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Abstract:

The direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2nd method of condensation are computed using

the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic

masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat

the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone

computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively.

The mean value and standard deviation of the DTE are -0.8 and ±7.6 mGal over land areas. The extreme value -274.3 mGal is located at

latitude -13.579◦ and longitude 289.496◦ , at the height of 1426meter in the Andes Mountains. The ITE is negative everywhere and has its

minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are±15.6 cm and

-6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the

ITE can't be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean

value in the ITE is required.
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1. Introduction

Under the assumption of non-variation of the topographic mass

along the radiusdirection, the topographicpotential and itsderiva-

tives can be reduced from 3-dimensional Newtonian integrals into

2-dimnensional surface integralswithclosedkernel functions (Mar-

tinec, 1998; Sjöberg and Nahavandchi, 1999; Smith et al., 2001;

Heck, 2003). Based on these integrals, the DTE and ITE are com-

putedbyusing SRTM30global elevationmodel (Becker et al., 2009)

in 30" resolution.

∗E-mail: Yan.wang@noaa.gov

The computations of DTE and ITE are global integrations. It

becomes impractical when a very high resolution DEM, such as the

STRM30, is used. Usually, the closed kernel functions are expanded

into Taylor series, so that the most efficient 1D FFT can be applied.

However, Taylor series do not converge near the computation

point in mountainous areas, for the topographic height becomes

larger than distance between the computation and current points.

To overcome this difficulty, we split the computations into an inner

zone of half by half degree block and an outer zone for the rest of

the globe. In the inner zone, the closed formulas are used; for the

outer zone computations, the closed formulas are expanded into

Taylor series and 1D FFT is utilized. The computation errors are

limited to below 0.1 cm and 0.1 mGal for the ITE and direct effect,
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respectively.

2. Computation formulas for DTE and ITE of Helmert’s 2nd method of
condensation

If we assume the density of the Earth's topographic mass is a

function of latitude and longitude only, the gravitational potential

of the topography at any given point P can be computed by a

surface integral (e.g., Martinec, 1998; Sjöberg and Nahavandchi,

1999; Smith et al., 2001; Heck, 2003):

VP (φ, λ) = G
∫∫

σ
ρ(φ, λ)k(rS , rG , rP , ψ)dσ (1)

whereG isNewton'sgravitational constant, rP is the radial distance

of the computation point P, rS is the radial distance to a point on

the Earth surface, rG is the radial distance to a point on the geoid,

ρ is the density of the mass element, σ is the unit sphere, and k is

the kernel function given by:

k = ( 3rP cosψ2 + rS2 )lSP − ( 3rP cosψ2 + rG2 )lGP
+ 12 (−1 + 3 cos2 ψ)r2

P ln rS−rP cosψ+lSP
rG−rP cosψ+lGP

(2)

where lSP and lGP are distances between points, and the sub-

scripts S and G denote the points on the Earth's surface and the

geoid, respectively. The distances are given by:

lSP = √
r2
S − 2rSrP cosψ + r2

P (3)

lGP = √
r2
G − 2rGrP cosψ + r2

P (4)

We dropped the absolute sign in the natural logarithm in the

kernel function (2). The sign is unnecessary (see appendix).

The vertical attraction of topography gtcan be computed by a

surface integral as (ibid.)

gt(φ, λ) = G
∫∫

σ
ρ(φ, λ)k ′ (rS , rG , rP , ψ)dσ (5)

where the kernel function k ′ is given by

k ′ (rP , rG , rS , ψ) = − ∂k
∂rP

= − rS rP (1−6 cos2 ψ)+(3r2P+r2S ) cosψ
lSP

+ rG rP (1−6 cos2 ψ)+(3r2P+r2G ) cosψ
lGP

−(−1 + 3 cos2 ψ)rP ln rS−rP cosψ+lSP
rG−rP cosψ+lGP

(6)

The potential and gravity of the topography can be evaluated

rigorously at any given point using Eqs. (2) - (6), provided that the

density of the topographic mass, the surfaces of the Earth and the

geoid are known.

Since themaximum value of ITE is about 2.5meters, the ellipsoidal

effect is in mm level and is ignored in this paper. The spherical

approximation is used hereafter in the following formulations.

After the topographic masses are condensed onto the geoid

(Helmert's 2nd method of condensation), the gravitational poten-

tial of the condensed surface layer at the point P is (Moritz, 1968,

Eq. 56):

VS (φ, λ) = GR2 ∫∫
σ
ρ(φ′ , λ′ ) HlGP dσ (7)

where H is the orthometric height.

For mass conservation, a local density function is introduced (e.g.,

Heck, 2003):

ρ′ = ρ(φ, λ)[1 + H
R + 13(HR )2] (8)

The attraction of the condensed layer gS at point P is given by

differentiating Eq. (7) respect to rP :

gS (φ, λ) = −∂VS∂rP
= GR2 ∫∫

σ
ρ(φ′ , λ′ )H rP − rG cosψ

l3GP dσ

(9)

The ITE is defined as thegeoid changedue to the shifting ofmasses

to the condensation layer. For the ITE computation, the point P is

on the geoid and rP = R . The ITE can be compute in the same

form as Eq. (1) by using the kernel function (cf. Martinec, 1998;

Sjöberg and Nahavandchi, 1999)

kITE = γ−1{ 3R cosψ+rS2 lSR − 1+3 cosψ2 Rl

+ 12 (−1 + 3 cos2 ψ)R2 ln rS−R cosψ+lSR
R−R cosψ+l

− R2H
l [1 + H

R + 13 (HR )2]}
(10)

where γ is the normal gravity on the geoid and

rS = R +H (11a)

lSR = √
r2
S − 2RrS cosψ + R2 (11b)

l = lGP = R
√2(1− cosψ) (11c)

The DTE is defined as the gravity difference between the topog-

raphy and the condensed layer at the Earth's surface. It can be
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computed using an integral in the form of Eq. (5) with the kernel

function (ibid.)

kDTE = rS rP (1−6 cos2 ψ)+(3r2P+r2S ) cosψ
lSP

+ RrP (1−6 cos2 ψ)+(3r2P+R2) cosψ
lRP

−(−1 + 3 cos2 ψ)rP ln rS−rP cosψ+lSP
R−rP cosψ+lRP

− rP−R cosψ
l3RP HR2[1 + H

R + 13 (HR )2]
(12a)

where

lRP = √
r2
P − 2RrP cosψ + R2 (12b)

3. Treatment of the singularities in the innermost column

For both the DTE and ITE, the singularities at the innermost

column need to be treated. The size of the innermost column

is small − for SRTM30, the base of the innermost column is

a 30"×30" equal angular block (1 km ×1 km at the Equator)

and the planar approximation is adequate. Under the planar

approximation, the innermost column becomes a rectangle prism

with half base lengths of a and b along latitude and longitude

directions, respectively. We assume the computation point to be

located at center of the top or bottom of the prism for the direct

and indirect effect, respectively. If the computation point P was

chosen as the origin of a local coordinates system xyz (Nagy, et al.,

2000), the potential of the innermost column is given by

δVT = Gρ[xy ln(z + l0) + yz ln(x + l0) + zx ln(y+ l0)
− 12 (x2 tan−1 yz

xl0 + y2 tan−1 xz
yl0 + z2 tan−1 xy

zl0 ) ]|a−a |b−b |z2z1
(13)

where

l0 = √
x2 + y2 + z2

z1 = ZP
z2 = ZP −H

(14)

ZP is the vertical distance between the computation point P and

the geoid.

The vertical derivative of Eq. (13) is (ibid. Eq. (8))

∂δVT
∂z = Gρ[x ln(y+l0)+y ln(x+l0)−z tan−1 xy

zl0 ]|a−a |b−b |z2z1
(15)

The potential of the condensed surface layer is given by

δVS = GρH
∫ a
−a

∫ b
−b

1√
x2+y2+Z2

P
dxdy= GρH [−ZP tan−1 xy

ZP
√
x2+y2+Z2

P
+

+y ln(x + √
x2 + y2 + Z 2

P )
+x ln(y+ √

x2 + y2 + Z 2
P ) ]|a−a |b−b

(16)

and its vertical derivatives is

∂δVS
∂zP

= GρH( xZP
x2+Z2

P
+ yZP

y2+Z2
P

− tan−1 xy
ZP
√
x2+y2+Z2

P
)|a−a |b−b (17)

Based on the definition, the DTE and ITE of the innermost column

are

δADTE = −∂δVT∂z + ∂δVS
∂z (18)

δNITE = δVT − δVS
γ (19)

Formulas forδVT ,δVS andtheirderivativescanbe formallywritten

as general functions f (x, y, z) and g(x, y, ZP ). They can be

evaluated as:

f (x, y, z )|x2x1 |y2
y1 |z2z1= f (x2, y2, z2)− f (x2, y2, z1)

−f (x2, y1, z2) + f (x2, y1, z1)
−f (x1, y2, z2) + f (x1, y2, z1)+f (x1, y1, z2)− f (x1, y1, z1)

(20)

and

g(x, y, Zp )|x2x1 |y2
y1= g(x2, y2, Zp)− g(x2, y1, Zp)

−g(x1, y2, Zp) + g(x1, y1, Zp) (21)

As a demonstration, the contribution of the innermost column

to the DTE and ITE is computed using the above equations at

few selected points that have the highest, medium and lower

elevations and are listed in the following table.

Table 1. Contributions of the innermost column to the DTE and ITE.

Latitude Longitude H (m) DTE(mGal) ITE (cm)

27.9792 86.9292 8685 51.9 -41.9

25.8792 270.2542 0 0.0 0.0

39.1958 270.2542 202 4.3 -0.2

39.1958 253.5208 4071 45.7 -16.7

-27.9875 290.3292 3077 46.3 -12.8

It is important topointout that the innermostcolumncontributions

are significant, even if its size is small. The computation point of

the ITE is at the condensed layer that produces a slightly larger

potential than the innermost column, and the difference between

the two, namely the indirect topographic effect, is negative. For

the DTE, the computation point is on the Earth's surface. The

surface layer is at the bottom of the topography and produces

slightly smaller attraction. Therefore, the DTE of the innermost

column is positive.
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4. Truncation errors

To speed up the computation, the global computations are limited

to an area in which the specified computation accuracy is met.

Thus the truncation error needs to be studied.

The truncation errors are usually discussed in the term of root

mean squares or standard deviations. More stringently, we chose

absolute maximum error as our criteria in this paper. We know

the maximum topographic effect is in the highest mountain,

so we compute the topographic effect at the highest point of

the Himalaya mountain (H=8685m according to SRTM30) with

different sizes of the computation areas. The DTE and ITE at this

point are -235.9 cm and 196.2 mGal, respectively. The truncation

errors due to different size of computation areas (equal angular

blocks) are shown in the following tables.

Table 2. Truncation error of ITE Units in cm.

Block Size 0.05◦ 0.5◦ 1◦ 2◦ 5◦ 10◦ 20◦ 30◦ 50◦

Trunc. Err. 111.2 12.8 8.9 7.3 5.7 4.0 1.6 0.7 0.3

Table 3. Truncation error of DTE Units in mGal.

Block Size 0.05◦ 0.5◦ 1◦ 2◦ 5◦ 10◦ 20◦ 30◦ 50◦

Trunc. Err. 1.7 35.7 15.1 6.5 1.9 0.6 0.1 0.0 0.0

Table2 shows that thecontributionsaremostly fromthe innermost

zone. Almost half of the contributions come from an innermost

block of 0.05◦ (less than a circle of 3 km in radius) for the indirect

effect. When the size of the innermost block becomes of a half

degree, the ITE is accounted for almost 95%. Unfortunately, the ITE

decreases slowly after a very quick drop. If point-wise cm-accuracy

is required, large computation area is required. In the above

example, the computation area has to be extended intomore than

30◦ to reach the 1-cm goal at the peak of the Himalayas.

The similar conclusions can be drawn for the direct effect. If the

integration area is 10◦ ×10◦ , the truncation error is below 1 mGal.

The truncation error falls below 0.1mGal if a 20◦ computation area

is used.

For 1D FFT computations, latitude bands are used. So we repeat

above computations for latitude bands and the results are listed in

Table 4 and 5.

The results are very similar to those computed in blocks. Table 4

shows that if the integration area is larger than or equal to 50◦ ,

the truncation error is below 0.1cm. The truncation error of DTE is

below0.1mGal if a 20◦ latitudeband is used. To treat thedirect and

Table 4. Truncation error of the ITE by latitude band (cm).

Band Size 0.05◦ 0.5◦ 1◦ 2◦ 5◦ 10◦ 20◦ 30◦ 50◦

Trunc. Err. 70.2 9.8 7.5 6.3 4.7 2.9 0.7 0.3 0.1

Table 5. Truncation error of DTE by latitude band (mGal).

Band Size 0.05◦ 0.5◦ 1◦ 2◦ 5◦ 10◦ 20◦ 30◦ 50◦

Trunc. Err. 31.9 18.2 7.4 3.3 1.1 0.3 0.0 0.0 0.0

ITE computations equally, the computations for both are limited

to a 50◦ band.

5. Taylor expansions in the outer zone

As we showed in the previous section, a minim 50 degree of

latitude band is needed to reach 0.1cm accuracy of ITE. When a

DEM has very high resolution, such as the SRTM30, the numerical

computations for such a large area are practically impossible −
it requires years of computation time with today's computation

power. In order to apply the most efficient FFT, the kernels of the

integrals are expanded into Taylor series of a function of height.

The series converges quickly in outer zones where height is much

smaller than the distance. In the remainder of this section, we

expand the kernel functions of the DTE and ITE into series of a

function of height, using MATHEMATICA 4.

5.1. ITE in outer zone

Using Eqs. (10), (11a,b,c) and noting that

R − R cosψ = R (1− cosψ) = l22R (22)

lSR = √
l2 + l2H

R +H2 = l
√1 + H

R + H2
l2 , (23)

the ITE (10) is expanded into a series of H as

kIND = [ 3(1+θ )l4 + c−R2
l ]H

+[− 3(−1+θ )l16R + R (1+3θ )4l − c+4R24Rl ]H2
+[ (−1+3θ )(l2−4R2)l232 + c(−4R2+3l2)−8l2R224 ] 1

R2l3H3
+[ (−4R2+l2)[3(−1+5θ )l2−4(1+3θ )R2 ]256 + c(12R2−5l2)64 ] 1

R3l3H4
+[ (−4R2+l2)[3(−1+7θ )l2−4(1+9θ )R2 ]512 + c(48R4+35l4−120R2l2)640l2 ] 1

R4l3H5
+O(H6 )

(24)
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where we have used

θ = cosψ, c = R22 (−1 + 3θ2) (25)

andO(H6) includes all terms containingH6 and higher orders.

Notice that function θ can be written into a function of distance

l using Eq. (22). Thus, each term in (24) becomes a convolution

of functions of l and H and their higher powers, so 1D FFT can be

applied.

To estimate the magnitude of the terms numerically, we compute

the contribution of each termat selectedpoints having thehighest

and some lower elevations.

Table 6. Contributions of different powers of height in the outer zone
that is the globe minus the 0.5◦ × 0.5◦ inner zone. Units in
cm.

Latitude Longitude Elev. H H2 H3 H4 H5
27. 9792 86.9292 8685 0.0 -8.4 -5.8 0.0 0.0

25.8792 270.2542 0 0.0 -2.1 0.0 0.0 0.0

39.1958 270.2542 202 0.0 -2.2 0.0 0.0 0.0

39.1958 253.5208 4071 0.0 -3.4 -1.9 0.0 0.0

-27.9875 290.3292 3077 0.0 -3.9 -2.7 0.0 0.0

-28.2375 290.3292 2999 0.0 -3.9 -2.9 0.0 0.0

Interestingly, the contribution of the linear term containing H is

trivial to the indirect effect. This may due to the fact that the most

contribution comes from the inner zone and the linear terms of

the topography and the condensed surface layer are very close.

TheH3 term hasmeaningful contributions only in highmountains

regions. Based on the results in Table 6, terms of H2 and H3 are

computed only.

5.2. DTE in outer zone

After some simple algebraic operations on Eq. (12b), we have

cosψ = r2
P + R2 − l2RP2RrP (26a)

Substituting rS in Eq. (3) by (11a), we obtain

lSP = √
l2RP + 2H(R − rP cosψ) +H2

= lRP
√1 + 2H

l2RP (R − r2P+R2−l2RP2R ) + H2
l2RP

= lP
√1 + 2H

l2P (R − r2P+R2−l2P2R ) + H2
l2P

(26b)

where we have abbreviated lRP by lP .

Inserting Eqs. (26a), (26b) into (12a) and using the ``Series''

followed by the ``Simplify'' functions of MATHMATICA 4, we finally

obtain:

kDTE = R2(r2P−R2+l2P )2rP l3P H

+ R [3l4P+3(r2P−R2)2+l2P (2r2P−6R2)]8rP l5P H2

+ 3l6P+15(r2P−R2)3+l4P (r2P−21R2)+3l2P (11R4−10R2r2P−r4P )48rP l7P H3

− 8R2l6P+l8P−35(r2P−R2)4−6l4P (r4P−2R2r2P+9R4)+40l2P (2R6−3R4r2P+r6P )128RrP l9P H4

+ 11280R2rP l11
P

[3l10
P + 315(r2

P − R2)5 − l8P (r2
P − 9R2)

−35l2P (r2
P − R2)3(19r2

P + 21R2) + 6l6P (13R4 + 2R2r2
P − 7r4

P )
−30l4P (17R6 − 7R4r2

P + 3R2r4
P − 13r6

P )]H5
− rP−R cosψ

l3P HR2[1 + H
R + 13 (HR )2] +O(H6)

(27)

To estimate the magnitude of the terms numerically, we compute

the contribution of each term at the selected points.

Table 7. Contribution of different powers of height in the outer zone
to the direct effect. Units in mGals.

Latitude Longitude Elev. H H2 H3 H4 H5
27. 9792 86.9292 8685 0.0 -29.8 -1.9 0.1 0.0

25.8792 270.2542 0 0.0 -0.0 0.0 0.0 0.0

39.1958 270.2542 202 0.0 -0.1 0.0 0.0 0.0

39.1958 253.5208 4071 0.0 -17.3 -0.4 0.1 0.0

-27.9875 290.3292 3077 0.0 -19.8 -0.3 0.1 0.0

-28.2375 290.3292 2999 0.0 -21.4 -0.4 0.1 0.0

Again, the linear term of H is trivial, and the dominant term is H2 .
TermH3 contributes only 1.9mGal at theHimalayas and sub-mGals

at other sites. Contributions of all other terms are under 0.1 mGal

point wise at those selected points.

Each term is Eq. (27) is not convolution because the distance lP is

a function of H. In order to apply 1D FFT, lP is approximated by l
in Eq. (27). Retaining only terms of H2 and H3 , and noting that

rP−R cosψ = rP−R+R (1−cosψ) = rP−R+ l22R (28)
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Eq. (27) is approximated by

kDTE ≈ ( 38rP − 12R ) RH2
l

+ R (−3r2P−3R2+4hRrP )4rP H2
l3 + 3R (r2P−R2)28rP H2

l5

+( 116rP − 16R )H3
l + ( r2P−21R248rP − rP−R3 )H3

l3

+ 11R4−10R2r2P−r4P16rP H3
l5 + 15(r2P−R2)316rP H3

l7

(29)

Each term in (29) is a convolution of functions of l and H and

their higher powers, so that 1D FFT can be applied. To show the

accuracy of Eq. (29), we repeat the same computation Table 7 and

the results are given the following Table 8.

Table 8. DTE computed using Eq. (29) in the outer zone. Units in
mGals.

Latitude Longitude Elev. H2 Abs.

Err.

H3 Abs.

Err.

27.9792 86.9292 8685 -31.3 1.5 -2.2 0.3

25.8792 270.2542 0 -0.0 0.0 0.0 0.0

39.1958 270.2542 202 -0.1 0.0 0.0 0.0

39.1958 253.5208 4071 -17.6 0.3 -0.5 0.1

-27.9875 290.3292 3058 -19.9 0.1 -0.3 0.0

-28.2375 290.3292 2999 -21.5 0.1 -0.4 0.0

The results in Table 8 show that the approximation formula is ac-

curate up to sub-mGal in most cases. At the Himalayas Mountains,

the errors of approximation reach 1.5 and 0.3 mGal for the terms

of H2 and H3 , respectively. Based the results in Table 8, Eq. (29) is

adopted for the outer zone direct-effect computations.

6. Computation results

There are over 933 million 30"x30" cells of the SRTM30. Excluding

ocean areas, the mean and standard deviation are 1125 and 1157

meters, respectively. The maximum peak of the Earth's surface

modeled by SRTM30 is 8685 meters in the Himalayan Mountains.

Excluding the polar regions (-70◦ ≤ φ ≤ 70◦), the mean and

standard deviation decrease to 670 and 838 meters, respectively.

The horizontal and vertical accuracy of the SRTM30 data is 20 and

16mwith a 90% confidence interval (Becker et al., 2009). However,

there are still some unrealistic sudden jumps in this DEM. There

are cells that abruptly rise or fall below neighboring cells by 3000

meters. The total number of cells that have slopes greater than 45◦

is 6660. Even though they represent a very small fraction of the

total number of cells, they cause large errors at the location and

surrounding cells. The situation becomes worse at high latitude

where the cell size along the longitude direction becomes much

smaller due to the convergence of the meridian. It is plausible to

assume that the maximum DTE and ITE are close to those in the

Himalayas Mountains, so the maximum absolute DTE and ITE are

limited to 3 meter and 300 mGals, and the outliers are flagged by

32767.

Computations took space in 4 SUN workstations at NGS. The

computation time is around 10 days for the inner zones for indirect

or direct effects. The outer zone computations took about the

same time with workloads spread at 4 workstations. The follows

are the results of the computed DTE and ITE. Since larger values

of the DTE and ITE in the Polar Regions are produced by heights

with poor quality and problems of the convergence of the prime

meridian, the statistics are limited between latitude ±70◦ . The

topography isdefinedover landonly. However, basedonNewton's

gravitational law, it has an impact everywhere. Thus we have DTE

and ITE over oceans, even if does not have any practical meaning.

For this reason, we give the statistics over land areas only.

Table 9. Statistics of ITE for land areas (area weighted) Units in cm.

Number 208353324

Mean -6.4

STD 15.6

Min. -235.9

Max. -1.2

The ITE is negative everywhere. The extreme value is -235.9 cm

at latitude 27.9792◦ and 86.9375◦ with height 8685 m. It is

worthwhile to point out that the global average of ITE is negative

and non-zero. If the zero mean is enforced, the geocenter shift

may occur (Martinec, 1998). Because Stokes function does not

contain those harmonic degrees, so that the contribution of DTE

to the geoid does not contain those harmonic degrees. If the

geoid is computed under the Stoke-Helmert scheme, the zero and

first degree of spherical harmonics are not compensated. Proper

treatment of the mean values in the direct and ITE needs to be

dealt carefully.

Grushinsky's formula is the first order approximation of the ITE

(Wichiencharoen, 1982, p. 25). To illustrate the error of the linear

approximation, we draw the ITE of Grushinsky's formula and the

one computed in this paper along a parallel latitude band across

the Himalayas in the figure 1.

Figure 1 clearly shows that the ITE computed in this paper is

smoother than that of Grushinsky's. The blue curve is the differ-

ence between the computed and that computed by Grushinsky's

formula, namely the error of the linear approximation. This error
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Figure 1. ITE along latitude 27.9792◦.

exceeds 1.7meter at the peak, then fluctuates around 30 cm in the

region.

The statistics of the DTE are given in the following table.

Table 10. Statistics of the DTE for land areas (area weighted) Units
in mGal.

Number 205991612

Mean -0.8

STD 7.6

Min. -274.3

Max. 195.3

Unlike the ITE which is negative everywhere, the DTE changes

signs. The extreme value of -274.3 mGal happens at latitude

-13.5625◦ and longitude 289.4875◦ with height of 1426 m, due to

very rapid height rise of more than 800 meters in the neighboring

cells (1 km grid spacing). This large value of DTE implies that not

only the height, but also the slopes of height play a critical role in

computing the direct effect. The maximum DTE is 195.3 mGal and

is located at latitude 27.8958◦ and longitude 87.1125◦ , near the

peak of the Himalayan Mountains.

For the Conterminous United States (CONUS), the mean and

standard deviation of the ITE are -4.2 and 6.0 cm, respectively.

The minimum value is -80.5 cm and is located at latitude 39.3333◦

and longitude 253.8833◦ . The maximum difference from the ITE

of Grushinsky is 42.7 cm. The RMS value of overall difference is

1.4 cm. The mean and standard deviation of DTE over CONUS

are -0.9 and 4.9 mGal, respectively. The extreme values are -135.9

mGal at latitude of 24.0◦ and longitude of 254.4167◦ . Again, large

mean value of the ITE (-4.2 cm) over CONUS calls for attention, if

cm-geoid accuracy is required.

7. Conclusions

The studiesofDTEand ITE to thegeoid computations are abundant

in geodetic literatures (e.g., Martinec and Vanicek, 1994 a, b;

Vanicek et al., 1999). In this paper, the DTE and ITE of Helmert's

2nd method of condensation are computed globally by using the

digital elevationmodel SRTM30. In order tomake the computation

possible and keep high computation accuracy (0.1 mgal and

0.1 cm for direct and indirect effect, respectively), we split the

computation area into an inner zone (0.5◦ ×0.5◦) and outer zone

(rest of the globe). The closed formulas are used in the inner zone

for high computation accuracy, and then expanded into Taylor

series for the use of 1D FFT in outer zone computations.

Notice that themeanvalueof ITE is -6.4 cmover landareas. If the ITE

is added to a geoid computed under the Stokes-Helmert scheme,

the geoid will be 6.4 cm lower. The bias should be compensated

by the procedure of ``removing direct effect'' and ``adding indirect

effect'' under the Stokes-Helmert scheme. However, the Stokes

function does not contain the zero and first degree spherical

harmonics, thus those harmonics in the ITE are not compensated

at all. Even if the long wavelengths of gravity field have been
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accurately determined by satellite gravity models, the very long

wavelengths in the geoid computed under the Stokes-Helmert

schememay be affected. How to treat the biases in theDTE and ITE

in precise geoid computation under the Stokes-Helmert scheme is

needed.

The DTE and ITE are -235.9cm and 195.3 mGal at the highest point

on Earth. The RMS values of the DTE and ITE on land areas are

±15.6 cm and ±7.6 mGal, respectively. It is worthwhile to point

out that the ITE computed in this paper is smoother than that

computed from Grushinsky's formula which has been used as an

approximation of the ITE to the geoid. The maximum difference

reaches 171.5 cm at the highest point on Earth. For the United

States, themaximumdifference is 43.7 cm in the RockyMountains.

For this reason, Grushinsky's formula shouldnotbeused forprecise

geoid computation.
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Appendix

The sign in the legalism function of Eq. (2) is unnecessary, since

the following holds:

rS − rP cosψ + lSP ≥ 0 (A1)

Inequality (A1) is easy to prove. Assume the opposite is true, that

is:

rS − rP cosψ + lSP < 0, (A2)
then the following must be true:

rP cosψ − rS > lSP ≥ 0 (A3)

Noting that

l2SP = r2
S − 2rSrP cosψ + r2

P , (A4)

and using the square of (A3), we obtain

r2
P < r2

P cos2 ψ (A5)

Sincecos2 ψ ≤ 1, inequality (A5) cannotbe true, thusproving (A1).
In the same way it can be proven that rG − rP cosψ + lGP ≥ 0.
Thus the absolute sign in the legalism function is not needed.
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