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Abstract:

Advances in accelerometer technology promise many orders of magnitude improvement in sensitivity; which, consequently, also suggest
progress in Earth Science applications, such as through new airborne gravimetric systems. However, a new capability for one sensor
then usually demands commensurate requirements from auxiliary sensors in order to realize its full potential. Specifically, airborne
gravimetry would benefit from improved inertial accelerometry only if the kinematic acceleration derived from vehicle tracking or
positioning is equally precise. The latter is investigated in this study to determine the limits in precision due to errors in modeling the
numerical derivative and due to errors in the positions, themselves. Simulations with actual aircraft trajectories show that the kinematic
acceleration using current positioning capability (that is, GPS or similar satellite navigation systems) can be determined to an accuracy
at the sub-milligal level only with sufficient smoothing over intervals of 60 s or longer. The effects of position error still dominate over
the model error, and both are many orders of magnitude greater than the predicted precision of state-of-the-art accelerometry. This
suggests that airborne gravity field determination likely will profit more if the advances in inertial sensor technology are directed toward

gravity gradiometry.
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1. Introduction

Airborne gravimetry over the last four decades has rapidly become
an operational tool for measuring the Earth’s gravity field over
larger regions with excellent accuracy and resolution. The entire
Arctic Ocean was mapped in 1998-2002 at a resolution of better
than 10 km with an accuracy of a few mGal under sponsorship
from the National Geospatial-Intelligence Agency (Kenyon 2000),
the Naval Research Laboratory, and the Danish National Space
Center, following an extensive aerial gravity survey of Greenland
(Forsberg and Brozena 1992; see also Forsberg et al. 2001). More
recently, various Asian countries were mapped similarly for geode-
tic purposes (Mongolia, Malaysia, Taiwan, South Korea), among
others, mostly by the Danish group (Forsberg and Olesen 2009).
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For commercial applications, primarily oil and gas exploration,
airborne gravimetry dates back to the 1980’s, as a means to cover
large tracts of land to seek out particular gravitational anomalies
that suggest geologic traps where such deposits can accumulate
(Hammer 1980, Gumert 1998). The importance of gravimetry for
geophysics was also recognized and emphasized in a number of
National Research Council and NASA studies of the 1990s (e.g.,
NASA 1991; National Research Council 1995; Dickey et al. 1997).

Advanced accelerometry based on micro-machined, solid-state
devices (such as the Zero Force Accelerometer (ZFA), Draper Labo-
ratory 2010) today portends unprecedented precision; forexample,
as low as 10-20 pg/+/Hz for airborne applications and 0.5 pg/+/Hz
for the dynamically quieter environment of a satellite platform
(1 pg =1 pico — g & 10™"" m/s?). Such sensitivity far exceeds
that of current airborne gravimetry (where typical sensitivity is at
the mgal level; 1 mgal = 10°° m/sz), and the question natu-
rally arises whether it offers corresponding advantages for future
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systems.

In view of the importance of airborne gravimetry and the tech-
nological developments in accelerometry, this paper attempts to
answer this question. Specifically, the complementary kinematic
acceleration determination from precise positions is investigated,
since it is a key component in airborne gravimetry. Significant
investigations in this direction exist in the literature; for example
Van Dierendonck et al. (1994), Jekeli and Garcia (1997), Bruton et al.
(1999), Kennedy et al. (2001), Kreye and Hein (2003), among others.
Two types of error enter the computed kinematic acceleration: 1)
errors in positioning, usually obtained from GPS and thus due
to receiver noise, unknown tropospheric and ionospheric delays,
multipath, orbital errors, etc.; and, 2) model errors associated with
the numerical differentiation of discrete position coordinates. The
present focus is on the latter although position error is not ne-
glected. Indeed, the purpose is to determine the limits achievable
in reducing the model error for realistic airborne trajectories, and
comparing this to acceleration uncertainty induced by present-day
position error, as well as to the new technology in accelerometry.

2. Mathematical Background

Airborne gravimetry (or, any moving-base gravimetry) is founded
on Newton’s Second Law of Motion in a gravitational field:

X=a+g, (m

where a is the inertial acceleration of the vehicle (due to action
forces such as lift, drag, and propulsion), g is the gravitational
acceleration due to the ambient gravitational field, and X is the
total, kinematic acceleration of the vehicle, being the second time
derivative of its position, x. Equation (1) holds in an inertial (that is,
freely-falling, non-rotating) frame and assumes that inertial mass is
equivalent to gravitational mass (Einstein’s equivalence principle).
The inertial acceleration, @, is sensed by an accelerometer; and,
in order to determine g, the kinematic acceleration must be
calculated from a numerical differentiation of observed positions.
Position can be observed, or determined, using ranging methods,
such as GPS. In a rotating frame, such as the one attached to the
vehicle, Newton’s equation of motion takes on a few extra terms
(Jekeli 2000}, which means that also the orientation of the platform
in inertial space must be determined. But, the essential principle is
the same: gravimetry requires both accelerometry and a numerical
differentiation of positions obtained independently by a ranging
system.

2.1. The Kinematic Acceleration Filter

The present focus with respect to airborne gravimetry is the de-
termination of the kinematic acceleration, X. It is a necessary
component of a proven method to compute the gravitational ac-
celeration from accelerometry. The alternative, indirect approach
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is to integrate accelerometer data corrected for gravitation in such

a way, using some a priori knowledge or constraints on the grav-
itation, that the result agrees with the positions of the aircraft.
In either case the position of the aircraft must be determined
precisely using a ranging technique, such as GPS. The direct de-
termination described above does not require prior knowledge on
the gravitation (e.g., Kwon and Jekeli 2001), but entails a second-
order numerical differentiation of the GPS positions. This is a
well recognized problem and considerable literature is devoted to
the development of optimal numerical methods. One of the more
comprehensive recent studies was done by Bruton et al. (1999) and
Bruton (2000) who analyzed various numerical filters. A technique
based on differentiation of GPS phase observations rather than
positions was developed by Jekeli and Garcia (1997) and further
analyzed, for example, also by Kennedy et al. (2001) and Kreye
and Hein (2003). No particular method of numerical differentiation
seems 1o be established in practice, as demonstrated in a more
recent airborne survey described by Hwang et al. (2006) who used
a very simple spline interpolation method.

While all these methods can be and have been tested using data
from a stationary antenna (where the true acceleration is known),
the accuracy of aircraft accelerations derived from actual airborne
data is more difficult to ascertain. Usually, multiple GPS tracking
stations (or tracking systems) are used to compare accelerations
derived from the different corresponding solutions for the aircraft
trajectory. For example, Van Dierendonck et al. (1994) used two
tracking stations and a laser altimeter (over a lake) to study the
effects of various GPS errors on the acceleration determination.
Also, Salazar et al. (2011) compared velocities and accelerations
using solutions of aircraft trajectories from different tracking sta-
tions. However, as will be argued later, such comparisons primarily
indicate the effect of position error. They say little or nothing about
the model error (the error in the numerical differentiation), which
can be large and dominate the effect of position error. Forexample,
the comparison by Kreye and Hein (2003) of two differentiation
methods using the same airborne data set yielded differences of
the order of 10 mgal, significantly larger than the differences of
a few mgal found by comparing accelerations derived from two
equivalent data sets using the same method.

It is well known that numerical differentiation is an unstable pro-
cess and model errors depend on values of the derivative two
orders higher (that is, on the fourth-order derivative in case of
double differentiation; e.g., Conte and de Boor 1965). This has
two consequences in the analysis. First, it is difficult to simu-
late a truth model against which to compare different numerical
differentiation methods. Second, a significant amount of smooth-
ing (low-pass filtering) is required to obtain high accuracy in the
numerical differentiation. With current tracking systems, such
smoothing is also needed to reduce the effect of noise in positions.

For the present analysis, suppose we have a long sequence of
position values, x,, uniformly sampled from a continuous trajec-
tory, x (), with sampling interval, At. We are not concerned with



the orientation of the frame of the trajectory and define time-

derivatives in this frame. If F, (f) is the Fourier transform of the
trajectory, so that
x(t) = / F (f) et df, )
—0Q

where f is (cyclical) temporal frequency, then the Fourier transform
of the second derivative is

Fi (f) = D(f) Fx (f). 3)

where

D(f) = — (2xf)>. 4

Equation (3), representing a product in the frequency domain,
shows that differentiation may be viewed, according to the well
known convolution theorem (Bracewell 1965), as a filter whose
frequency response is given by equation (4).

One could estimate the second derivative of positions via the
frequency domain: multiply the Fourier transform of the positions
by D (f) and compute the inverse transform. However, the
discreteness of the positions introduces considerable aliasing and
the finite extent of the position data further introduces spectral
leakage (ringing, or the Gibbs phenomenon). For these reasons,
one typically designs afilter to mitigate these effects. We start with
a finite, discrete filter (finite-length impulse response, FIR, filter) of
the form

J
%o =AY dix, (5)

==

where Jis called the order of the filter, and the filter coefficients,
dj, represent the impulse response of the filter. Since the number
of coefficients is finite, the frequency response cannot equal the
ideal response, D (f), equation (4). However, the coefficients
should be symmetric with respect to the origin, ie, d_; = d,
since the ideal frequency response is real. This requires that the

number of coefficients is odd, (2/ + 1).

To illustrate the limitations of simply applying Fourier transforms
to the data, consider the filter coefficients determined from the
ideal frequency response. Using the (Shannon) sampling theorem
(Marple 1987) that guarantees the reconstruction of the continuous
trajectory from its samples if the continuous form contains no
spectral components with (absolute) frequency greater than fn, =
1 / (2At), that is, the Nyquist frequency, we have

x(t):ijslnc(é—j), (6)

j=—00

where sincis the cardinal sine function: sinc (t) = sin (st) / (srt).

This function is differentiable,
d> . 2. 2
— sinc (u) = — (sinc (v) — cos (7ru)) — 7 sinc (u), (7)
du? u?

and
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szz sinc (u) = —%2;
, u u=02( 1)/‘ (8)
2 _ 2= -
<oz Sinc (u) s TR ji=12...
We thus differentiate:

. 2 . .
€t = T o sine (= )|

2
= ﬁzjf’;m Xnj 5 sinc (u)

2
b3 2 % =1/
==Xy — 57 ) jo—o0 Xn—j 2
TN ZANZIN - s L
j#0 /

These second-derivative values are approximated with an FIR filter
of the form of equation (5) by limiting the range of the index, j,
since we have only a finite number of position data. We obtain:
2 2 (=1

S g =2y
a8’ T A A ! !
(10)

However, by limiting the index, we also introduce a bias. That

do =

is, the filter coefficients should sum to zero to be consistent with
the derivative of a constant. Hence, the coefficients need to be
modified:

e 2 (=1 )
do—_m_so, dij—_E(jAt)z—S(), ]—1,2,...,],
(1
where
n? 2 L=y
T 308 T 2/ + )AL ]; (jAt)? (12

Similarly, the second derivative of a linear trend should vanish.
This is automatically satisfied for the FIR if the coefficients are
symmetric (d,,- = d,-), which was already noted as a requirement,
and is easily shown to be the case above.

Given the filter coefficients, d;, the frequency response can be
computed from the discrete Fourier transform:

J
D(fy=At)y dje 2l (13)
j=—1

Figure 1 compares the frequency response, equation (13), to
the ideal one, equation (4), for / = 13 and At = 1 s; and, the
absolute differences between them (the errors) for various orders,
J, are shown in Figure 1. The oscillatory nature of the error is
due to the truncation of the filter at j = /. This effect (Gibb’s
phenomenon) can be mitigated by applying a window function to
the impulse response. Bruton (2000) showed that the oscillation
thus may be reduced by about an order of magnitude in the low-
to mid-frequencies.

Another second-derivative filter design is a member of a class of
numerical differentiators known as central differences. These are
derived from a Taylor expansion of the function, where from (Khan
and Ohba 1999) we have the following general formula (modified

v
VERSITA



0 Journal of Geodetic Science
TN

. // \\
af / \

— FIF filter freq. r\espnrlse'll
— 1deal frequency respornse \
I  —

frequency response [ 155°3)1H=]

10 T T T
O504-035-0201 0 0102 0304 05

frequency [Hz]

(a)

| T, T I
ITAY IV P e

I
LY TATA

[{ 14”3 W]

u T 1
11070 L | . I 1 I I 11 1 |

05 04 03 02 01 0 01 02 03 04 03
Frecquency [Ha]
(b)

Figure 1. a) Frequency response of the approximation to the ideal
second-derivative FIR filter, / = 13; b) the error for various
indicated orders.

slightly) for the second derivative using 2/ + 1 evenly spaced

points,
J
5&" = At Z dj'an_/, (14)
j=—1
with
J
djo=-2) d (15)
j=1

andforj==+1,...+J,

2 (">
At(jaty =DM+ )Y

dj; = (=1y"" (16)

For/ =1, wegetdi s = 1/At3 and dip = —2/At3, leading
to the well-known double difference formula:
1

=g (Xn—1 — 2Xp + Xp11) - (17)

Xn
—~
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A recursion formula for the filter coefficients, d ;, is easily found:

2 .
dyj= - (1 - }) e it
di—j=dy j=2,....0 dii=

J+1)AB

(18)

Itis noted that the filter coefficients sum to zero in view of equation
(15).

The frequency response of this filter is given by substituting
equations (15) and (16) into equation (13). The responses for
a sampling interval of At = 1's and different values of J are
illustrated in Figure 2; and errors relative to the ideal response
are shown in Figure 2. Clearly, the approximation improves as J
increases. Compared to the previous approximation of the ideal
response, equations (11), the central difference filter is much more
accurate at low frequencies, but worse at high frequencies (e.g.,
compare Figures 1and 2 for |f| > 0.4 Hzwhen J = 13).

Bruton (2000) also mentions the use of the Parks-McClellan al-
gorithm that is based on the Remez exchange algorithm (Parks
and McClellan 1972) to design an optimal (minimax) FIR filter that
is most efficient (fewest number of filter coefficients) in meeting
specified accuracy requirements over a particular spectral band.
His example shows, compared to the simple filter, equation (11),
that the error thus can be reduced by several orders of mag-
nitude over the entire spectral band of interest. However, at
the lower frequencies in which we are ultimately interested, the
central-difference filter is still more accurate, as seen in Figure
2. It is also noted that the Parks-McClellan/Remez method is an
iterative process that may not always converge and may have
other instabilities. The central difference method is very stable
and is the method of differentiation often used for GPS kinematic
accelerations (e.g., Kennedy et al., 2001, Salazar et al. 2011).

2.2. A Mutually Consistent Model

Evaluating the performance of the central-difference differentia-
tion filter in practical applications requires a reasonably realistic
truth model. For a given realism (e.g., the dynamics of an aircraft
trajectory), the difficulty is to devise a truth model that yields
mutually consistent positions, x, and accelerations, a + g (or, even
just @), according to equation (1).

One approach, for the model, X = @, is to integrate accelerations
from a starting time, f, to get positions at some later time, t:

x (1) = x (t) + x () (t — t) + /t (t—t)a(t)dt, (19)

(which can be checked by differentiating twice). The velocity at
ty can be eliminated if also the position at i, is known. If
the interval between epochs of the desired positions is constant
(tixr — te = At, for all k), then we find that the positions are
determined recursively according to
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Figure 2. a) Frequency response of central difference filters for the
second derivative and for various orders; b) errors of these
frequency responses relative to the ideal response.

1)
Xex2 = =X+ 2 + [T (= t) a (¢) dt'+ 20)
k42
[0 (e — ) a (t) dt'.

Performing the integration requires some truth modelforthe accel-
erations. We may choose actual measured airborne accelerometer
data, but taken as errorless, and any suitable interpolating func-
tion for which the integrals can be evaluated. For a given set of
accelerometer data, each choice of interpolating function yields
a different “true” position sequence that is consistent with the
accelerometer data.

The alternative is to start with position data, obtained from GPS,
and assumed errorless. These are interpolated with an appropriate
analytic function that is then differentiated to yield mutually
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Figure 3. Example of position data interpolated by B-splines.

consistent accelerations. But, this begs the question of analyzing
the numerical differentiation filter. In a sense, however, we
face the same dilemma as above. A numerical approximation is
needed to create a mutually and perfectly consistent set of position
and acceleration data; and yet, we wish to test the numerical
approximation to go from one to the other. Both approaches
described above (from accelerations to positions, or vice versa) are
essentially identical; neither solves the dilemma and both create
the same problem.

The only solution is to compare two numerical differentiation
operators, where one is treated as correct in the sense of creating a
mutually consistent position/acceleration data set. This is similar to
a perturbation method, where the perturbation in the model may
or may not be a realistic quantification of the error. On the other
hand, for the perturbation used here, one may argue that it fails
on the optimistic side of assessing the errors. With these caveats,
the second approach above is pursued by comparing the central-
difference accelerations to accelerations obtained by interpolating
agiven set of positions using fifth-order B-splines (Schumaker 1993;
see Figure 3 for an illustration). These B-splines are piecewise
polynomials differentiable everywhere up to third order, so that
the second derivatives at the data points are smooth. Although
they are based on local support, the derived accelerations have
very little high-frequency content beyond the Nyquist frequency
(shown later). Both being derived from polynomials, the numerical
results of comparing central-difference and B-spline accelerations
will be optimistic. On the other hand, they provide reasonable
answers to our performance questions as functions of various
salient parameters.

3. Numerical Tests

With a view toward the airborne gravimetry application, GPS data
from an airborne survey were used to simulate the dynamics of
the trajectory. The data comprise precise GPS solutions, based
7
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Figure 4. Airborne gravimetry trajectory of Flight 0211 conducted
by Intermap Technologies Corp. in 1999 over the Balti-
more/Washington, D.C. area. Blue segments (numbered
1 through 6, from left to right) indicate the parts of the tra-
jectory that were analyzed for the kinematic acceleration
determination.

on 2 Hz data from Ashtech receivers, of an aircraft trajectory that
was one of several flown over the Baltimore/Washington, DC,
area in 1999 by Intermap Technologies Corp. for the purpose of
measuring the gravity field. It is shown in Figure 4 together with
the segments along which the true accelerations were simulated.
Here and later, using another airborne GPS trajectory, itis assumed
that the estimated positions are free of the effects of cycle slips
and other systematic errors. The determined positions (Cartesian
coordinates), thus assumed true, were interpolated by fifth-order
B-splines. This piecewise polynomial was then differentiated
twice to obtain “true” accelerations at the 2 Hz data points. The
errors in the accelerations are the differences between the central
differences of order, J, and the B-spline accelerations for each of
the segments and in each of the coordinates. The corresponding
standard deviations, per segment and coordinate, were computed
according to

N—1 2

N—1
1 1
*Z 5xk—f25xk , @1
N N &

k=0

Osx =

where N is the total number of points in the segment, and 0X,
is the k' error in the segment. Figure 5 shows the standard
deviations of the errors. The errors (i.e., differences) stabilize with
increasing order at a level of about 200-500 mgal. Orders higher
than about / = 120 offer no substantial decrease in error. In all
cases the mean error, the second term in the bracket in equation
(21), was not significantly different from zero at the sub-mgal level.

The sensitivity of the acceleration error to the dynamics of the

trajectory is illustrated in Figure 6. Here, the standard deviation of

the acceleration error for / = 240 is plotted against the standard
Y
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Figure 5. Standard deviations of errors in acceleration as function
of central-difference order for each of the coordinates, x
(top), y (middle), z (bottom), and for each of the segments
in Figure 4.

deviation of the acceleration, itself, for each segment and each
coordinate. The error is almost directly proportional to the level
of dynamics of the moving platform. The variation in dynamics
observed for this trajectory from segment to segment may be due
to actual changes in turbulence, or it may be due to changes in
error behavior in the position solution.

The limiting accuracy of several hundred mgal agrees with test
results recently reported by Salazar et al. (2011) who used a central-
difference filter with / = 5. For differential GPS solutions between
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base stations 142 km apart (where the true acceleration is zero),
they found standard deviations in the computed acceleration of
the order of several mm/sz‘ We surmise that the use of an actual
dynamic trajectory is responsible for the need to use higher order
filters.

One may wish to consider a higher sampling rate in order to
capture the high--frequency details of the accelerations with the
aimtoreduce the errorin the numerically determined acceleration.
The analysis here is limited to an artificial simulated trajectory at
these higher frequencies, since no high frequency airborne GPS
data were available. The sampling rate is increased to 20 Hz, but
even higher rates could be considered (GPS receivers now yield
up to 100 Hz data rates). One option is simply to use the B-spline
interpolation already computed from the given trajectory (2 Hz, in
this case) and sample it at higher resolution. However, we see in
Figure 7 that the higher-frequency acceleration thus simulated is
not realistic, when compared to the accelerations of the Intermap
trajectories that were sensed by the on-board accelerometers.

Instead, we add high-frequency content to the existing trajectory
according to an algorithm that results as far as possible in a realistic
acceleration power spectral density (psd). Experiments have shown
that simply introducing a random, zero-mean, spectral component
scaled by the acceleration power spectrum creates too much
dynamics. Instead, we consider the method of simply adjusting
the existing phase and amplitude spectra (from the B-spline-
interpolated, high-resolution model) at each higher frequency
in some random manner. To simplify the analysis (and since
the accelerations for all three coordinates behave similarly), we
consider only a single coordinate - the height above a reference
surface, such as the Earth ellipsoid.

If Hy = ¢k + idy is the spectral component of a B-spline inter-
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polated height coordinate for wave number, k, then in terms of
amplitude and phase, we have

He =/ + dielo(@fa) — pete. ()

We alter the amplitude and phase as follows:

Bk = b (14 w), (23)
Be= (1 +w), (24)

wherev, ~ N (0, O'VZ),Wk ~ N (0, Uf,) are normally distributed
random variables with adjustable variances to ensure that the
dynamics of the resulting trajectory is reasonable. For Uvz -0
and UVZV — 0, the original B-spline trajectory would be obtained.

The alternate spectrum is then I:lk = Bke"‘z’k and the heights
according to this model are given continuously by utilizing a new
B-spline interpolation, as before. In order to obtain a real represen-
tation of the heights (as opposed to a set of complex numbers),
the frequency and time domains must be shifted appropriately.
Also, we assume that the number of time domain points, N, is odd.
Thus, if tg < t < t4, then with NAt = t; — ty, and

N-1
Fe =0t hity+ eAt) e ¥, (25)
=0
one has
%
1 N o
hit)= —— Hy et Rark(=to), 2
(t) Nmk;;ker (26)
=77

where it is noted that /:/N_k = /:/,f and HN+k = /:Ik.

Figure 7 shows the acceleration psd for the 20-Hz B-spline tra-
jectory (interpolated from the original 2 Hz data and computed
using the corresponding analytic accelerations); the psd of the
actual 25-Hz vertical accelerations sensed by Intermap accelerom-
eters; and, the acceleration psd of the 20-Hz trajectory altered
by replacing spectral components beyond 1 Hz with components
scaled according to equations (23) and (24) by random Gaus-
sian variables having standard deviation, g, = g, = 0.0002.
The altered-trajectory accelerations were again determined from
a 5'"-order B-spline interpolation. We see that the accelerations
of the original B-spline interpolated trajectory have virtually no
power beyond the Nyquist frequency, 1 Hz, of the given 2-Hz tra-
jectory. The acceleration psd of this trajectory, however, contains
a significant resonance just below 1 Hz, compared to the actual
acceleration psd from accelerometers. This may be due to aliasing
error in the spectrum of the given 2-Hz trajectory. The upward
trend of the psd of the altered trajectory for frequencies greater
than about 1.2 Hz is due to the random nature of the alteration
(white noise in position is amplified by the square of frequency
for accelerations). Increasing g, and g, moves this ramp up in
amplitude. The modified-trajectory accelerations have no power
beyond 10 Hz, which is its Nyquist limit.

v
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Figure 7. PSD’s of accelerations determined directly from the Fourier
transforms of the indicated signals, and median-smoothed
over a 31-frequency window.

Using this modified trajectory in heights, the central-difference dif-
ferentiator was applied with varying order, J. The 20 Hz trajectory
was also decimated to 10 Hz, 5 Hz, and 2 Hz to simulate lower
resolution data. Figure 8 shows the standard deviations of the
differences between the numerically determined acceleration and
the “true” accelerations based on the B-spline interpolation of the
20 Hz data. We see that when there is significant high frequency
content in the data beyond the Nyquist limit (the 2 Hz, 5 Hz, 10 Hz
trajectories), then the error is almost independent of the order of
the numerical differentiation operator. And, when there is prac-
tically no spectral content beyond the Nyquist frequency (20 Hz
trajectory), the accuracy improves dramatically with increasing J,
but not betterthan for the original 2 Hz simulated trajectory (where
the standard deviation for / = 25 ranged between 0.0032 m/s?
and 0.0046 m/sz, for the three coordinates, versus 0.0078 m/s2
for the 20-Hz trajectory). Thus, a higher sampling rate does not
reduce the numerical differentiation error if there exists significant
dynamics at these higher frequencies (as would be the case in an
aircraft environment).

The only method to bring about a substantial reduction in model
error is smoothing. The original 20-Hz “true” accelerations, from
modified positions as described above, were smoothed using a
simple (unweighted) moving average over various time windows.
Then they were decimated for the comparison to the accelerations
determined by numerical differentiation of the decimated data
followed by the same smoothing (Figure 9). The decimated data
all yield roughly equal results, all worse than the results for the
20-Hz data, likely because there remains some spectral content
beyond the Nyquist limit due to the imperfect frequency response
of the smoother. However, the errors now are in the range of a few
magal, which is required for airborne gravimetry.

Figure 10 shows psd’s of the accelerations derived from the simu-
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Figure 9. Standard deviations of the errors in numerical accelera-
tion errors for different smoothing windows and data reso-
lutions.

lated data. We see that the decimated unsmoothed accelerations
have much more power than the original 20-Hz accelerations. This
is caused by aliasing, which occurs across the entire spectrum
because of the significant power at the very high frequencies, for
example, from 5 Hz to 10 Hz, in the original 20-Hz signal. Thus, the
acceleration errors for the decimated data are significantly larger
than for the 20-Hz data (which explains the results of Figure 8).
On the other hand, the decimated smoothed accelerations are
affected by aliasing mostly at the high frequencies, where some
residual power exists beyond the Nyquist frequency (5 Hz, in the
illustrated case), but not of the same magnitude as the signal at
lower frequencies. Thus, the errors for the decimated data in Figure
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Figure 10. PSDs of 20 Hz accelerations (red) and their smoothed
values over a 2.15 s window (green). Also, shown are the
psd’s of the 10 Hz decimations of the 20 Hz data (blue)
and the smoothed 20 Hz data (magenta). All psd’s were
median-smoothed over 31 values.

9 are still larger than for the 20-Hz data, but also are relatively small
because of the smoothing.

Finally, we consider the effect of position error on the calculation
of acceleration. In order to obtain a realistic quantification of the
position error of an airborne trajectory geolocated with GPS, a par-
ticular aircraft trajectory was employed whose position accuracy
can be determined. This trajectory (designated “141y") was flown
to map the topography over a section of the San Andreas Fault
using Lidar (Shan et al. 2007) where several GPS base stations
were established to test the precision of the differential GPS data
processing. The map view of the trajectory is shown in Figure
11 (starting in the upper left corner), together with the profile of
heights (above the WGS84 ellipsoid), as well as the locations of
12 GPS base stations. Not all 12 corresponding solutions span
the same time interval, and some solutions have data gaps. The
trajectory shown in Figure 11is common, overaspan of 2.65 hours,
to 5 solutions that also have no gaps. It has greater dynamics than
typical airborne gravimetry trajectories (as in Figure 4), but that
should not affect the positioning accuracy significantly.

The multiple solutions for the aircraft trajectory offer a reasonable
indication of the position errors. The residual of an individual
solution with respect to the mean of the 5 solutions chosen
to represent the true simulated trajectory is interpreted as the
(negative) error, The power spectral densities for two such residuals
overthelength of the trajectory (forall three Cartesian coordinates)
are shown in Figure 12. Clearly, the residuals have correlated
components in the low-to-mid frequencies, and only bottom out
as white noise at frequencies higher than 0.2 Hz.

The standard deviations of the residuals for all coordinates vary
between 0.6 cm and 1.7 cm. The accuracy in position (using
the GPS carrier signals) depends on various factors, ranging from
un-modeled signal propagation delays to multipath effects and
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Figure 11. Trajectory of flight 141y, including base station locations
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Figure 12. Power spectral densities (Fourier periodograms, median-
smoothed over 31 discrete frequencies) of two residuals
with respect to the mean of 5 GPS solutions for aircraft
trajectory 141y.
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ultimately to the precision in the phase measurement, which
depends on the bandwidth of the phase-lock-loop and the signal-
to-noise ratio (Jekeli 2000). Hofmann-Wellenhof et al. (1994) give
a typical range in the phase noise of between 0.5 mm and 5 mm.
Others (e.g., Kyle Snow, Topcon, Inc., personal communication,
2010) quote the precision as approximately 1% of the carrier
phase, which for GPS is about 2 mm corresponding to the L1
wavelength of 19 cm, independent of the data rate, provided it
is less than the bandwidth of the phase-lock-loop. For the GPS
tracking of the aircraft trajectory 141y above, the Allan standard
deviation, shown in Figure 13, indicates a noise floor of between
1.5 mm and 3 mm for time intervals of 20 s to 60 s.

The computation of the acceleration along the trajectory 141y
using the actual GPS solution thus includes the effect of errors
in the positions. In order to isolate this effect from the effect of
the model error, we compute the mean of the accelerations for
all five solutions and interpret the (negative) residual acceleration
with respect to this mean as the error just due to position error.
In mathematical terms, if the computed acceleration for the i
solution is the true acceleration, @, plus acceleration errors due to
modeling and positioning errors, respectively,

k(i) —a+ 6(model) + C(posltlon, [)’ (27)

then the (negative) residual with respect to the mean, X =
1 5 ()
z Z]_:1 XV, is

1

ox) = 3 _x — glposition, i _

ol

5
§ (C(posltlon, j)) ~ g(positinn, i).
j=1

(28)

In this approximation, it is assumed that the model error is the
same for each solution (i.e,, it does not depend significantly on
small variations in the data), and that the average of the position
error effects on the computed acceleration per point is negligible
compared to the individual effect. Indeed, with the interpretation
of the residual as position error, the average residual is identically
zero. Consequently, since the differentiation filter is linear, also
the average acceleration effect per point due to position error is
zero. Thus, we conclude that the residual acceleration with respect
to the mean of computed accelerations represents the effect of
position error, only.

Without applying a moving average along the track, the standard
deviations for one set of residual accelerations, 65&,@, in the
three coordinate directions are approximately: ; = 0.011 m/s?,
oy = 0.015 m/s?, and 0; = 0.011 m/s?, respectively. These
values were obtained with the central-difference filter and do not
change significantly with the order of the filter. Nor do these
statistics vary significantly from one set of residuals to the other
(different i in equation (28)). We see that the acceleration errors,
just due to position error, are greater than the model errors, shown
in Figure 6 (for a different trajectory). Figure 14 shows how they
change with the degree of smoothing applied to the residuals (i.e.,
smoothing applied to both the acceleration estimates and the true
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Figure 13. Allan standard deviations of GPS position residuals with
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Figure 14. Standard deviations of acceleration residuals relative to
the mean of 5 solutions, smoothed along the “141y” tra-
jectory. The central-difference filter with / = 60 was used
to calculate the accelerations.

acceleration). Only the acceleration standard deviations for one
set of residuals are shown, since they are similar for the others.

Also, from the perspective of power spectral densities, the position
errors still dominate over the model error. Figure 15 shows the
acceleration error psd derived from the psd of the position error
(Figure 12) multiplied by the square of the frequency response
of the differentiation filter, equation (4). This is compared to
the model error psd’s obtained when using the / = 25 central-
difference differentiators. In each of the latter cases (1 Hz and 20
Hz simulated trajectories), the error excludes aliasing effects that
would occur if the positions were not first subjected to an efficient

anti-aliasing filter.
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4. Summary

Calculation of the kinematic acceleration is achieved by subject-
ing the observed positions to a filter whose frequency response
approximates the true response associated with a double differen-
tiation in time. Using actual aircraft trajectories derived from GPS,
the high-order central-difference filter based on a Taylor expansion
of the position function was compared to the second analytical
derivative of a B-spline interpolated trajectory. The differences
in these second derivatives at points in the trajectory are at the
level of several hundred mgal; and, the primary method to yield
better performance is subsequent low-pass filtering. Significant
smoothing over intervals of 60 s or longer is required to obtain
kinematic accelerations with model accuracy at the sub-mgal level.
In addition, it was shown that the positions thus used must first
be filtered to eliminate aliasing effects due to spectral content
beyond the Nyquist frequency associated with the sampling rate.
Finally, it was also shown using an aircraft trajectory with known
precision that position error from GPS still contributes at least as
much to the acceleration error as the model error.

Returning to the question posed at the outset, we find that air-
borne gravimetry cannot readily take advantage of the phenom-
enal precision being demonstrated with modern accelerometer
technology, which is orders of magnitude superior to the precision
of the kinematic acceleration. Both are needed to equal levels of
performance. There are two answers to this dilemma (for those
pursuing advancements in airborne gravimetry). One is to develop
a better tracking system, essentially ranging the aircraft with much
higher-frequency carrier waves, e.g., using lasers. The other is to
use the accelerometry technology to build new and better gravity
gradiometers. Airborne gradiometers are already in use, can mea-
sure the very fine structure of the Earth’s gravitational field, and
do not depend significantly on very precise positioning. Current
gradiometry precision is at the level of about1-2 E (1E = 1 EOtv0s =
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107%s72; e.g., Murphy 2010). Therefore, advanced accelerometers
with a precision of 10 pg/y/Hz or better are poised to improve the
state-of-the-art in airborne gradiometry.
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