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Abstract:

This study investigates various models to represent the gross geometric shape of the Moon. Asymmetric polyaxial geometric models-
namely three-, four- and six-axial lunar figure - are compared and contrasted with the axially symmetric three-axis ellipsoidal model
derived from Chang’e 1 and SELENE laser altimetry data. All solutions confirm a hydrostatically stable lunar shape shifted with respect
to the lunar center of mass by topography. Model solutions with increasing complexity offer additional information about the regional
properties of the lunar topography. Solution statistics suggest that axially symmetric lunar figures and their center of figure parameters
can be replaced by an equivalent asymmetric lunar shape centered at the center of mass of the Moon. Thus, using only three shape
parameters, one can derive an “egg” shape that better accommodates the true geometry of the Moon.
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1. Introduction

Isolated self-gravitating massive objects are spherically symmetric,
which minimizes potential energy. Their steady rotation distorts
their spherical shape, a hydrostatic departure which is character-
ized by even degree zonal spherical harmonics (Bills and Lemoine,
1995). Meanwhile, the topography and internal structure of a
planet displaces its center of figure from its center of mass. Earlier
studies by Sjogren and Wollenhaupt (1973) revealed the displace-
ment of the center of figure of the Moon relative to the center of
mass using laser altimetry. This offset is subsequently quantified
by the first-degree harmonic term of lunar topographic model so-
lutions (Bills and Ferrari, 1977, Smith et al., 1997). The displacement
is attributed to the asymmetry of topography, the uneven distri-
bution of mare, the greater thickness of the highland anorthositic
layer on the far side, or the composition and structure of the lunar
interior (Kaula et al., 1972, Wieczorek et al., 2006).

If spherical shapes are the first-order approximations to the gross
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shape of the Moon, symmetrical two-axial (rotational) or three-axial
ellipsoids approximate its hydrostatically stable figure. Although
lunar topography and shape can be completely described by a suf-
ficiently high-degree and -order spherical harmonic topographic
model (Ping et al., 2003, Araki et al, 2009) and the deviations
from the symmetry can be deduced from low-degree and -order
harmonic coefficients of such solutions, this study will show that
asymmetric ellipsoids can serve as alternative models. The param-
eters of these figures offer additional constraints in investigating
the internal composition and structure of the Moon. On the
other hand, performing a best fit of geometric lunar figures with
fewer parameters is preferable in lunar mapping for computational
efficiency reasons.

In the following sections, alternative asymmetric geometric models
for the lunar figure is formulated. Their parameters are estimated
from the recent Chang’e-1 and SELENE laser altimetry data; these
parameters are then compared with the parameters estimated for
symmetrical three-axial ellipsoidal models.



2. Axially Symmetric Lunar Figure

Recent approaches in determining lunar figure parameters use a
spherical harmonic representation of the lunar topography. As
early as 1977, Bills and Ferrari calculated the axes of a three-axial
lunar ellipsoid using a spherical harmonic analysis of lunar topog-
raphy to degree 12 from Earth-based and orbital observations. In
a follow up study, Smith et al. (1997) derived a Goddard Lunar
Topography Model (GLTM 2) up to degree and order 72 based on a
spherical harmonic expansion of the mass-centered radii deduced
using Clementine radar altimetry measurements. GLTM 2 mod-
els were then used to compute the parameters for a biaxial and
spherical lunar shape.

Most recently, two-axial lunar figure parameters and their geomet-
ric centers with respect to the lunar center of mass were derived
based on the lunar spherical harmonic topographic model by Ping
et al. (2009) from Chang'e-1, (CLTM-s01) topographic model with
3 million data. Concurrently, Araki et al. (2009) constructed the
STM 359-grid-02 topographic model interpolated and filtered from
1.1 million SELENE laser altimetry measurements to a quarter of
a degree. There are currently no published three-axial solutions
derived from the recent topographic models based on spherical
harmonic analysis.

Lunar figure parameters can also be obtained directly using geo-
metric models. 1z (2009) calculated the parameters of the geomet-
rically best fitting two-axial and three-axial ellipsoids and spheres
from the coordinates of 271,610 ULCN 2005 lunar control stations
(Archinal et al., 2006). Subsequently, Iz et al. 2009 showed that
the omission of the topography in the old Unified Lunar Control
Networks’ ULCN 1994 solution (Davies, 1987) shifted the geometric
center of the lunar figure up to 5 km in the lunar equatorial plane
and rotated the ULCN 1994 reference frame on the order of a few
hundred meters with respect to ULCN 2005 (at the lunar equator).

Recently, 1z et al. (2011) estimated improved spherical two- and
three-axial lunar figure parameters together with their geometric
centers with respect to the center of mass of the Moon, this time
using Chang’e-1 and SELENE laser altimetry data. Another study
by Iz et al. (2010) confirmed that the lunar polar axis is tilted
toward the earth, as deduced earlier by Smith et al. (1997) from
the analysis of the Clementine laser altimetry data.

3. Mathematical Models for Asymmetric Lunar Figures

Ellipsoidal geometric models are helpful for studying the Moon's
topography, interior, and gross shape, but these models do not ex-
actly correspond to laser altimetry observations. A more accurate
representation of the lunar figure is possible using asymmet-
ric polyaxial models (more than three axes), which have been
deployed in planetary cartography for astronomical mapping of ir-
regularly shaped celestial bodies (Stooke and Keller, 1990, Nyrtsov,
2005) but which have not been used to represent the gross shape
of the Moon.
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The simplest asymmetric polyaxial figure of the Moon is a three-
axial ellipsoidal figure whose geometric center coincides with its
center of mass (Fig. 1). This model is a fusion of two ellipsoids,
one for representing the near side (a two-axis ellipsoid), the other
for representing the lunar shape on the far side (a three-axial
ellipsoid). These two differ only on the principal axes along the
mean Earth direction (X-axis). In this formulation, having common
axes ensures that the transition from the nearside to the far side is
smooth (does not contain jumps).

The mathematical model of a four-axis version of such a composite
figure consists of; a, the equatorial axis along the X-axis of the
mean Earth/polar axis reference system on the near side; a’, the
equatorial axis on the far side; b, the other equatorial axis for both
the near and the far side in the Y-axis; and ¢, which is the common
polar axis that coincides with the Z-axis of the mean Earth/polar
axis reference system. It is represented as

Near-side:

2 yz 72

; + p + ? —-1=0 (1)
Far-side:

2 2 2

il L 1-0 )

a’? b2 c?

Note that this model does not constrain the length of the axes
with respect to each other, but it assumes that the center of mass
and center of figure axes coincide and that the principal axes are
all aligned with the axes of the underlying mean Earth/polar axis
reference system. These models are differentiated in this study
as models “without center of figure parameters”, and “without
orientation parameters” with italics.

Figure 1. A four-axis (egg-shaped) representation of the lunar figure
that differentiates the near from the far side of the Moon.

A variant of this model includes the position of geometric center
of the four-axis ellipsoid with respect to the origin of the mean
Earth/polar axis reference system, which coincides with the center
of mass of the Moon;
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Near-side:

The orientation of the above four-axial ellipsoidal figure of the

Moon with respect to the mean Earth/polar axis reference system

x=x)? (y—y)? (z—2z) 120 3) can also be modeled (to be estimated concurrently with the center
a? + b? + c? T of figure and shape parameters) using the formulations given by
1z et al. 2010:
Far-side:
Near-side:
2 2 2 T
X — X¢ — Y. zZ—Z RAx)'N(RAx) —1 =0 5
(a/z)+(ybzy)+( Cz) 1=0 (4) (RAx)"N(RAX) ©
Far-side:
These models are described in this study as models “with center T
) . . . . .o (RAX)'F(RAx) —1 =0 (6)
of figure parameters” and “without orientation parameters” with
italics.
where
1 0 0 cosB 0 —sinB cosy siny 0
R=1] 0 cosa sina |- 0 0 - | —siny cosy 0 (7)
0 —sina cosa sinB 0 cosB 0 0 1
X — X, a2 0 a? 0 0
Ax:=| y—yc |, N = 0 0 , F .= 0 b2 0 (8)
zZ— 2z 0 c? 0 0 ¢

in which @, B, y are the rotation angles of the lunar figure about
the X Y, Z axes of the mean Earth/polar axis reference system,
respectively, with an additional semi-major axis on the far side of
the Moon. These models are described in this study as models “with
center of figure parameters” and “with orientation parameters”.

The above formulations can be extended to include additional
lunar shape parameters. A six-axis geometric model, for instance,
will consider the asymmetry with respect to the equatorial plane
of the Moon by introducing two more axes, b’ and ¢/, along the
Y and Z axes on the Western and Southern hemispheres. With
the inclusion of these two new axes, the model will partition the
lunar figure into eight quadrants. These quadrants can capture the
effect of regional scale topographical features such as the South
Pole-Aitken (SPA) region, and the highlands of the Eastern part
on the far side (Figure 3), in estimating improved lunar shape
parameters. They will also help to quantify the contribution of the
residual lunar topography to the lunar shape parameters and to
the orientation of the gross lunar figure.

In this study, various non-linear mathematical models, based on
the variants of the condition equations (1) — (8) are used to
iteratively estimate the relevant parameters of the lunar figure
using the Cartesian coordinates of the laser altimetry footprints
from Chang'e-1 and SELENE laser altimetry measurements. The
least squares approach is used in solving condition equations with
unknown parameters (see Iz, (2009).

China Lunar Exploration Center provided the footprint locations of
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over 8.5 million selenocentric laser altimetry measurements (after
removing over 300,000 outliers). The radial distances of the laser
altimetry footprints were calibrated by comparing them against
the radial distances of the Lunar Laser Ranging (LLR) sites (Iz, et
al. 2011). Japan Aerospace Exploration Agency (JAXA) (2009)
provided over 8.8 million selenocentric SELENE laser altimetry
measurements and their footprint locations. Statistical analysis
of the laser altimetry footprint positions nearby the LLR station
coordinates did not show any statistically significant differences
(ibid). Because of this, no calibration correction was applied to the
SELENE laser altimetry footprint radial distances.

To minimize the correlation among the parameters (lunar shape
parameters and others),250,000 uniformly distributed laser altime-
try measurements were sampled (regularized) using the random
sampling approach on a unit sphere (ibid). They are used to
estimate the unknown parameters for each data set rather than
the whole data sets, which are increasingly dense toward the lunar
poles due to the satellites’ polar orbits.

Separate solutions are obtained to validate the solutions from
Chang'e-1 and SELENE data against each other. The averaged
values of the estimates are used for the analysis. Solutions with
the fusion of the data sets do not differ from the averaged values,
except scaling the variance factors, because of the well-known
“square root n” effect.



4. Solution Comparisons

Table 1 lists estimates from various postulated geometric models of
the Moon. These models either include center of figure parameters
(with respect to the center of mass of the Moon) or ignore them in
solving the gross shape parameters (models are denoted as with
and without center of figure parameters). Common to all solutions
is that the principal axes of the ellipsoids remain parallel to the
underlying mean Earth/polar axis reference frame (i.e. the rigid
body rotations of the ellipsoids are constrained to zero as opposed
to solutions to models with rotation angles given in Table 2). Only
the averaged values calculated from solutions using Chang'e-1
and SELENE laser altimetry data are listed in both tables. The root
mean square (RMS) error values are the RMS residuals of the laser
altimetry foot print Cartesian coordinates reflecting the quality of
the fit for each model.

The standard errors of the estimates are less than 1 m for the
principal axes and the geometric center parameters. Nonetheless,
the standard errors do not reflect the accuracy of the estimated
parameters since the expected value of the residual lunar topogra-
phy is not zero. Although the Chang’e-1 and SELENE solutions are
both calibrated against the coordinates of near side lunar ranging
sites (Iz et al., 2011), calibration only ensures the accuracy of the
laser altimetry footprint coordinates on the near side of the Moon.
The 53 m RMS value of the differences in the estimated parameters
from Chang’e-1 and SELENE solutions displayed in Figure 2 can be
used as a rough guideline for the accuracy of the estimate, which
can be extended to approximately 160 m for a three-sigma error.
Also note that all the geometric solutions in principle are biased for
the same reason and the degree of bias depends on how well the
lunar topography is incorporated into the geometric model, such
as those estimated from the harmonic lunar topography models.
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Figure 2. Histogram of the shape and center of figure parameters dif-
ferences (Chang’E-1 - SELENE) estimated from eight dif-
ferent geometric models. The RMS of the differences is
+53 m.

The estimated parameters reported by Smith et al. (1997) are also
included in Table 1 and 2 to establish a baseline for the solutions
with and without three-axial ellipsoid orientation parameters.
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They were calculated from the spherical harmonic models of lunar
topography using Clementine laser altimetry measurements. In
both Clementine solutions, the origin of the three-axis ellipsoid is
estimated independently by averaging the laser altimetry footprint
in Cartesian coordinates. The Clementine mission solution with
orientation is also reported to be a geometric solution as opposed
to the solution without orientation parameters derived from the
harmonic topography model.

Table 1 results show that there are large differences in the semi-
principal axes of the ellipsoids from Clementine (Smith et al.,
1997) and the other solutions mainly because of the missing
laser altimetry measurements towards the poles. Nonetheless,
the limited distribution of the data did not adversely affect the
estimates of the center of figure parameters as evidenced by their
agreement with the other center of figure estimates listed in the
same table for the three-axis models using Chang’e-1 and SELENE
data.

Note that the gross lunar shape, center of figure, and parameters
are geometrically uncorrelated in the three-axis and symmetric
models because of the globally distributed data as well as the
geometric relationships between the shape and center of figure
parameters. However, three-axis asymmetric and four- and six-
axis shape parameters are all correlated with the corresponding
coordinate components of the geometric center of the lunar
figure. Semi-major axes on the near and far sides, for instance,
are correlated with the X-coordinate component of the center of
figure parameters. Consequently, the shape parameters estimated
from solutions without center of figure parameters are biased in
the corresponding axis by roughly the same length of the excluded
component. For instance, the equatorial semi-major axis on the far
side absorbs the unmodeled X-component of the center of figure
parameters while the other shape parameters remain invariant.

In general the lengths of the polar axes (c and ¢’) do not vary much
from model to model. The inclusion of center of figure parameters
always decreases the RMS error of the corresponding solution,
yet the improvements are smaller for the six-axis solutions where
additional shape parameters explain more variations in regional
topography. The RMS error statistics of all solutions with center
of figure parameters are very similar. In particular, the RMS error
of three-axial asymmetric model (1887 m) with center of figure
parameters is as good as the RMS error of the six-axial model
with center of figure parameter solution (1884 m) if parsimony
is a criterion in model selection. In this case, the three-axis
model without the center of figure parameters is the parsimonious
solution with only three shape parameters as compared to the
others with only approximately 100 m increase in its RMS error as
compared to the RMS error of other three-axis models.

Model solutions that also include lunar figure orientation parame-
ters are listed in Table 2. The RMS error of these solutions decreases
as the number of parameters in the models increases, as before,
although the RMS error values do not vary for different models. In
particular, solutions with center of figure parameters are pairwise
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Table 1. Three, four and six-axial lunar shapes with and without center of figure parameters (m) from the averaged estimates of the eight different
gstzg)etric models using Chang’E-1 and SELENE laser altimetry data. The first three three-axial models are axially symmetric and denoted
‘ ‘Clementine Three-axial (S) | Three-axial Four-axial | Six-axial
a| *1738056|1738056|1738046|1736974|1737652|1735871 1737825 (1735872 (1737825
a’ 1740435|1738409|1740216 | 1738267 | 1740217 | 1738267
b 1737843 |1737630(1737638 1737635|1737638|1736705|1737058
b’ 1738568 1738217
c 1735485|1735691|1735689|1735690| 1735688 | 1735690 | 1735688 | 1736015 | 1736428
c 1735363 | 1734948
Xc **-1740 -1727 -1443 -1561 -1561
Ye -750 -716 -715 -715 -280
Zc 270 224 224 224 -331
RMSE -12177 1886 1988 1887 1949 1887 1891 1884

* Clementine best fitting three-axial solution (Smith et al. 1997).
**Center of figure parameters were calculated separately.

better than those without them. Over all, the RMS error values for
solutions with orientation angles are smaller than the ones without
the orientation angles simply because of the implicit constraint
built into the models listed in Table 2 by not allowing the lunar
figure to rotate in searching for the best-fit solution. Table 2 also
includes the estimates of the solutions with orientation angles.
The latitudes and longitudes of the lunar South Pole (SP) position
of the polar axis of the three-axis ellipsoid in the mean Earth / po-
lar axis coordinate frame (calculated from the estimated rotation
angles) are also listed in this table. The rotation angles for the
Clementine solution were not reported by Smith at al. (1997). The
standard errors of the estimated parameters are again less than 1
m for the lunar shape and for the center of the three-axis ellipsoid
parameters, and less than 0.001 degrees for the rotation angles.

What is readily evident in the solutions with the orientation angles
is the effect of the SPAimpact region, the largest known topo-
graphical feature in the solar system. As a result, the position of
the South Polar axis in all solutions is located within the SPA region
close to the center ofits elliptical shape (Figure 3). Moreover, as the
complexity of the model increases, the correlations among various
parameters bias the center of figure estimates more and more. The
interplay between parameters can be seen in the differences of
the shape parameters. However, the results are still informative in
assessing the lump sum distribution of topography and the gross
changes in the lunar shape in different quadrants.

5. Conclusions

The results show that the lunar figure can be represented by
different models; each one of these models is informative in its
own way. In general, the figure axes do not deviate more than few
km from each other for different models (Table 1 and 2), which
confirms a hydrostatically stable lunar shape shifted with respect
to the lunar center of mass by topography.
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Figure 3. South Pole-Aitken Basin. Courtesy of the U.S. Geological
Survey.

Constrained models (i.e. those without orientation parameters)
are more consistent with each other, and the estimated center of
figure of parameters are unbiased. Modeling the lunar figure by
allowing it to rotate leads to solutions that are dominated by the
South Pole-Aitken (SPA) region. These models are informative in
investigating the Moon's evolution and interior as a function of
its biggest impact region using different estimates of the polar
flattening of each quadrant. Models with orientation parameters
explain the lump sum variations of topography almost 30% better
than the symmetric triaxial model.

All model parameters are ready to be analyzed in the context of
the low degree and order coefficients of harmonic models of lunar
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Table 2. Three, four and six-axial lunar shapes with and without center of figure parameters (m) and with and without orientation parameters
(degrees) from the averaged estimates of the eight different geometric models using Chang’E-1 and SELENE laser altimetry data.

Clementine | Three-axial (S} Three-axial Four-axial Six-axial
a| *1739020|1738546 1739056 1737056 |1737357|1736532|1737250(1737148(1737513
a’ 1741637 |1740749(1741532|1740815[1739911|1740593
b 1737567 (1737500 (1737354 1737369|1737378(1737336|1739221
b’ 1737691|1735379
C 1734840|1735326 (1734966 | 1734975 |1734967 |1734976 1734967 | 1735699 | 1739342
c 1734964 1730717
X¢ -1727 -696 -643 -1406
Ye -719 -189 -161 -1705
Zc 223 -94 -109 -3285
a 17 17 19 20 19 20 19 9
B 21 21 17 18 17 18 16 22
y 27 27 31 34 32 34 34 31
South Pole |66.00S 62.74S |62.67S |64.50S 63.22S |64.62S |63.28N |[65.51S [65.92S
169.60W 166.33E |166.44E [161.96E  |165.02E |161.39E [164.86E |163.63E |172.63W
RMSE |- 2009 1690 1686 1662 1673 1662 1668 1565

* Clementine best fitting three-axial solution with orientation, but without center of figure parameters (Smith et al. 1997).

topography.

And finally, as a result of this study, a parsimonious lunar geometric
model arises with only three shape parameters; a two-axis nearside
ellipsoidal representation (semi-major and polar axes a and c), and
a three-axis ellipsoid (semi-major axis a', minor axis a, and the polar
axis of the far side of the Moon ¢). These parameters represent a
significant portion of the Moon'’s gross shape and its topography
and its near and far side dichotomy.
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