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Abstract:

The high-degree Earth Gravitational Model EGMO8 allows for geoid determination with a resolution of the order of 5’. Using this model
for estimating the quasigeoid height, we estimate the global root mean square (rms) commission error to 5 and 11 cm, based on the
assumptions that terrestrial gravity contributes to the model with an rms standard error of 5 mGal and correlation length 0.01° and 0.1°,
respectively. The omission error is estimated to—0.7Ag [mm], where Ag is the regional mean gravity anomaly in units of mGal.

In case of geoid determination by EGMO08, the topographic bias must also be considered. This is because the Earth’s gravitational
potential, in contrast to its spherical harmonic representation by EGMO8, is not a harmonic function at the geoid inside the topography. If
a correction is applied for the bias, the main uncertainty that remains is that from the uncertainty in the topographic density, which will
still contribute to the overall geoid error.
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1. Introduction agreement (see Huang and Kotsakis 2009) due to lateral quality
variations in both EGM08 and the GPS/levelling data. This study
has the goal of investigating the regional variations in EGM08 from

a theoretical point of view.
The Earth Gravitational Model EGMO8 (Pavlis et al. 2008) provides a
major step forward in geoid determination by a spherical harmonic
model. As its resolution is as high as 5, one may question how
close it is to directly solve for “the 1-cm geoid”. Xu and Rummel
(1991) derived some basic formulas for the geoid height error 2. The commission error

propagated from the errors of an EGM, and Pavlis et al. (2005) used

a similar technique in their preliminary study of EGMO08, indicating We will estimate the commission error a) directly by the error
that a global root mean square (rms) commission error of the estimates of the EGMO8 coefficients, b) by an integral formula and
geoid height of 20 cm was attainable. The omission error was not ¢) by a combination of these two methods.

considered. The above studies did not consider correlations in

the EGM data, and they can therefore hardly be used for regional 21,  Direct computation from potential coefficient error covariance

studies. Also, the omission error was not considered. Independent matrix

evaluations of EGM08 vs. GPS/levelling derived geoid heights

show, as one would expect, considerable regional variations in i . i . "
P 9 Let us assume that the geoid height is estimated at the position

P on the Mean Earth Sphere of radius R by the finite series of

*E-mail: fully-normalized spherical harmonics Y, (P), given by
\//
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where y is normal gravity on the reference ellipsoid, A,,, are the
unit-less harmonic coefficients of the disturbing potential with
random errors of expectation zero and covariance matrix Q, and y
and a are the vectors of the sets Y,,,, and A,,,, respectively. Then
the variance of N becomes

2

o = (B) y' Qy. (2)

14

As the Earth Gravitational Model 2008 (EGM08) with L =2160
includes about 4.7 million coefficients, it would be a huge task
to compute the covariance matrix needed in Eq. (2), and con-
sequently it is not available today. One may relax this task by
considering only the mean of the geoid variance over the sphere.
Due to the orthonormality of spherical harmonics when integrated
over the sphere, the global average of the geoid variance becomes

R 2 L n
= (3] L2 om @
14 n=2 m=—n
where Q,,, are the diagonal elements of Q (i.e. the variances

of Apm). Using the standard values R = 6371 km, we obtain
On =29.2 cm for EGMO8 complete to L = 2160.

In a similar way we may estimate the global mean gravity anomaly
variance by
L

Ry =v') (=17  Qun, @

n=2 m=—n

yielding dpy = 4.2 mGaland y =981 Gal.

2.2. Solution by integral formula

The direct error propagation of the gravity anomaly error € to the
geoid error ON is given by Stokes' formula:

SN = HRV //65(41) edo. (5)

For uncorrelated gravity anomalies with variance Ugg, the variance
of the geoid height becomes (Pavlis and Saleh 2005):

R 2
o} = (m) //052(1,0) Or,do. (6)

Unfortunately, this assumption (with uncorrelated gravity anoma-
lies) is not realistic. Mathematically it leads to an unlimited variance
of K/ because by introducing the notation 2 for the minimum
value of Ugg and considering the spectral form of Stokes’ func-
tion (see Eq. 16 below) and the orthonormality of the spherical
harmonics when integrated over the sphere one obtains

[[swao=3 2= @
g n=2

e
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and therefore

2
a§>(%) 62//52(1,[/)da:oo. (8

This problem can, of course, be avoided under the assumption

that Stokes’ function is band-limited, e.g. to the maximum degree
of EGMO08, as suggested by Pavlis and Saleh (2005). In this way
Pavlis et al. (2005) estimated the global rms geoid height standard
error of 20.1 cm. A corresponding estimate for the global rms error
in the gravity anomaly determined from the error spectrum of the
EGM was 7.0 mGal. However, even so, the neglected correlation of
the data may significantly contribute to an erroneous estimate.

2.3. Combined solution

Let us now write Eq. (2?) by the simplified notations as the sum

N/ = /\71 + R/z (9a)

where

M
Ni=Y N, and No= )Y N, (9b)
n=2

ie, K/1 and K/z are the low- and high-degree components, re-
spectively, of the geoid height estimator. Here M is the maximum
degree to which the complete error spectrum of the EGM is
estimated.

Then the error of N becomes

EK/=€1 + &, (10)

where €; denotes the error of the component N; i = 1,2,
Assuming that the errors are random with expectation zero, simple
error propagation yields the variance of the geoid height estimator
as

2 2 2
05 =07 + 03 + 2047, (11)
where Ul-z are the variances of components N;, and 0y is their
covariance.

In practice we can expect the covariance between the low- and
high- degree components to be small/negligible, and from now
on we omit it in the analysis. The variance component 012 is directly
obtained from Eg. (3), but now limited to degree M<L. 022 needs
further consideration to be estimated.

As Nsis band-limited, its error can be written as the Stokes integral

R
& = m //ﬂ AS () epgdo. (12a)



Here the kernel function is the band-limited Stokes function

L

AS() = )

n=M+1

2n+1
n—1

Pn(cos ) (12b)

and €pgis the error of a gravity anomaly generated by the EGM
components for degrees M < n < L, but otherwise arbitrary.
(Note that Eq. 12 is blind to other harmonics.) Then it follows from
Eq. (12a) that 63 can be written

0f = (AUTRY)Z/L//ﬂlAS(lp)AS(L,//)C(Q,Q’) dodd’,
(13)

where C (Q, Q')is the covariance matrix for £44. By assuming that
the covariance of the gravity anomaly errors can be omitted, one
obtains also

0} ( ) //{AS((/I Yor,do (14)

Pavlis et al. (2004) used the technique of Pavlis and Saleh (2004),
where (712 and 022 of our Eq. (11) were given by Egs. (9a) and (14)
for L = 2160 and the covariance among the data was omitted. In
this way they estimated some regional geoid height commission
errors of EGM08. The global rms of the commission error was
20.1 cm.
commission error of the gravity anomaly computed by EGMO08 to
7.0 mGal.

In a similar approach they estimated the global rms

However, the high-degree components of EGMO08 is heavily relying
on regional gravity and satellite altimetry data, which should be
regarded with coloured noise rather than white noise. Hence a
better alternative should be to assume that the gravity anomaly
error covariance function is homogeneous and isotropic (at least
in a regional application), in which case it can be written

Cy) = i 03Py (cos ), (15)

n=2

where U are the gravity anomaly error degree variances. Inserting
Eqg. (15) into Eq. (13) and considering the spectral forms of Stokes’

function,

S(y) = Z _1 Zvnm Yom (Q),
and Eq. (15),

C(y)=C(P,Q) = Zz+ Z w (Q) Yam (@)

(17)

as well as the orthogonality of spherical harmonics over the sphere,
Eq. (13) reduces to

- R)2 L 0_3
== (y Z1 (n—1)" 8

n=M-+
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If the geoid height were only determined by gravity anomalies,
the variance of the geoid height would be

, R)Zoo 0_3
o _(v Zi(n_”z. (19)

n=2

In order to estimate the degree variances 0?2

we may consider
the simple closed form covariance model for the (full spectrum)

gravity anomaly (cf. Sjoberg 1984)

1—k
C(¢)_C[W—1+k—(1—k)kcosdf
(20)

where c and k are parameters to be fitted to some data. Expanding
Eq. (20) as a series in Legendre polynomials and comparing the
terms with those of Eq. (15), it follows that

02 =ck"(1—k). 21

We may fix the parameters ¢ and k by assuming that the variance
and correlation length ((c)of the covariance function are known
parameters. (The correlation length is the geocentric distance,
whose covariance is 50% of the variance; e.g., Moritz 1980, p. 174.)
By inserting ¢y = 0 and ¢y = ¢ in Eq. (20) one obtains the two

new equations

Uﬁg = ck? (22a)
and
1 (1 —k) /1 —=2kcosc + k? =1+ k — (1 — k)k cos ¢
2 k2

(22b)
from which the parameters k and ¢ can be determined as follows:
1) Reformulate Eq. (22b) as
1—k k?

f (k)= a —(1=k)(1 —I—kt)—? =0, (23)
where Q = V1 — 2kt + kZand t = cos .,
which yields
, 1—t)(1+k
f(k)=—7( 2)(3 i i—k—t—2kt. ()

2) Determine k by Newton-Raphson’s method, i.e. iterate

kit = ki — £ (k) If (k);i=0,1,2, ... (25)

until convergence. A suitable start value for iteration could be
ko =1.

3) Determine ¢ from Eq. (22a).

In Table 1 we summarize the results of the estimated a(N)for
some scenarios with gravity anomaly standard errors 3 and 5 mGal
and various correlation lengths. (15 iterations were sufficient for
convergence of Eq. (25))
™~
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Table 1. Resulting parameters k, ¢ and oy of Egs. (14) and (12a) with
nmax = 2160 for various standard errors (gp4) and correlation
lengths (¢¢) of gravity anomaly.

Opg ge k c oN
mGal metre
3 0.001 |0.999989 9.00 0.079
0.01 [0.999899 9.0 0.251
0.1 0.998990 9.02 0.794
0.5 0.994906 9.09 1.774
5 0.001 |0.999990 25.00 0.132
0.01 [0.999899 25.00 0.419
0.1 0.998990 25.05 1.324
0.5 0.994906 25.26 2.957

We have to assume that the quality of the high-degree components
of EGMO8, represented by 0, of Eq. (18), varies from area to area
over the Earth. If we have some information about the regional
variance and correlation length of this data, here expressed as
those parameters of the gravity anomaly error, the above method
can be usedto estimate the error degree variances Uf. Forexample,
by assuming a total gravity anomaly standard error of 5 mGal and
correlation lengths 0.01° and 0.1° in determining the error degree
variances in Eq. (18) from the above procedure, Eq. (18) yields
with M =70 and L =2160 the high-degree commission errors
(02) as 3.8 and 11.0 cm, respectively. Hence, by taking the low-
degree commission error as 3.8 cm as estimated above the total
commission errors are estimated to

oy =V3.52+3.82=51cm
and (26)
ov =V3524+11.02=115cm

for the two stipulated correlation lengths of the data, respectively.
Atfirst glance it seems rather surprising that the contribution from
the first terms under the square roots in Eq. (26) is only 3.5 cm.
However, it is likely that this is just a manifestation of the high
accuracy in the satellite-only part of EGM08. One may also assume
that this contribution is rather constant over the surface of the
Earth, while the second term under the square roots of Eq. (26)
will change considerably from point to point with respect to the
quality of the gravity anomaly data included in EGMO8.

The commission error discussed above considers only the error
propagation in the EGM. When applying it for geoid computations
in continental areas it will also be deteriorated by a systematic
error (topographic bias) stemming from the erroneous downard
continuation of a harmonic function into the topographic masses
(Sjoberg 2007} as discussed in Sect. 4.

~
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3. The omission error

The omission/truncation error of EGMO08 can be written

No=R S > AuVom, 27)

n=nmax+1 m=—n
yielding the global mean square error
R ) S c
=2 n
m=(5) © o 28)
v S (n=1)

where ¢, are the gravity anomaly degree variances. By considering
the gravity anomaly degree variances of Tscherning and Rapp
(1974) one obtains the global rms truncation error of 23x10~% mm.

A regional estimate of the truncation error is obtained as follows.
First we rewrite the omission error as

o0Np = %IIUSL(JJ)AgdU:

= 1, S WG o = £ T, S ) 0g'do

where
L2041
St W) =SW) -SSP =SW) - _ 1L, (cosv)
"~ (29b)
and
L
Agh=Ag—=) Ag,. (290)
n=2

Here Agl is a reduced gravity anomaly with only high-wavelength
components. As St(y) tapers off quickly with geocentric angle,
Eq. (29a) can be approximated by

5No =~ g// St () Agtdo, (30)
a

and 0y is an arbitrary spherical cap. If the cap is selected such
that its geocentric angel is equal to or larger than the resolution
angle of EGMO0S (i.e., about 5’) the missing integral of Eq. (30)
can be regarded as negligible. Hence the truncation error can be
approximated by

No = 55" (11 () — b2 (o)) - (31a)

I (o) = [3° S(y)singdp = [, S(t) dt =
(31b)

Jo[1=5t+y " (1) = by (1) = 3tln {y (1) + y* (0}] ot



and
b () = [3® Sy (1) sin ey =
(310
_ anax Pn-1(to ';’n+1(¢o)
where y () = /(1 — t) /2. For ¢y = 5’ numerical integration

of Eq. (31b) yields /; (5') =~ 2.9 x 1073, and the summation in
Eq. (31¢) for nypax = 2160yields ,, (5') = 3.1 x 1073, (Actually,
the integral /; could be computed directly by the closed form
expression of Lambert and Darling, 1936.)

Alternatively, one may directly compute Eq. (31a) as the spectral
sum

oNy =

RAg* i Pr_1 (to) — Phy (l‘o). (32)

2)/ n=nmax+1 n—1
In any case, for R = 6371 km, y = 981Gal , one obtains the
numerical result

ONp =~ —6.9x1072Ag" [cm] (33)
for Ag" in units of mGal.

This shows that for Ag set to 10 and 100 mGal the truncation error
becomes -0.7 and -6.9 [cm], respectively. The rms gravity anomaly
computed from EGMO08 s 10.32 mGal, yielding an rms geoid height
truncation error again of about —7 mm. Obviously the truncation
error of the geoid height is negligible at the cm-level, unless the
magnitude of Ag exceeds about 15 mGal in the near-zone of the
computation point.

Another omission error for geoid height determination is related
with the topographic bias. As we will see in the next section, in
high mountain areas it becomes much more significant than the
direct omission error in the EGM.

4. The analytical continuation error and the topographic bias

4.1.  The analytical continuation error

In a strict sense it should not be expected that the representation
of the gravity field in an external type spherical harmonic series be
convergent inside the Brillouin sphere, i.e. the sphere enveloping
all mass of the Earth. This implies also that a truncated series
representation, e.g. created by EGMO08, should suffer from this
error when applied inside this sphere (e.g. Sjoberg 1977). However,
although not yet proved, except for the limited numerical study
by Jekeli 1981, as long as the series is applied on or outside the
Earth's surface, the error is expected to be negligible. Hence, one
should not expect this type of error to be significant in quasigeoid
determination. One should also keep in mind that the quasigeoid
agrees with the geoid over the oceans.
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4.2.  The topographic bias- commission error

The above effect changes drastically for the continental geoid,
being normally located within the topographic masses. Here the
analytical continuation error of the series is completely dominated
by the topographic potential bias, originating with the fact that the
harmonic representation of the series inside the Earth’s masses,
where the potential is not a harmonic function, is biased (Sjoberg
2007, Sjoberg 2009a and Sjoberg 2009b).

The bias of the geoid height can be written

] l?imaasx = Zﬂuz z [(HZ nm + : (H3)nln] Y”'"’
n=0 m=—n
(34)

where 1 = G X p = gravitational constant times topographic
density and (Hv )nm
H being the topographic height (above the geoid). For n .= 2160

; v = 2, 3arethe spherical harmonics of HY,

and using Pavlis et al. (2006) to create the spherical harmonics of
H, the maximum value (in the Himalayas) of the bias is 5.153 m.

4.3. The topographic bias - omission error

The total topographic bias, given by the formula

27y ( 2H? )

2,
H 3R

6Nbias = (35)

is significant at the 1-cm level already for the topographic height
of about 300 m. For Mt. Everest it becomes 8.983 m.

In computing the geoid height omission error of EGM08 one
should also consider the omission error in the topographic bias.
This residual topographic bias is given by

ASNM. = 2’;“ Z Z (H) 0 + 35 (H3) Vo,
N=nNmax+1 m=—n
(36)

or
2H3

H? + —)—5/\/"@*. (37)

27rp
A6Nl/7\?’us = ( 3R bias

As the height of Mt. Everest is 8848 m, the maximum value of this
residual bias becomes 8.983-5.153 =3.830 m.

5. Concluding remarks

We have estimated the rms error of geoid (or quasi geoid) heights
as determined by EGM08 to the order of 10 cm, which is completely
dominated by the commission error. (The rms omission error is
only 1 cm.) Both components vary locally, the commission error
mainly with the quality of the gravity anomaly, the omission error
with the magnitude of the gravity anomaly. In a region with
an extreme gravity anomaly, e.g. of the order of 400 mGal, the
omission error may increase to nearly 30 cm.

v
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However, the error of the geoid, estimated in continental regions
by EGMO8, is affected also by the topographic bias, which ranges
to 9 m for Mt. Everest. By applying the simple formula of Eq. (34),
the commission error may be reduced but the remaining omission
error is still of the order of 3.8 m in the highest mountains. This
error may also be practically eliminated by subtracting the total
topographic bias according to Eq. (35), and, theoretically, only the
error due to the uncertainty in the topographic density remains in
the topographic bias.

A related question is whether it is worthwhile to combine the
EGMO8 data with regional gravity data for improved geoid mod-
elling towards the “1-cm geoid”. As concluded above the EGM08
error is generally dominated by the commission error, which sug-
gests that only the high-degree contribution (beyond degree 70)
of EGM08 should possibly be down weighted in favour ofimproved
gravity data to be used in Stokes’ integration (with an integration
cap size of at least 2.5 degrees). In areas with large and variable
gravity anomalies, the inclusion of dense terrestrial gravity in a
Stokes integration can also significantly reduce the omission error.
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