), such that the equation

S(n) = yk (57)

is satisfiedfork =1, ..., N.

The proof of Theorem 2.3 can also be found in the literature given
at the beginning of this section but since it reveals the linear
equation system which is essential in order to compute the spline
function in combination with its explicit solution, the proof is given
here.

Proof. We get from the definition of the spline function,
that we need to determine N + 1 coefficients. For these
coefficients we obtain N equations of the following kind:

N
cYor(m) =Y aiG(A" ne ) = yu

i=1

(k=1,...,N).

(58)
Equation (58) can be rewritten in matrix formulation via:

=ATc—Ga =y, (59)

where c is a constant, A is defined in Definition 2.3 and G
is defined as

G((A)% m. m) G((A"); g, ny)
G- . :

G((A")% . m) G((A")% . ny)

The linear equation system

Aa=0 (61)
provides one further equation which leads to the (N + 1) x
(N + 1) equation system

-G AT
A 0

v
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neQ, c=const.

Since

GU&"Ys o) = [ GO, G € m)du), (69

the N x N matrix G is of Gram type. Furthermore, the
functions G((A*)% 0y, 1), - . ., G((A%)?; ny, n) are linearly in-
dependent. Hence det(G) > 0 and we get

a=G'ATc -Gy with c = (AG'AT)'AG "y,

(64)
which is the unique solution of the linear system. O
Theorem 2.4.
The function
K(&n)=Po(&-n)—G(A");&n)  &EneQ (65

is the unique reproducing kernel of the Sobolev space
(H2(Q), (-, )n), ie.:

i) Foreachfixed& € Q, K(&, n) considered as afunction
of nis an element of H?(Q).

i) For every function F € H?(Q) and for every point
& € O the reproducing property holds:

F(§) = (F(n), K(&, m)n- (66)

Lemma 2.7.

Let A be given as in Definition 2.3. If the equation Aa = 0 = ¢
is fulfilled, then, for all S € S(ny,...,ny), ie. S(n) =
cYoa(n) — Z,L arG((A)%; n, n,), and all F € H?(Q), the
following equation holds:

N
[ s Fndotn =Y o). 67
k=1

Theorem 2.5.

Let(ny,y1), ..., (nn. Yyn) be N datapoints, wheren,, ..., ny
is a fundamental system of order 0 on Q. Let Sy €
S(ny, ..., ny) betheunique natural spline which interpolates
the data points y, ..., yn. Then, for all twice continuously
differentiable functions F on Q, which interpolate the data
points y1, ..., yn, the following equation holds true:

] (8 Sw(n) daln) < [ (O F(m)Pdwln)  (©68)
(9] O

with equality if and only if F = Sy




Proof.

/ (8 S () (A5 S(n)) dewln

Combining the equation above with Lemma 2.7 leads to:

[ ;sta) -

F(n)*dw(n

From Lemma 2.7 we obtain for every natural spline S € S(n;,, . ..

ZukSnk ZZaank /(A*
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, ny) the following equation:

Z arS(ny). (69)

d w(n). (70)

Now let Sy € S be the unique interpolating spline. Then, with F(n,) = y« = Sn(n,) forallk =1,..., N, it follows:
N
/ (8 Sn(n) — Dy F(m) dwin) = — S _ afF(n,) + [ (O3 F (m) du() 71)
Q o= Q
where a7 are the coefficients of Sy. From Lemma 2.7 and rearranging the equation above follows:
[ @ssvmdotn = [ 5y dotn — [ 85w - 8;F () dwa 72)
Q 0 0

which proves the theorem.

Remark 2.2.

Theorem 2.5 suggests that the interpolating spline consid-
ered as an infinitesimal thin membrane which is spanned by
the data points has minimum bending energy. This inter-
pretation is reflected by the one-dimensional cubic spline
interpolation, where the interpolating spline shows min-
imal "curvature energy" (understood in linearized sense).
Furthermore, we do not make an attempt to use splines of
orders > 0 (as proposed by [4]). As in the one-dimensional
case, higher order splines tend to show more oscillations
for a scattered data set, thus, we restrict ourselves to the
spherical counterpart of cubic splines.

2.2.5. Smoothing Splines

The interpolating spline function introduced in Section 2.2.4 will
be slightly modified in order to allow the smoothing of the
data. It turns out that the smoothing spline is still uniquely
defined and minimizes a functional that measures the fitness of any
approximating function, however, under additional statistically
oriented prerequisites.

Definition 2.8.
The problem of fitting a smooth function to a given dataset
(n1, Y1), ..., (NN, Yyn) is given by determining a function F,

O
[
such that the functional
~(Fn) =i\ e
opalF) =Y (T) + [ OFdutn)
k=1 (73)

is minimized in H? (Q), where B, are given positive weights
and 0 > 0 an arbitrary parameter, which give a measure
for the desired smoothness (for more details concerning
smoothness see [3]).

Remark 2.3.
Choosing 0 = 0 in the spherical spline approximation
method leads to strict interpolation.

Theorem 2.6.
Letd, B1, ..., Bnbegivenpositiveconstantsand (n,, yi), 1 <

k < N be given data points. Then there exists a unique spline
function S € S(n,, ..., ny) such that the inequality

0p,5(S) < gp5(F) (74)

isvalidforall F € H®(Q)with equalityonlyif F = S. Further
on, if S is given by Definition 2.7, then S is uniquely determined
by the equation system

S(ny) + 0Biar = yu (k=1,...,N). (75)

V
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6=0 6=10"° 5=10"* 6=10"3 06=10"2 6=10" 6=10°
condition for n=100 7,5262*10° | 8,8420*10° | 1,7697*10° | 1,0267*10° | 2,4963*10* | 1,2302*10° 12,85
condition for n=1000 2,2019*10"| 6,5501*107 | 5,5149*10° | 2,4274*10° | 6,8239*10° | 4,0629*10*| 670,08
condition for n=6000 1,6900*10%| 3,2347*10® | 1,1966*10% | 6,3276*107 | 4,9563*107 | 1,5428*10% | 158,39
condition for n=12000 7,3958+*10'¢| 1,8897*10' | 2,4297*10° | 1,5511*10% | 4,5924*107 | 2,5740*10% | 287,70

Figure 5. Condition of the linear equation system (76) for n randomly distributed data points on the sphere.

The proof of the last theorem can be found in either [4] or [6].

Remark 2.4.
Equation (75) can be rewritten in matrix formulation as
-G+6B AT\ (a\ [y
SRR =) oo

where G, A, a, ¢, y are defined as in the proof of Theorem
2.3 and
Bt 0
B= . (77)
0 B

It is obvious, that by adding the positive diagonal matrix B
to G, the condition of the linear equation system decreases
dramatically even for small 0. An example for the condition
of the linear equation system for randomly distributed data
points on the sphere can be found in Figure 5.

3. Results

In this section, the spline approximation method introduced in
the last section is applied to Radio Occultation data in order to
produce illustrations demonstrating the vertical composition as
well as the change in selected layers of the Earth’s atmosphere
over time. Further on, some pictures are produced in order to
compare different years for a given season and layer among each
other. The parameter used in the approximation is the tempera-
ture. Nevertheless, it should be observed, that any atmospheric
parameter can be approximated by this method.

3.1, Zoom through the Atmosphere

In this part, illustrations were created, which show the temperature
of the Earth’s atmosphere, starting at 35km height above mean
sea level and zooming in to 7km height above mean sea level in
the time period June 2007 until August 2007, in order to show
the vertical composition of the atmosphere. The time period is
chosen in such a way, that the dataset is sufficiently large to
smooth out short lived atmospheric states while maintaining the
characteristics of the current season. The method used to calculate

v
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the individual pictures is the smoothing spline approximation. The
parameters have to be chosen in such a way, that they provide
a balance between smoothing and representing the data exactly.
Since all data points should be weighted equally, Bx was chosen
to be equal to one for all k. Since the number of data points has
a magnitude of circa 10%, § = 0.05 seems a reasonable choice
because it smooths the data sufficiently while still representing
adequate detailed information. The pictures, which show the
temperature of the Earth for selected altitudes in summer 2007,
can be found in Figure 6.

Figure 7 shows that the temperature varies drastically. Starting at
35.0km altitude the temperature is located between —59.5°C
and —28.8°C and drops until 21.2km altitude, while increasing
the difference between the minimum (—90.8°C) and maximum
value (—42.9°C) to 47.9°C. From 21.2km altitude to 16.2km,
the minimum temperature starts to rise up to —84.9°C, while
the maximum temperature in those layers decreases further to
—44.0°C, which leads to a smaller difference of —40.9°C be-
tween minimum and maximum temperature. From there on up
to 12.0km height, both, the minimum and maximum temper-
ature increase again so that the temperature lies in the interval
[—76.8°C, —42.9°C]at 12.0km height. Since the minimum tem-
perature increases faster as the maximum temperature, the differ-
ence between those temperatures decreases further to 33.9°C.
In the final height interval between 12.0km and 7km altitude,
the temperature increases further, but the difference between
minimum (—56.7°C) and maximum value (—12.7° C) increases
again to 44.0°C.

3.2. Approximation over Time

In this section, the dataset was interpolated over time in order
to show the change of the temperature at 7km altitude over
the seasons. Since the number of data points utilized in the
approximation is significantly smaller than in the last section, the
parameter 0 can be chosen as 0 = 0.005. This has the benefit
that the produced graphical illustrations show more details as in
the previous section. The same By are used as in the last section,
Br = 1forall k. Allindividual pictures consist of the data of seven
consecutive days in order to provide a sufficient dense dataset
and even out the influence from the day-night alteration. Figure 8
shows the plots of the temperature distribution at 7km altitude.
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Temperature in °C, summer 2007: height= 35km Temperature in °C, summer 2007: height= 21.2km
(minimum value: -59.5, maximum value: -28.8, difference: 30.7) (minimum value: —90.8, maximum value: —42.9, difference: 47.9)
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Temperature in °C, summer 2007: height= 16.2km Temperature in °C, summer 2007: height= 12km
(minimum value: —84.9, maximum value: -44.0, difference: 40.9) (minimum value: -76.8, maximum value: -42.9, difference: 33.9)
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Temperature in °C, summer 2007: height= 7km
(minimum value: -56.7, maximum value: -12.7, difference: 44.0)
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Figure 6. Temperature distribution in summer 2007 for selected heights.
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Behavior of the minimum and maximum temperature
and its difference depending on height in summer 2007

height in km

minimum temperature
maximum temperature [~

temperature difference

0 50

temperature in °C

Figure 7. Behavior of the minimum and maximum values and its difference of the temperature in summer 2007.

3.3. Comparison of Different Years using Spherical Spline Approxi-

mation

The spherical spline approximation method is uniquely suited for
the comparison of different years, since the comparison involves
only the subtraction of the spline functions of the two different
years. Hence, if the spline function is once computed for a given
height, time period and year, it can be compared to any other
year with the same time period and height. Figure 9 shows the
temperature at 20km altitude in spring 2006 compared with
the corresponding temperatures in spring in the years 2002 until
2008. Thefigure indicates, that, compared with the otheryears, the
temperature above Greenland and North Canada in spring 2006
at 20km altitude was the lowest in the time period mentioned
above, while the temperature at the south pole was the highest.

3.4. Computation of Atmospheric Profiles

By use of the spherical spline approximation method, we are able to
compute atmospheric profiles for arbitrary locations on the Earth.
In order to compute those profiles, the spherical spline function has
to be computed for several layers of the Earth’s atmosphere. The
data at hand provides atmospheric profiles with measurements in
200m intervals. By computing the spherical spline function foreach
of those layers and evaluating this function at the desired position
on the Earth, the atmospheric profile can be computed. Exemplary,
a vertical temperature profile for Kaiserslautern, Germany was
computed. The city is located at 49.424°N, 7.745°0. The
nearest measurement is located at 50.514°N, 8.769° O, which
corresponds to a distance of 141.23km to the desired location.
For the calculation, all measurements in July 2007 were taken into
account. The smoothing parameter 0 was selected as 0.01. In
order to weight the measurements close to the desired location,
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the parameters B where selected as 2 — - njx. The 1 indicate the
positions of the measurements on the unit sphere, 1 the position
of the desired location. The results of the computations can be
seen in Figure 10.

4. Discussion

The results from the last section show, that the spherical spline ap-
proximation method is an adequate method for the approximation
of the given Radio Occultation data. Further on, the numerical ex-
periments showed, that the spherical spline method is numerically
stable even for vast linear equation systems, which contributes
further to the usefulness of the method. In addition, the pa-
rameters of the method provide a vast adaptivity for adjusting the
method to a given approximation problem. It could be shown, that
spherical splines are uniquely suited for approximating scattered
data. However, as for any other method, the approximation can
be improved by a larger dataset. The ideal dataset should consist
of measurements, where all measurements taken within an hour
would be evenly distributed over the whole sphere, which would
require several measuring satellites.
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Temperature in °C, 9. week 2007, height= 7km

Temperature in °C, 1. week 2007, height= 7km
(minimum value: -55.7, maximum value: —11.2, difference: 44.5)

(minimum value: -55.3, maximum value: —11.0, difference: 44.3)
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Figure 8. Temperature distribution at 7km altitude for selected times.

\\//

-] veRstm



394

Journal of Geodetic Science

Temperature in °C, spring 2006, height= 20km
(minimurn value: -72.3, maximurn value: -50.0, difference: 22.3)
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Figure 9. Temperature in spring 2006 (top) compared with the spring temperatures in 2002 to 2008 at 20km altitude.
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Temperature profile for Kaiserslautern, Germany, July 2007
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Figure 10. Temperature profile for Kaiserslautern, Germany in July

2007.
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