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Abstract:

Advances in accelerometer technology promisemany orders ofmagnitude improvement in sensitivity; which, consequently, also suggest

progress in Earth Science applications, such as through new airborne gravimetric systems. However, a new capability for one sensor

then usually demands commensurate requirements from auxiliary sensors in order to realize its full potential. Specifically, airborne

gravimetry would benefit from improved inertial accelerometry only if the kinematic acceleration derived from vehicle tracking or

positioning is equally precise. The latter is investigated in this study to determine the limits in precision due to errors in modeling the

numerical derivative and due to errors in the positions, themselves. Simulations with actual aircraft trajectories show that the kinematic

acceleration using current positioning capability (that is, GPS or similar satellite navigation systems) can be determined to an accuracy

at the sub-milligal level only with sufficient smoothing over intervals of 60 s or longer. The effects of position error still dominate over

the model error, and both are many orders of magnitude greater than the predicted precision of state-of-the-art accelerometry. This

suggests that airborne gravity field determination likely will profit more if the advances in inertial sensor technology are directed toward

gravity gradiometry.
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1. Introduction

Airborne gravimetry over the last four decades has rapidly become

an operational tool for measuring the Earth's gravity field over

larger regions with excellent accuracy and resolution. The entire

Arctic Ocean was mapped in 1998-2002 at a resolution of better

than 10 km with an accuracy of a few mGal under sponsorship

from the National Geospatial-Intelligence Agency (Kenyon 2000),

the Naval Research Laboratory, and the Danish National Space

Center, following an extensive aerial gravity survey of Greenland

(Forsberg and Brozena 1992; see also Forsberg et al. 2001). More

recently, various Asian countriesweremapped similarly for geode-

tic purposes (Mongolia, Malaysia, Taiwan, South Korea), among

others, mostly by the Danish group (Forsberg and Olesen 2009).
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For commercial applications, primarily oil and gas exploration,

airborne gravimetry dates back to the 1980's, as a means to cover

large tracts of land to seek out particular gravitational anomalies

that suggest geologic traps where such deposits can accumulate

(Hammer 1980, Gumert 1998). The importance of gravimetry for

geophysics was also recognized and emphasized in a number of

National Research Council and NASA studies of the 1990s (e.g.,

NASA 1991; National Research Council 1995; Dickey et al. 1997).

Advanced accelerometry based on micro-machined, solid-state

devices (such as the Zero Force Accelerometer (ZFA), Draper Labo-

ratory2010) todayportendsunprecedentedprecision; forexample,

as low as 10-20 pg/
√
Hz for airborne applications and 0.5 pg/

√
Hz

for the dynamically quieter environment of a satellite platform

(1 pg =1 pico− g ≈ 10−11 m/s2
). Such sensitivity far exceeds

that of current airborne gravimetry (where typical sensitivity is at

the mgal level; 1 mgal = 10−5 m/s2
), and the question natu-

rally arises whether it offers corresponding advantages for future



Journal of Geodetic Science368

systems.

In view of the importance of airborne gravimetry and the tech-

nological developments in accelerometry, this paper attempts to

answer this question. Specifically, the complementary kinematic

acceleration determination from precise positions is investigated,

since it is a key component in airborne gravimetry. Significant

investigations in this direction exist in the literature; for example

VanDierendonck et al. (1994), Jekeli andGarcia (1997), Bruton et al.

(1999), Kennedy et al. (2001), Kreye andHein (2003), amongothers.

Two types of error enter the computed kinematic acceleration: 1)

errors in positioning, usually obtained from GPS and thus due

to receiver noise, unknown tropospheric and ionospheric delays,

multipath, orbital errors, etc.; and, 2) model errors associated with

the numerical differentiation of discrete position coordinates. The

present focus is on the latter although position error is not ne-

glected. Indeed, the purpose is to determine the limits achievable

in reducing the model error for realistic airborne trajectories, and

comparing this to accelerationuncertainty inducedbypresent-day

position error, as well as to the new technology in accelerometry.

2. Mathematical Background

Airborne gravimetry (or, any moving-base gravimetry) is founded

on Newton's Second Law of Motion in a gravitational field:

ẍ = a+ g, (1)

where a is the inertial acceleration of the vehicle (due to action

forces such as lift, drag, and propulsion), g is the gravitational

acceleration due to the ambient gravitational field, and ẍ is the

total, kinematic acceleration of the vehicle, being the second time

derivative of its position, x . Equation (1) holds in an inertial (that is,

freely-falling, non-rotating) frame and assumes that inertialmass is

equivalent to gravitational mass (Einstein's equivalence principle).

The inertial acceleration, a, is sensed by an accelerometer; and,

in order to determine g, the kinematic acceleration must be

calculated from a numerical differentiation of observed positions.

Position can be observed, or determined, using ranging methods,

such as GPS. In a rotating frame, such as the one attached to the

vehicle, Newton's equation of motion takes on a few extra terms

(Jekeli 2000), whichmeans that also the orientation of the platform

in inertial spacemust be determined. But, the essential principle is

the same: gravimetry requires both accelerometry and a numerical

differentiation of positions obtained independently by a ranging

system.

2.1. The Kinematic Acceleration Filter

The present focus with respect to airborne gravimetry is the de-

termination of the kinematic acceleration, ẍ . It is a necessary

component of a proven method to compute the gravitational ac-

celeration from accelerometry. The alternative, indirect approach

is to integrate accelerometer data corrected for gravitation in such

a way, using some a priori knowledge or constraints on the grav-

itation, that the result agrees with the positions of the aircraft.

In either case the position of the aircraft must be determined

precisely using a ranging technique, such as GPS. The direct de-

termination described above does not require prior knowledge on

the gravitation (e.g., Kwon and Jekeli 2001), but entails a second-

order numerical differentiation of the GPS positions. This is a

well recognized problem and considerable literature is devoted to

the development of optimal numerical methods. One of the more

comprehensive recent studieswas donebyBruton et al. (1999) and

Bruton (2000) who analyzed various numerical filters. A technique

based on differentiation of GPS phase observations rather than

positions was developed by Jekeli and Garcia (1997) and further

analyzed, for example, also by Kennedy et al. (2001) and Kreye

andHein (2003). No particularmethod of numerical differentiation

seems to be established in practice, as demonstrated in a more

recent airborne survey described by Hwang et al. (2006) who used

a very simple spline interpolation method.

While all these methods can be and have been tested using data

from a stationary antenna (where the true acceleration is known),

the accuracy of aircraft accelerations derived from actual airborne

data is more difficult to ascertain. Usually, multiple GPS tracking

stations (or tracking systems) are used to compare accelerations

derived from the different corresponding solutions for the aircraft

trajectory. For example, Van Dierendonck et al. (1994) used two

tracking stations and a laser altimeter (over a lake) to study the

effects of various GPS errors on the acceleration determination.

Also, Salazar et al. (2011) compared velocities and accelerations

using solutions of aircraft trajectories from different tracking sta-

tions. However, as will be argued later, such comparisons primarily

indicate the effect of position error. They say little or nothing about

the model error (the error in the numerical differentiation), which

canbe largeanddominate theeffect ofpositionerror. For example,

the comparison by Kreye and Hein (2003) of two differentiation

methods using the same airborne data set yielded differences of

the order of 10 mgal, significantly larger than the differences of

a few mgal found by comparing accelerations derived from two

equivalent data sets using the same method.

It is well known that numerical differentiation is an unstable pro-

cess and model errors depend on values of the derivative two

orders higher (that is, on the fourth-order derivative in case of

double differentiation; e.g., Conte and de Boor 1965). This has

two consequences in the analysis. First, it is difficult to simu-

late a truth model against which to compare different numerical

differentiation methods. Second, a significant amount of smooth-

ing (low-pass filtering) is required to obtain high accuracy in the

numerical differentiation. With current tracking systems, such

smoothing is also needed to reduce the effect of noise in positions.

For the present analysis, suppose we have a long sequence of

position values, xn , uniformly sampled from a continuous trajec-

tory, x (t), with sampling interval, ∆t. We are not concerned with
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the orientation of the frame of the trajectory and define time-

derivatives in this frame. If Fx (f ) is the Fourier transform of the

trajectory, so that

x (t) = ∫ ∞
−∞

Fx (f ) ei2πftdf, (2)

where f is (cyclical) temporal frequency, then the Fourier transform

of the second derivative is

Fẍ (f ) = D (f )Fx (f ) , (3)

where

D (f ) = − (2πf )2 . (4)

Equation (3), representing a product in the frequency domain,

shows that differentiation may be viewed, according to the well

known convolution theorem (Bracewell 1965), as a filter whose

frequency response is given by equation (4).

One could estimate the second derivative of positions via the

frequency domain: multiply the Fourier transform of the positions

by D (f ) and compute the inverse transform. However, the

discreteness of the positions introduces considerable aliasing and

the finite extent of the position data further introduces spectral

leakage (ringing, or the Gibbs phenomenon). For these reasons,

one typically designs a filter tomitigate these effects. We start with

a finite, discrete filter (finite-length impulse response, FIR, filter) of

the form

ẍn = ∆t J∑
j=−J djxn−j , (5)

where J is called the order of the filter, and the filter coefficients,

dj , represent the impulse response of the filter. Since the number

of coefficients is finite, the frequency response cannot equal the

ideal response, D (f ), equation (4). However, the coefficients

should be symmetric with respect to the origin, i.e., d−j = dj ,
since the ideal frequency response is real. This requires that the

number of coefficients is odd, (2J + 1).
To illustrate the limitations of simply applying Fourier transforms

to the data, consider the filter coefficients determined from the

ideal frequency response. Using the (Shannon) sampling theorem

(Marple1987) thatguarantees thereconstructionof thecontinuous

trajectory from its samples if the continuous form contains no

spectral components with (absolute) frequency greater than fN =1/ (2∆t), that is, the Nyquist frequency, we have

x (t) = ∞∑
j=−∞ xj sinc( t∆t − j

)
, (6)

where sinc is thecardinal sine function: sinc (t) = sin (πt) / (πt).
This function is differentiable,

d2
du2 sinc (u) = 2

u2 (sinc (u)− cos (πu))− π2 sinc (u) , (7)

and

d2
du2 sinc (u)∣∣∣

u=0 = − π23 ;
d2
du2 sinc (u)∣∣∣

u=±j = − 2(−1)j
j2 , j = 1, 2, . . . (8)

We thus differentiate:

ẍ (tn) = ∑∞
j=−∞ xj d2

dt2 sinc ( t∆t − j)∣∣∣t=tn= 1∆t2∑∞
j=−∞ xn−j d2

du2 sinc (u)∣∣∣
u=−j , u = t∆t= − π23∆t2 xn − 2∆t2 ∑∞

j=−∞
j6=0 xn−j (−1)j

j2
(9)

These second-derivative values are approximatedwith an FIR filter

of the form of equation (5) by limiting the range of the index, j,

since we have only a finite number of position data. We obtain:

d0 = − π23∆t3 ; d±j = − 2∆t (−1)j(j∆t)2 , j = 1, 2, . . . , J.
(10)

However, by limiting the index, we also introduce a bias. That

is, the filter coefficients should sum to zero to be consistent with

the derivative of a constant. Hence, the coefficients need to be

modified:

d0 = − π23∆t3−s0; d±j = − 2∆t (−1)j(j∆t)2−s0, j = 1, 2, . . . , J,
(11)

where

s0 = − π23∆t3 − 2(2J + 1) ∆t J∑
j=−J

(−1)j(j∆t)2 . (12)

Similarly, the second derivative of a linear trend should vanish.

This is automatically satisfied for the FIR if the coefficients are

symmetric (d−j = dj ), which was already noted as a requirement,

and is easily shown to be the case above.

Given the filter coefficients, dj , the frequency response can be

computed from the discrete Fourier transform:

D̂ (f ) = ∆t J∑
j=−J dje

−i2π∆t j f . (13)

Figure 1 compares the frequency response, equation (13), to

the ideal one, equation (4), for J = 13 and ∆t = 1 s; and, the
absolute differences between them (the errors) for various orders,

J, are shown in Figure 1. The oscillatory nature of the error is

due to the truncation of the filter at j = ±J . This effect (Gibb's
phenomenon) can bemitigated by applying a window function to

the impulse response. Bruton (2000) showed that the oscillation

thus may be reduced by about an order of magnitude in the low-

to mid-frequencies.

Another second-derivative filter design is a member of a class of

numerical differentiators known as central differences. These are

derived from a Taylor expansion of the function, where from (Khan

and Ohba 1999) we have the following general formula (modified
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(a)

(b)

Figure 1. a) Frequency response of the approximation to the ideal
second-derivative FIR filter, J = 13; b) the error for various
indicated orders.

slightly) for the second derivative using 2J + 1 evenly spaced

points,

ẍn = ∆t J∑
j=−J dJ,jxn−j , (14)

with

dJ,0 = −2 J∑
j=1 dJ,j , (15)

and for j = ±1, . . . ± J ,
dJ,j = (−1)j+1 2∆t (j∆t)2 (J!)2(J − j)! (J + j)! . (16)

For J = 1, we get d1,±1 = 1/∆t3 and d1,0 = −2/∆t3 , leading
to the well-known double difference formula:

ẍn = 1∆t2 (xn−1 − 2xn + xn+1) . (17)

A recursion formula for the filter coefficients, dJ,j , is easily found:

dJ,j = −(1− 1
j

)2 (J−j+1)(J+j) dJ,j−1,
dJ,−j = dJ,j , j = 2, . . . , J; dJ,1 = 2J(J+1)∆t3 . (18)

It is noted that the filter coefficients sum to zero in viewof equation

(15).

The frequency response of this filter is given by substituting

equations (15) and (16) into equation (13). The responses for

a sampling interval of ∆t = 1 s and different values of J are

illustrated in Figure 2; and errors relative to the ideal response

are shown in Figure 2. Clearly, the approximation improves as J

increases. Compared to the previous approximation of the ideal

response, equations (11), the central difference filter ismuchmore

accurate at low frequencies, but worse at high frequencies (e.g.,

compare Figures 1 and 2 for |f | ≥ 0.4 Hzwhen J = 13).
Bruton (2000) also mentions the use of the Parks-McClellan al-

gorithm that is based on the Remez exchange algorithm (Parks

and McClellan 1972) to design an optimal (minimax) FIR filter that

is most efficient (fewest number of filter coefficients) in meeting

specified accuracy requirements over a particular spectral band.

His example shows, compared to the simple filter, equation (11),

that the error thus can be reduced by several orders of mag-

nitude over the entire spectral band of interest. However, at

the lower frequencies in which we are ultimately interested, the

central-difference filter is still more accurate, as seen in Figure

2. It is also noted that the Parks-McClellan/Remez method is an

iterative process that may not always converge and may have

other instabilities. The central difference method is very stable

and is the method of differentiation often used for GPS kinematic

accelerations (e.g., Kennedy et al., 2001, Salazar et al. 2011).

2.2. A Mutually Consistent Model

Evaluating the performance of the central-difference differentia-

tion filter in practical applications requires a reasonably realistic

truth model. For a given realism (e.g., the dynamics of an aircraft

trajectory), the difficulty is to devise a truth model that yields

mutually consistent positions, x , and accelerations,a+g (or, even

just a), according to equation (1).

One approach, for the model, ẍ = a, is to integrate accelerations

from a starting time, tk , to get positions at some later time, t:

x (t) = x (tk ) + ẋ (tk ) (t − tk ) + ∫ t

tk

(
t − t′

)
a
(
t′
)
dt′, (19)

(which can be checked by differentiating twice). The velocity at

tk can be eliminated if also the position at tk+1 is known. If

the interval between epochs of the desired positions is constant

(tk+1 − tk = ∆t, for all k), then we find that the positions are

determined recursively according to
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(a)

(b)

Figure 2. a) Frequency response of central difference filters for the
second derivative and for various orders; b) errors of these
frequency responses relative to the ideal response.

xk+2 = −xk + 2xk+1 + ∫ tk+1
tk

(t′ − tk )a (t′)dt′+∫ tk+2
tk+1 (tk+2 − t′)a (t′)dt′. (20)

Performingthe integration requires sometruthmodel for theaccel-

erations. Wemay choose actual measured airborne accelerometer

data, but taken as errorless, and any suitable interpolating func-

tion for which the integrals can be evaluated. For a given set of

accelerometer data, each choice of interpolating function yields

a different ``true'' position sequence that is consistent with the

accelerometer data.

The alternative is to start with position data, obtained from GPS,

and assumed errorless. These are interpolatedwith an appropriate

analytic function that is then differentiated to yield mutually

Figure 3. Example of position data interpolated by B-splines.

consistent accelerations. But, this begs the question of analyzing

the numerical differentiation filter. In a sense, however, we

face the same dilemma as above. A numerical approximation is

needed to create amutually andperfectly consistent set of position

and acceleration data; and yet, we wish to test the numerical

approximation to go from one to the other. Both approaches

described above (from accelerations to positions, or vice versa) are

essentially identical; neither solves the dilemma and both create

the same problem.

The only solution is to compare two numerical differentiation

operators, where one is treated as correct in the sense of creating a

mutually consistent position/accelerationdata set. This is similar to

a perturbation method, where the perturbation in the model may

or may not be a realistic quantification of the error. On the other

hand, for the perturbation used here, one may argue that it fails

on the optimistic side of assessing the errors. With these caveats,

the second approach above is pursued by comparing the central-

difference accelerations to accelerations obtainedby interpolating

agivensetofpositionsusing fifth-orderB-splines (Schumaker1993;

see Figure 3 for an illustration). These B-splines are piecewise

polynomials differentiable everywhere up to third order, so that

the second derivatives at the data points are smooth. Although

they are based on local support, the derived accelerations have

very little high-frequency content beyond the Nyquist frequency

(shown later). Both being derived frompolynomials, the numerical

results of comparing central-difference and B-spline accelerations

will be optimistic. On the other hand, they provide reasonable

answers to our performance questions as functions of various

salient parameters.

3. Numerical Tests

With a view toward the airborne gravimetry application, GPS data

from an airborne survey were used to simulate the dynamics of

the trajectory. The data comprise precise GPS solutions, based



Journal of Geodetic Science372

Figure 4. Airborne gravimetry trajectory of Flight 0211 conducted
by Intermap Technologies Corp. in 1999 over the Balti-
more/Washington, D.C. area. Blue segments (numbered
1 through 6, from left to right) indicate the parts of the tra-
jectory that were analyzed for the kinematic acceleration
determination.

on 2 Hz data from Ashtech receivers, of an aircraft trajectory that

was one of several flown over the Baltimore/Washington, DC,

area in 1999 by Intermap Technologies Corp. for the purpose of

measuring the gravity field. It is shown in Figure 4 together with

the segments along which the true accelerations were simulated.

Here and later, using another airborneGPS trajectory, it is assumed

that the estimated positions are free of the effects of cycle slips

and other systematic errors. The determined positions (Cartesian

coordinates), thus assumed true, were interpolated by fifth-order

B-splines. This piecewise polynomial was then differentiated

twice to obtain ``true'' accelerations at the 2 Hz data points. The

errors in the accelerations are the differences between the central

differences of order, J, and the B-spline accelerations for each of

the segments and in each of the coordinates. The corresponding

standard deviations, per segment and coordinate, were computed

according to

σδẍ =
√√√√ 1
N

N−1∑
k=0
(
δẍk −

1
N

N−1∑
k=0 δẍk

)2
, (21)

where N is the total number of points in the segment, and δẍk
is the kth error in the segment. Figure 5 shows the standard

deviations of the errors. The errors (i.e., differences) stabilize with

increasing order at a level of about 200-500 mgal. Orders higher

than about J = 120 offer no substantial decrease in error. In all

cases the mean error, the second term in the bracket in equation

(21), was not significantly different fromzero at the sub-mgal level.

The sensitivity of the acceleration error to the dynamics of the

trajectory is illustrated in Figure 6. Here, the standard deviation of

the acceleration error for J = 240 is plotted against the standard

(a)

(b)

(c)

Figure 5. Standard deviations of errors in acceleration as function
of central-difference order for each of the coordinates, x
(top), y (middle), z (bottom), and for each of the segments
in Figure 4.

deviation of the acceleration, itself, for each segment and each

coordinate. The error is almost directly proportional to the level

of dynamics of the moving platform. The variation in dynamics

observed for this trajectory from segment to segment may be due

to actual changes in turbulence, or it may be due to changes in

error behavior in the position solution.

The limiting accuracy of several hundred mgal agrees with test

results recently reportedbySalazar et al. (2011)whouseda central-

difference filter with J = 5. For differential GPS solutions between
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Figure 6. Sensitivity of the error in the numerically determined ac-
celeration to the dynamics environment of the moving plat-
form. Each data point represents a coordinate and a seg-
ment.

base stations 142 km apart (where the true acceleration is zero),

they found standard deviations in the computed acceleration of

the order of several mm/s2
. We surmise that the use of an actual

dynamic trajectory is responsible for the need to use higher order

filters.

One may wish to consider a higher sampling rate in order to

capture the high--frequency details of the accelerations with the

aim to reduce theerror in thenumerically determinedacceleration.

The analysis here is limited to an artificial simulated trajectory at

these higher frequencies, since no high frequency airborne GPS

data were available. The sampling rate is increased to 20 Hz, but

even higher rates could be considered (GPS receivers now yield

up to 100 Hz data rates). One option is simply to use the B-spline

interpolation already computed from the given trajectory (2 Hz, in

this case) and sample it at higher resolution. However, we see in

Figure 7 that the higher-frequency acceleration thus simulated is

not realistic, when compared to the accelerations of the Intermap

trajectories that were sensed by the on-board accelerometers.

Instead, we add high-frequency content to the existing trajectory

according to an algorithm that results as far as possible in a realistic

accelerationpowerspectraldensity (psd). Experimentshaveshown

that simply introducing a random, zero-mean, spectral component

scaled by the acceleration power spectrum creates too much

dynamics. Instead, we consider the method of simply adjusting

the existing phase and amplitude spectra (from the B-spline-

interpolated, high-resolution model) at each higher frequency

in some random manner. To simplify the analysis (and since

the accelerations for all three coordinates behave similarly), we

consider only a single coordinate -- the height above a reference

surface, such as the Earth ellipsoid.

If Hk = ck + idk is the spectral component of a B-spline inter-

polated height coordinate for wave number, k, then in terms of

amplitude and phase, we have

Hk = √c2
k + d2

kei tan−1(dk /ck ) = bkeiψk . (22)

We alter the amplitude and phase as follows:

b̂k = bk (1 + vk ) , (23)

ψ̂k = ψk (1 + wk ) , (24)

where vk ∼ N
(0, σ 2

v
)
,wk ∼ N

(0, σ 2
w
)
arenormally distributed

random variables with adjustable variances to ensure that the

dynamics of the resulting trajectory is reasonable. For σ 2
v → 0

and σ 2
w → 0, the original B-spline trajectory would be obtained.

The alternate spectrum is then Ĥk = b̂keiψ̂k and the heights

according to this model are given continuously by utilizing a new

B-spline interpolation, as before. In order to obtain a real represen-

tation of the heights (as opposed to a set of complex numbers),

the frequency and time domains must be shifted appropriately.

Also, we assume that the number of time domain points,N, is odd.

Thus, if t0 ≤ t ≤ t1 , then withN∆t = t1 − t0 , and
Ĥk = ∆t N−1∑

`=0 h (t0 + `∆t) e−i 2π
N k` , (25)

one has

h (t) = 1
N∆t

N−12∑
k=− N−12

Ĥkei
2π
N∆t k(t−t0), (26)

where it is noted that ĤN−k = Ĥ∗k and ĤN+k = Ĥk .

Figure 7 shows the acceleration psd for the 20-Hz B-spline tra-

jectory (interpolated from the original 2 Hz data and computed

using the corresponding analytic accelerations); the psd of the

actual 25-Hz vertical accelerations sensed by Intermap accelerom-

eters; and, the acceleration psd of the 20-Hz trajectory altered

by replacing spectral components beyond 1 Hz with components

scaled according to equations (23) and (24) by random Gaus-

sian variables having standard deviation, σv = σw = 0.0002.
The altered-trajectory accelerations were again determined from

a 5th-order B-spline interpolation. We see that the accelerations

of the original B-spline interpolated trajectory have virtually no

power beyond the Nyquist frequency, 1 Hz, of the given 2-Hz tra-

jectory. The acceleration psd of this trajectory, however, contains

a significant resonance just below 1 Hz, compared to the actual

acceleration psd from accelerometers. This may be due to aliasing

error in the spectrum of the given 2-Hz trajectory. The upward

trend of the psd of the altered trajectory for frequencies greater

than about 1.2 Hz is due to the random nature of the alteration

(white noise in position is amplified by the square of frequency

for accelerations). Increasing σv and σw moves this ramp up in

amplitude. The modified-trajectory accelerations have no power

beyond 10 Hz, which is its Nyquist limit.



Journal of Geodetic Science374

Figure 7. PSD’s of accelerations determined directly from the Fourier
transforms of the indicated signals, and median-smoothed
over a 31-frequency window.

Using thismodified trajectory in heights, the central-difference dif-

ferentiator was applied with varying order, J. The 20 Hz trajectory

was also decimated to 10 Hz, 5 Hz, and 2 Hz to simulate lower

resolution data. Figure 8 shows the standard deviations of the

differences between the numerically determined acceleration and

the ``true'' accelerations based on the B-spline interpolation of the

20 Hz data. We see that when there is significant high frequency

content in the data beyond the Nyquist limit (the 2 Hz, 5 Hz, 10 Hz

trajectories), then the error is almost independent of the order of

the numerical differentiation operator. And, when there is prac-

tically no spectral content beyond the Nyquist frequency (20 Hz

trajectory), the accuracy improves dramatically with increasing J,

but notbetter than for theoriginal 2Hz simulated trajectory (where

the standard deviation for J = 25 ranged between 0.0032 m/s2
and 0.0046 m/s2

, for the three coordinates, versus 0.0078 m/s2
for the 20-Hz trajectory). Thus, a higher sampling rate does not

reduce the numerical differentiation error if there exists significant

dynamics at these higher frequencies (as would be the case in an

aircraft environment).

The only method to bring about a substantial reduction in model

error is smoothing. The original 20-Hz ``true'' accelerations, from

modified positions as described above, were smoothed using a

simple (unweighted) moving average over various time windows.

Then theywere decimated for the comparison to the accelerations

determined by numerical differentiation of the decimated data

followed by the same smoothing (Figure 9). The decimated data

all yield roughly equal results, all worse than the results for the

20-Hz data, likely because there remains some spectral content

beyond the Nyquist limit due to the imperfect frequency response

of the smoother. However, the errors now are in the range of a few

mgal, which is required for airborne gravimetry.

Figure 10 shows psd's of the accelerations derived from the simu-

Figure 8. Standard deviations of the numerical acceleration errors
for different resolutions of the 20-Hz height trajectory, as
a function of the order of the central-difference numerical
differentiation operator.

Figure 9. Standard deviations of the errors in numerical accelera-
tion errors for different smoothing windows and data reso-
lutions.

lated data. We see that the decimated unsmoothed accelerations

havemuchmore power than the original 20-Hz accelerations. This

is caused by aliasing, which occurs across the entire spectrum

because of the significant power at the very high frequencies, for

example, from 5 Hz to 10 Hz, in the original 20-Hz signal. Thus, the

acceleration errors for the decimated data are significantly larger

than for the 20-Hz data (which explains the results of Figure 8).

On the other hand, the decimated smoothed accelerations are

affected by aliasing mostly at the high frequencies, where some

residual power exists beyond the Nyquist frequency (5 Hz, in the

illustrated case), but not of the same magnitude as the signal at

lower frequencies. Thus, the errors for thedecimateddata in Figure
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Figure 10. PSDs of 20 Hz accelerations (red) and their smoothed
values over a 2.15 s window (green). Also, shown are the
psd’s of the 10 Hz decimations of the 20 Hz data (blue)
and the smoothed 20 Hz data (magenta). All psd’s were
median-smoothed over 31 values.

9 are still larger than for the 20-Hz data, but also are relatively small

because of the smoothing.

Finally, we consider the effect of position error on the calculation

of acceleration. In order to obtain a realistic quantification of the

position error of an airborne trajectory geolocatedwith GPS, a par-

ticular aircraft trajectory was employed whose position accuracy

can be determined. This trajectory (designated ``141y'') was flown

to map the topography over a section of the San Andreas Fault

using Lidar (Shan et al. 2007) where several GPS base stations

were established to test the precision of the differential GPS data

processing. The map view of the trajectory is shown in Figure

11 (starting in the upper left corner), together with the profile of

heights (above the WGS84 ellipsoid), as well as the locations of

12 GPS base stations. Not all 12 corresponding solutions span

the same time interval, and some solutions have data gaps. The

trajectory shown in Figure 11 is common, over a spanof 2.65hours,

to 5 solutions that also have no gaps. It has greater dynamics than

typical airborne gravimetry trajectories (as in Figure 4), but that

should not affect the positioning accuracy significantly.

The multiple solutions for the aircraft trajectory offer a reasonable

indication of the position errors. The residual of an individual

solution with respect to the mean of the 5 solutions chosen

to represent the true simulated trajectory is interpreted as the

(negative)error. Thepower spectraldensities for twosuch residuals

over the lengthof the trajectory (for all threeCartesiancoordinates)

are shown in Figure 12. Clearly, the residuals have correlated

components in the low-to-mid frequencies, and only bottom out

as white noise at frequencies higher than 0.2 Hz.
The standard deviations of the residuals for all coordinates vary

between 0.6 cm and 1.7 cm. The accuracy in position (using

the GPS carrier signals) depends on various factors, ranging from

un-modeled signal propagation delays to multipath effects and

Figure 11. Trajectory of flight 141y, including base station locations
used to process the GPS solutions.

(a)

(b)

Figure 12. Power spectral densities (Fourier periodograms, median-
smoothed over 31 discrete frequencies) of two residuals
with respect to the mean of 5 GPS solutions for aircraft
trajectory 141y.
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ultimately to the precision in the phase measurement, which

depends on the bandwidth of the phase-lock-loop and the signal-

to-noise ratio (Jekeli 2000). Hofmann-Wellenhof et al. (1994) give

a typical range in the phase noise of between 0.5 mm and 5 mm.

Others (e.g., Kyle Snow, Topcon, Inc., personal communication,

2010) quote the precision as approximately 1% of the carrier

phase, which for GPS is about 2 mm corresponding to the L1

wavelength of 19 cm, independent of the data rate, provided it

is less than the bandwidth of the phase-lock-loop. For the GPS

tracking of the aircraft trajectory 141y above, the Allan standard

deviation, shown in Figure 13, indicates a noise floor of between

1.5 mm and 3 mm for time intervals of 20 s to 60 s.

The computation of the acceleration along the trajectory 141y

using the actual GPS solution thus includes the effect of errors

in the positions. In order to isolate this effect from the effect of

the model error, we compute the mean of the accelerations for

all five solutions and interpret the (negative) residual acceleration

with respect to this mean as the error just due to position error.

In mathematical terms, if the computed acceleration for the ith

solution is the true acceleration, a, plus acceleration errors due to

modeling and positioning errors, respectively,

ẍ (i) = a+ ε(model) + ε(position, i), (27)

then the (negative) residual with respect to the mean, ẍ =15 ∑5
j=1 ẍ (j) , is

δẍ (i) = ẍ (i)−ẍ = ε(position, i)−15 5∑
j=1
(
ε(position, j)) ≈ ε(position, i).

(28)

In this approximation, it is assumed that the model error is the

same for each solution (i.e., it does not depend significantly on

small variations in the data), and that the average of the position

error effects on the computed acceleration per point is negligible

compared to the individual effect. Indeed, with the interpretation

of the residual as position error, the average residual is identically

zero. Consequently, since the differentiation filter is linear, also

the average acceleration effect per point due to position error is

zero. Thus, we conclude that the residual accelerationwith respect

to the mean of computed accelerations represents the effect of

position error, only.

Without applying a moving average along the track, the standard

deviations for one set of residual accelerations, δẍ (i)
n , in the

three coordinate directions are approximately: σẍ = 0.011 m/s2
,

σÿ = 0.015 m/s2
, and σz̈ = 0.011 m/s2

, respectively. These

values were obtained with the central-difference filter and do not

change significantly with the order of the filter. Nor do these

statistics vary significantly from one set of residuals to the other

(different i in equation (28)). We see that the acceleration errors,

just due to position error, are greater than themodel errors, shown

in Figure 6 (for a different trajectory). Figure 14 shows how they

changewith the degree of smoothing applied to the residuals (i.e.,

smoothing applied to both the acceleration estimates and the true

Figure 13. Allan standard deviations of GPS position residuals with
respect to the mean of 5 solutions for the 141y flight.

Figure 14. Standard deviations of acceleration residuals relative to
the mean of 5 solutions, smoothed along the “141y” tra-
jectory. The central-difference filter with J = 60 was used
to calculate the accelerations.

acceleration). Only the acceleration standard deviations for one

set of residuals are shown, since they are similar for the others.

Also, from the perspective of power spectral densities, the position

errors still dominate over the model error. Figure 15 shows the

acceleration error psd derived from the psd of the position error

(Figure 12) multiplied by the square of the frequency response

of the differentiation filter, equation (4). This is compared to

the model error psd's obtained when using the J = 25 central-

difference differentiators. In each of the latter cases (1 Hz and 20

Hz simulated trajectories), the error excludes aliasing effects that

would occur if the positions were not first subjected to an efficient

anti-aliasing filter.
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Figure 15. PSDs of acceleration errors due to position error (red)
and model differentiation errors (blue and green).

4. Summary

Calculation of the kinematic acceleration is achieved by subject-

ing the observed positions to a filter whose frequency response

approximates the true response associatedwith a double differen-

tiation in time. Using actual aircraft trajectories derived from GPS,

thehigh-order central-difference filter basedonaTaylor expansion

of the position function was compared to the second analytical

derivative of a B-spline interpolated trajectory. The differences

in these second derivatives at points in the trajectory are at the

level of several hundred mgal; and, the primary method to yield

better performance is subsequent low-pass filtering. Significant

smoothing over intervals of 60 s or longer is required to obtain

kinematic accelerationswithmodel accuracy at the sub-mgal level.

In addition, it was shown that the positions thus used must first

be filtered to eliminate aliasing effects due to spectral content

beyond the Nyquist frequency associated with the sampling rate.

Finally, it was also shown using an aircraft trajectory with known

precision that position error from GPS still contributes at least as

much to the acceleration error as the model error.

Returning to the question posed at the outset, we find that air-

borne gravimetry cannot readily take advantage of the phenom-

enal precision being demonstrated with modern accelerometer

technology, which is orders ofmagnitude superior to the precision

of the kinematic acceleration. Both are needed to equal levels of

performance. There are two answers to this dilemma (for those

pursuing advancements in airborne gravimetry). One is to develop

a better tracking system, essentially ranging the aircraft withmuch

higher-frequency carrier waves, e.g., using lasers. The other is to

use the accelerometry technology to build new and better gravity

gradiometers. Airborne gradiometers are already in use, can mea-

sure the very fine structure of the Earth's gravitational field, and

do not depend significantly on very precise positioning. Current

gradiometry precision is at the level of about1-2 E (1E = 1 Eötvös =

10−9s−2 ; e.g., Murphy 2010). Therefore, advanced accelerometers

with a precision of 10 pg/
√
Hz or better are poised to improve the

state-of-the-art in airborne gradiometry.
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