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Abstract:

The high-degree Earth Gravitational Model EGM08 allows for geoid determination with a resolution of the order of 5'. Using this model

for estimating the quasigeoid height, we estimate the global root mean square (rms) commission error to 5 and 11 cm, based on the

assumptions that terrestrial gravity contributes to the model with an rms standard error of 5 mGal and correlation length 0.01◦ and 0.1◦ ,
respectively. The omission error is estimated to−0.7∆ḡ [mm], where ∆ḡ is the regional mean gravity anomaly in units of mGal.

In case of geoid determination by EGM08, the topographic bias must also be considered. This is because the Earth's gravitational

potential, in contrast to its spherical harmonic representation by EGM08, is not a harmonic function at the geoid inside the topography. If

a correction is applied for the bias, the main uncertainty that remains is that from the uncertainty in the topographic density, which will

still contribute to the overall geoid error.
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1. Introduction

The Earth GravitationalModel EGM08 (Pavlis et al. 2008) provides a

major step forward ingeoiddeterminationby a spherical harmonic

model. As its resolution is as high as 5', one may question how

close it is to directly solve for ``the 1-cm geoid''. Xu and Rummel

(1991) derived some basic formulas for the geoid height error

propagated from the errors of an EGM, and Pavlis et al. (2005) used

a similar technique in their preliminary study of EGM08, indicating

that a global root mean square (rms) commission error of the

geoid height of 20 cm was attainable. The omission error was not

considered. The above studies did not consider correlations in

the EGM data, and they can therefore hardly be used for regional

studies. Also, the omission error was not considered. Independent

evaluations of EGM08 vs. GPS/levelling derived geoid heights

show, as one would expect, considerable regional variations in
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agreement (see Huang and Kotsakis 2009) due to lateral quality

variations in both EGM08 and the GPS/levelling data. This study

has the goal of investigating the regional variations in EGM08 from

a theoretical point of view.

2. The commission error

We will estimate the commission error a) directly by the error

estimates of the EGM08 coefficients, b) by an integral formula and

c) by a combination of these two methods.

2.1. Direct computation from potential coefficient error covariance
matrix

Let us assume that the geoid height is estimated at the position

P on the Mean Earth Sphere of radius R by the finite series of

fully-normalized spherical harmonics Ynm (P), given by
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Ñ = R
γ

L∑
n=2

n∑
m=−nAnmYnm (P) = R

γ y
Ta, (1)

where γ is normal gravity on the reference ellipsoid, Anm are the

unit-less harmonic coefficients of the disturbing potential with

random errors of expectation zero and covariancematrixQ, andy
and a are the vectors of the sets Ynm and Anm , respectively. Then
the variance of Ñ becomes

σ 2
N = (Rγ

)2
yTQy. (2)

As the Earth Gravitational Model 2008 (EGM08) with L =2160

includes about 4.7 million coefficients, it would be a huge task

to compute the covariance matrix needed in Eq. (2), and con-

sequently it is not available today. One may relax this task by

considering only the mean of the geoid variance over the sphere.

Due to the orthonormality of spherical harmonicswhen integrated

over the sphere, the global average of the geoid variance becomes

σ̄ 2
N = (Rγ

)2 L∑
n=2

n∑
m=−nQnm, (3)

where Qnm are the diagonal elements of Q (i.e. the variances

of Anm). Using the standard values R = 6371 km, we obtain

σ̄N =29.2 cm for EGM08 complete to L = 2160.

In a similar way wemay estimate the global mean gravity anomaly

variance by

σ̄ 2∆g = γ2 L∑
n=2 (n − 1)2 n∑

m=−nQnm, (4)

yielding σ̄∆g = 4.2 mGal and γ =981 Gal.

2.2. Solution by integral formula

The direct error propagation of the gravity anomaly error ε to the

geoid error δN is given by Stokes' formula:

δN = R4πγ
∫∫

σ
S (ψ) εdσ. (5)

For uncorrelated gravity anomalieswith varianceσ 2∆g , the variance
of the geoid height becomes (Pavlis and Saleh 2005):

σ 2
N = ( R4πγ

)2 ∫∫
σ
S2 (ψ) σ 2∆gdσ. (6)

Unfortunately, this assumption (with uncorrelated gravity anoma-

lies) is not realistic. Mathematically it leads to anunlimited variance

of Ñ , because by introducing the notation δ2 for the minimum

value of σ 2∆g and considering the spectral form of Stokes' func-

tion (see Eq. 16 below) and the orthonormality of the spherical

harmonics when integrated over the sphere one obtains∫∫
σ
S2 (ψ)dσ = ∞∑

n=2
2n+ 1(n − 1)2 =∞, (7)

and therefore

σ 2
N >

(
R4πγ
)2
δ2 ∫∫

σ
S2 (ψ)dσ =∞. (8)

This problem can, of course, be avoided under the assumption

that Stokes' function is band-limited, e.g. to the maximum degree

of EGM08, as suggested by Pavlis and Saleh (2005). In this way

Pavlis et al. (2005) estimated the global rms geoid height standard

error of 20.1 cm. A corresponding estimate for the global rms error

in the gravity anomaly determined from the error spectrum of the

EGMwas 7.0 mGal. However, even so, the neglected correlation of

the data may significantly contribute to an erroneous estimate.

2.3. Combined solution

Let us now write Eq. (??) by the simplified notations as the sum

Ñ = Ñ1 + Ñ2 (9a)

where

Ñ1 = M∑
n=2 Ñn and Ñ2 = L∑

n=M+1 Ñn (9b)

i.e., Ñ1 and Ñ2 are the low- and high-degree components, re-

spectively, of the geoid height estimator. HereM is the maximum

degree to which the complete error spectrum of the EGM is

estimated.

Then the error of Ñ becomes

ε̃Ñ = ε1 + ε2, (10)

where εi denotes the error of the component Ñi ; i = 1, 2.
Assuming that the errors are randomwith expectation zero, simple

error propagation yields the variance of the geoid height estimator

as

σ 2̃
N = σ 21 + σ 22 + 2σ12, (11)

where σ 2
i are the variances of components Ñi , and σ12 is their

covariance.

In practice we can expect the covariance between the low- and

high- degree components to be small/negligible, and from now

onweomit it in the analysis. The variance componentσ 21 is directly

obtained from Eq. (3), but now limited to degreeM<L. σ 22 needs

further consideration to be estimated.

As Ñ2is band-limited, its error can bewritten as the Stokes integral

ε2 = R4πγ
∫∫

σ
∆S (ψ) ε∆gdσ. (12a)
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Here the kernel function is the band-limited Stokes function

∆S (ψ) = L∑
n=M+1

2n+ 1
n − 1 Pn(cosψ) (12b)

and ε∆gis the error of a gravity anomaly generated by the EGM

components for degrees M ≤ n ≤ L , but otherwise arbitrary.

(Note that Eq. 12 is blind to other harmonics.) Then it follows from

Eq. (12a) that σ 22 can be written

σ 22 = ( R4πγ
)2 ∫∫

σ

∫∫
σ ′

∆S (ψ) ∆S (ψ ′)C (Q,Q′)dσdσ ′,
(13)

whereC (Q,Q′)is the covariancematrix forε∆g . By assuming that

the covariance of the gravity anomaly errors can be omitted, one

obtains also

σ 22 ≈
(

R4πγ
)2 ∫∫

σ
{∆S (ψ)}2σ 2∆gdσ. (14)

Pavlis et al. (2004) used the technique of Pavlis and Saleh (2004),

where σ 21 and σ 22 of our Eq. (11) were given by Eqs. (9a) and (14)

for L = 2160 and the covariance among the data was omitted. In

this way they estimated some regional geoid height commission

errors of EGM08. The global rms of the commission error was

20.1 cm. In a similar approach they estimated the global rms

commission error of the gravity anomaly computed by EGM08 to

7.0 mGal.

However, the high-degree components of EGM08 is heavily relying

on regional gravity and satellite altimetry data, which should be

regarded with coloured noise rather than white noise. Hence a

better alternative should be to assume that the gravity anomaly

error covariance function is homogeneous and isotropic (at least

in a regional application), in which case it can be written

C (ψ) = ∞∑
n=2 σ

2
nPn (cosψ) , (15)

whereσ 2
n are the gravity anomaly error degree variances. Inserting

Eq. (15) into Eq. (13) and considering the spectral forms of Stokes'

function,

S (ψ) = S (P,Q) = ∞∑
n=2

1
n − 1 n∑

n=−nYnm (P)Ynm (Q) , (16)

and Eq. (15),

C (ψ) = C (P,Q) = ∞∑
n=2

σ 2
n2n+ 1 n∑

m=−nYnm (Q)Ynm (Q′)
(17)

aswell as theorthogonality of spherical harmonics over the sphere,

Eq. (13) reduces to

σ 22 = (Rγ
)2 L∑

n=M+1
σ 2
n(n − 1)2 . (18)

If the geoid height were only determined by gravity anomalies,

the variance of the geoid height would be

σ 2
N = (Rγ

)2 ∞∑
n=2

σ 2
n(n − 1)2 . (19)

In order to estimate the degree variances σ 2
n we may consider

the simple closed form covariance model for the (full spectrum)

gravity anomaly (cf. Sjöberg 1984)

C (ψ) = c
[ 1− k√1− 2k cosψ + k2 − 1 + k − (1− k) k cosψ] ,

(20)

wherec andk are parameters to be fitted to somedata. Expanding

Eq. (20) as a series in Legendre polynomials and comparing the

terms with those of Eq. (15), it follows that

σ 2
n = ckn (1− k) . (21)

We may fix the parameters c and k by assuming that the variance

and correlation length (ψc)of the covariance function are known

parameters. (The correlation length is the geocentric distance,

whose covariance is 50% of the variance; e.g., Moritz 1980, p. 174.)

By inserting ψ = 0 and ψ = ψc in Eq. (20) one obtains the two

new equations

σ 2∆g = ck2 (22a)

and

12 = (1− k) /√1− 2k cosψc + k2 − 1 + k − (1− k)k cosψc
k2

(22b)

from which the parameters k and c can be determined as follows:

1) Reformulate Eq. (22b) as

f (k) = 1− kΩ − (1− k)(1 + kt)− k22 = 0, (23)

whereΩ = √1− 2kt + k2 and t = cosψc ,
which yields

f ′(k) = − (1− t) (1 + k)Ω3 + 1− k − t − 2kt. (24)

2) Determine k by Newton-Raphson's method, i.e. iterate

ki+1 = ki − f (ki) /f ′ (ki) ; i = 0, 1, 2, ... (25)

until convergence. A suitable start value for iteration could be

k0 = 1.
3) Determine c from Eq. (22a).

In Table 1 we summarize the results of the estimated σ (N)for
some scenarios with gravity anomaly standard errors 3 and 5mGal

and various correlation lengths. (15 iterations were sufficient for

convergence of Eq. (25))
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Table 1. Resulting parameters k, c and σN of Eqs. (14) and (12a) with
nmax = 2160 for various standard errors (σ∆g) and correlation
lengths (ψ◦c ) of gravity anomaly.

σ∆g
mGal

ψ◦c k c σN
metre

3 0.001 0.999989 9.00 0.079

0.01 0.999899 9.0 0.251

0.1 0.998990 9.02 0.794

0.5 0.994906 9.09 1.774

5 0.001 0.999990 25.00 0.132

0.01 0.999899 25.00 0.419

0.1 0.998990 25.05 1.324

0.5 0.994906 25.26 2.957

Wehave toassumethat thequalityof thehigh-degreecomponents

of EGM08, represented by σ2 of Eq. (18), varies from area to area

over the Earth. If we have some information about the regional

variance and correlation length of this data, here expressed as

those parameters of the gravity anomaly error, the above method

canbeusedtoestimate theerrordegreevariancesσ 2
n . Forexample,

by assuming a total gravity anomaly standard error of 5 mGal and

correlation lengths 0.01◦ and0.1◦ in determining the error degree

variances in Eq. (18) from the above procedure, Eq. (18) yields

with M =70 and L =2160 the high-degree commission errors

(σ2) as 3.8 and 11.0 cm, respectively. Hence, by taking the low-

degree commission error as 3.8 cm as estimated above the total

commission errors are estimated to

σN = √3.52 + 3.82 = 5.1 cmand
σN = √3.52 + 11.02 = 11.5 cm (26)

for the two stipulated correlation lengths of the data, respectively.

At first glance it seems rather surprising that the contribution from

the first terms under the square roots in Eq. (26) is only 3.5 cm.

However, it is likely that this is just a manifestation of the high

accuracy in the satellite-only part of EGM08. Onemay also assume

that this contribution is rather constant over the surface of the

Earth, while the second term under the square roots of Eq. (26)

will change considerably from point to point with respect to the

quality of the gravity anomaly data included in EGM08.

The commission error discussed above considers only the error

propagation in the EGM.When applying it for geoid computations

in continental areas it will also be deteriorated by a systematic

error (topographic bias) stemming from the erroneous downard

continuation of a harmonic function into the topographic masses

(Sjöberg 2007) as discussed in Sect. 4.

3. The omission error

The omission/truncation error of EGM08 can be written

δNO = R
∞∑

n=nmax+1
n∑

m=−nAnmYnm, (27)

yielding the global mean square error

m̄2
O = (Rγ

)2 ∞∑
n=2161

cn(n − 1)2 , (28)

wherecn are the gravity anomaly degree variances. By considering

the gravity anomaly degree variances of Tscherning and Rapp

(1974) one obtains the global rms truncation error of 23x10−4 mm.

A regional estimate of the truncation error is obtained as follows.

First we rewrite the omission error as

δNO = R4πγ ∫∫σ SL (ψ) ∆gdσ == R4πγ ∫∫σ S (ψ) ∆gLdσ = R4πγ ∫∫σ SL (ψ) ∆gLdσ (29a)

where

SL (ψ) = S (ψ)− SL(ψ) = S (ψ)− L∑
n=2

2n+ 1
n − 1 Pn (cosψ)

(29b)

and

∆gL = ∆g − L∑
n=2 ∆gn. (29c)

Here∆gL is a reduced gravity anomalywith only high-wavelength

components. As SL(ψ) tapers off quickly with geocentric angle,

Eq. (29a) can be approximated by

δNO ≈
R
γ

∫∫
σ0 S

L (ψ) ∆gLdσ, (30)

and σ0 is an arbitrary spherical cap. If the cap is selected such

that its geocentric angel is equal to or larger than the resolution

angle of EGM08 (i.e., about 5′) the missing integral of Eq. (30)

can be regarded as negligible. Hence the truncation error can be

approximated by

δNO ≈ R∆ḡL2γ [I1 (ψ0)− I2 (ψ0)] . (31a)

I1 (ψ0) = ∫ ψ00 S(ψ) sinψdψ = ∫ 1
t0 S (t)dt =

∫ 1
t0
[1− 5t + y−1 (t)− 6y (t)− 3t ln {y (t) + y2 (t)}]dt(31b)
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and

I2 (ψ0) = ∫ ψ00 Snmax (ψ) sinψdψ =
= ∑nmax

n=2 Pn−1(ψ0)−Pn+1(ψ0)
n−1

(31c)

where y (t) = √(1− t) /2. For ψ0 = 5′ numerical integration

of Eq. (31b) yields I1 (5′) ≈ 2.9 × 10−3 , and the summation in

Eq. (31c) for nmax = 2160 yields I2 (5′) = 3.1× 10−3 . (Actually,
the integral I1 could be computed directly by the closed form

expression of Lambert and Darling, 1936.)

Alternatively, one may directly compute Eq. (31a) as the spectral

sum

δNO ≈
R∆ḡL2γ ∞∑

n=nmax+1
Pn−1 (t0)− Pn+1 (t0)

n − 1 . (32)

In any case, for R = 6371 km, γ = 981Gal , one obtains the

numerical result

δNO ≈ −6.9x10−2∆ḡL[cm] (33)

for∆ḡL in units of mGal.

This shows that for∆ḡ set to 10 and 100mGal the truncation error

becomes -0.7 and -6.9 [cm], respectively. The rms gravity anomaly

computed fromEGM08 is 10.32mGal, yielding an rmsgeoid height

truncation error again of about --7 mm. Obviously the truncation

error of the geoid height is negligible at the cm-level, unless the

magnitude of ∆ḡ exceeds about 15 mGal in the near-zone of the

computation point.

Another omission error for geoid height determination is related

with the topographic bias. As we will see in the next section, in

high mountain areas it becomes much more significant than the

direct omission error in the EGM.

4. The analytical continuation error and the topographic bias

4.1. The analytical continuation error

In a strict sense it should not be expected that the representation

of the gravity field in an external type spherical harmonic series be

convergent inside the Brillouin sphere, i.e. the sphere enveloping

all mass of the Earth. This implies also that a truncated series

representation, e.g. created by EGM08, should suffer from this

errorwhenapplied inside this sphere (e.g. Sjöberg1977). However,

although not yet proved, except for the limited numerical study

by Jekeli 1981, as long as the series is applied on or outside the

Earth's surface, the error is expected to be negligible. Hence, one

should not expect this type of error to be significant in quasigeoid

determination. One should also keep in mind that the quasigeoid

agrees with the geoid over the oceans.

4.2. The topographic bias- commission error

The above effect changes drastically for the continental geoid,

being normally located within the topographic masses. Here the

analytical continuation error of the series is completely dominated

by the topographic potential bias, originatingwith the fact that the

harmonic representation of the series inside the Earth's masses,

where the potential is not a harmonic function, is biased (Sjöberg
2007, Sjöberg 2009a and Sjöberg 2009b).

The bias of the geoid height can be written

δNnmax
bias = 2πµ

γ

nmax∑
n=0

n∑
m=−n

[(
H2)

nm + 23R (H3)
nm

]
Ynm,

(34)

where µ = G × ρ = gravitational constant times topographic

density and
(
Hν )

nm ; ν = 2, 3 are the spherical harmonics ofHν ,

H being the topographic height (above thegeoid). Fornmax=2160

and using Pavlis et al. (2006) to create the spherical harmonics of

H, the maximum value (in the Himalayas) of the bias is 5.153 m.

4.3. The topographic bias - omission error

The total topographic bias, given by the formula

δNbias = 2πµ
γ

(
H2 + 2H33R

)
(35)

is significant at the 1-cm level already for the topographic height

of about 300 m. For Mt. Everest it becomes 8.983 m.

In computing the geoid height omission error of EGM08 one

should also consider the omission error in the topographic bias.

This residual topographic bias is given by

∆δNM
bias = 2πµ

γ

∞∑
n=nmax+1

n∑
m=−n[(H2)

nm + 23R (H3)
nm]Ynm,

(36)

or

∆δNM
bias = 2πµ

γ

(
H2 + 2H33R

)
− δNnmax

bias . (37)

As the height of Mt. Everest is 8848 m, the maximum value of this

residual bias becomes 8.983-5.153 = 3.830 m.

5. Concluding remarks

We have estimated the rms error of geoid (or quasi geoid) heights

as determinedbyEGM08 to theorder of 10 cm,which is completely

dominated by the commission error. (The rms omission error is

only 1 cm.) Both components vary locally, the commission error

mainly with the quality of the gravity anomaly, the omission error

with the magnitude of the gravity anomaly. In a region with

an extreme gravity anomaly, e.g. of the order of 400 mGal, the

omission error may increase to nearly 30 cm.
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However, the error of the geoid, estimated in continental regions

by EGM08, is affected also by the topographic bias, which ranges

to 9 m for Mt. Everest. By applying the simple formula of Eq. (34),

the commission error may be reduced but the remaining omission

error is still of the order of 3.8 m in the highest mountains. This

error may also be practically eliminated by subtracting the total

topographic bias according to Eq. (35), and, theoretically, only the

error due to the uncertainty in the topographic density remains in

the topographic bias.

A related question is whether it is worthwhile to combine the

EGM08 data with regional gravity data for improved geoid mod-

elling towards the ``1-cm geoid''. As concluded above the EGM08

error is generally dominated by the commission error, which sug-

gests that only the high-degree contribution (beyond degree 70)

of EGM08shouldpossiblybedownweighted in favourof improved

gravity data to be used in Stokes' integration (with an integration

cap size of at least 2.5 degrees). In areas with large and variable

gravity anomalies, the inclusion of dense terrestrial gravity in a

Stokes integration can also significantly reduce the omission error.
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