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Abstract:

The direct topographic effect (DTE) and indirect topographic effect (ITE) of Helmert's 2"¢ method of condensation are computed using
the digital elevation model (DEM) SRTM30 in 30 arc-seconds globally. The computations assume a constant density of the topographic
masses. Closed formulas are used in the inner zone of half degree, and Nagy's formulas are used in the innermost column to treat
the singularity of integrals. To speed up the computations, 1-dimensional fast Fourier transform (1D FFT) is applied in outer zone
computations. The computation accuracy is limited to 0.1 mGal and 0.1cm for the direct and indirect effect, respectively.

The mean value and standard deviation of the DTE are -0.8 and 7.6 mGal over land areas. The extreme value -274.3 mGal is located at
latitude -13.579° and longitude 289.496°, at the height of 1426 meter in the Andes Mountains. The ITE is negative everywhere and has its
minimum of -235.9 cm at the peak of Himalayas (8685 meter). The standard deviation and mean value over land areas are +15.6 cm and
-6.4 cm, respectively. Because the Stokes kernel does not contain the zero and first degree spherical harmonics, the mean value of the
ITE can’t be compensated through the remove-restore procedure under the Stokes-Helmert scheme, and careful treatment of the mean

value in the ITE is required.
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1. Introduction

Under the assumption of non-variation of the topographic mass
along theradius direction, the topographic potential and its deriva-
tives can be reduced from 3-dimensional Newtonian integrals into
2-dimnensional surface integrals with closed kernelfunctions (Mar-
tinec, 1998; Sjoberg and Nahavandchi, 1999; Smith et al,, 2001;
Heck, 2003). Based on these integrals, the DTE and ITE are com-
puted by using SRTM30 global elevation model (Becker et al., 2009)
in 30" resolution.

*E-mail: Yan.wang@noaa.gov

The computations of DTE and ITE are global integrations. It
becomes impractical when a very high resolution DEM, such as the
STRM30, is used. Usually, the closed kernel functions are expanded
into Taylor series, so that the most efficient 1D FFT can be applied.
However, Taylor series do not converge near the computation
point in mountainous areas, for the topographic height becomes
larger than distance between the computation and current points.
To overcome this difficulty, we split the computations into an inner
zone of half by half degree block and an outer zone for the rest of
the globe. In the inner zone, the closed formulas are used; for the
outer zone computations, the closed formulas are expanded into
Taylor series and 1D FFT is utilized. The computation errors are
limited to below 0.1 cm and 0.1 mGal for the ITE and direct effect,
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respectively.

2. Computation formulas for DTE and ITE of Helmert’s 2"¢ method of
condensation

If we assume the density of the Earth’s topographic mass is a
function of latitude and longitude only, the gravitational potential
of the topography at any given point P can be computed by a
surface integral (e.g., Martinec, 1998; Sjoberg and Nahavandchi,
1999; Smith et al., 2001; Heck, 2003):

Vo(, ) = c//p(¢,A)k(r5,r0,rp,¢)da (1)

where Gis Newton's gravitational constant, rp is the radial distance
of the computation point P, rs is the radial distance to a point on
the Earth surface, r¢ is the radial distance to a point on the geoid,
p is the density of the mass element, ¢ is the unit sphere, and k is
the kernel function given by:

= GO 4 G)lsp = (22524 1 )

£)lep

In fs= rp cos Y+lsp
rg—rpcosY+lgp

+3(=1+ 3 cos® Y)r
where [sp and [gp are distances between points, and the sub-
scripts S and G denote the points on the Earth’s surface and the
geoid, respectively. The distances are given by:

lsp = \/r_z9 —2rsrpcos i+ r} (3)

lep = \/ré —2rgrpcosy + rp (4)

We dropped the absolute sign in the natural logarithm in the
kernel function (2). The sign is unnecessary (see appendix).

The vertical attraction of topography g:can be computed by a
surface integral as (ibid.)

= (;//p(¢,A)k'(rs.rc.rP,¢)d0 )

where the kernel function k’ is given by

K (rp,r,rs, ¢) = — 5

rorp(1—6cos? dl)+(3r,%,+r§) cos ¢
- lsp

rarp(1—6 cos? ¢)+(3r,23+ré) cos ¢
lgp

+

o 2 rs—rp cos Y+lsp
(=1 4+ 3 cos” ¢)rp ln s it
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The potential and gravity of the topography can be evaluated

rigorously at any given point using Egs. (2) - (6), provided that the
density of the topographic mass, the surfaces of the Earth and the
geoid are known.

Since the maximum value of ITE is about 2.5 meters, the ellipsoidal
effect is in mm level and is ignored in this paper. The spherical
approximation is used hereafter in the following formulations.

After the topographic masses are condensed onto the geoid
(Helmert's 2" method of condensation), the gravitational poten-
tial of the condensed surface layer at the point P is (Moritz, 1968,
Eq. 56):

Vs(¢,A) = GR? //p(¢’,)\’)%da 7)

where H is the orthometric height.

For mass conservation, a local density function is introduced (e.g.,
Heck, 2003):

= PN+ 1y + SR ®

The attraction of the condensed layer gs at point P is given by
differentiating Eq. (7) respect to rp:

rg cos rp—rgeosy

)
The ITE is defined as the geoid change due to the shifting of masses

gs(6.0 = =52 = GR* [ [ ol 2 )H

to the condensation layer. For the ITE computation, the point P is
on the geoid and rp = R. The ITE can be compute in the same
form as Eq. (1) by using the kernel function (cf. Martinec, 1998;
Sjoberg and Nahavandchi, 1999)

kITE — y_1 { 3Rc052¢1+r5 lSR _ 1+3§0$¢1R1
rs—R cos +1
+3(=1+ 3cos? P)R? In s Beedrier (10)

BHI + 4+ 537
where y is the normal gravity on the geoid and

rs=R+H (11a)

lsp = \/r_zg — 2Rrscos  + R?

[ = lgp = R\/2(T — cos ) (110)

(11b)

The DTE is defined as the gravity difference between the topog-
raphy and the condensed layer at the Earth’s surface. It can be



computed using an integral in the form of Eq. (5) with the kernel
function (ibid.)

_ rsrp(1-6 cos? (,U)+(3r,2)+r§) cos ¢
- lsp

kpre

Rrp(1—6 cos? l,ll)+(3r,2;+R2) cos ¢

+ lrp
(12a)
—(=1+3cos? )rp n FES=IEEE
— 2R HRIY o+ 4 4 ()
where
lrp =\/F%—2RFPCOS¢+R2 (12b)

3. Treatment of the singularities in the innermost column

For both the DTE and ITE, the singularities at the innermost
column need to be treated. The size of the innermost column
is small — for SRTM30, the base of the innermost column is
a 30"x30" equal angular block (1 km x1 km at the Equator)
and the planar approximation is adequate. Under the planar
approximation, the innermost column becomes a rectangle prism
with half base lengths of a and b along latitude and longitude
directions, respectively. We assume the computation point to be
located at center of the top or bottom of the prism for the direct
and indirect effect, respectively. If the computation point P was
chosen as the origin of a local coordinates system xyz (Nagy, et al.,
2000), the potential of the innermost column is given by

oVr = Gplxyn(z + L) + yzIn(x + Lo) + zx In(y + lo)

1 -1 -1 -1 b
—5()(2 tan % + y? tan ﬁ +Z2tan™ 2 )7, 12, 12

zly 2
(13)
where
lo = \/m
7z =2Zp (14)
7 = ZP —H

Zp is the vertical distance between the computation point P and
the geoid.

The vertical derivative of Eq. (13) is (ibid. Eq. (8))

00Vr
0z

z

(15)

1 X a z
= Gp[x In(y+Lo)+y In(x+lp)—z tan ! zTyo 12, |fb |22

The potential of the condensed surface layer is given by

a b
6\/5 = GPH f—a f—b ﬁd)(dy
B 3 Ny
= GpHl=Zptan™ —— 2t +

+yln(x +

+xin(y +vx2+ g2+ Z3) 1%, 17

X+ 4y’ + 7Zp)
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and its vertical derivatives is

Vs __ xZp yZp
ozp GPH(XZJng + y2+Z%

ta - )|— |—
a b

Zp\/x2+y2+23

Based on the definition, the DTE and ITE of the innermost column

e oV doV.
A, 90Vr s
0ADTE EE EE (18)
oVy — oV
ONiTe = %5 (19)

Formulasfor 0 V7,0 Vs and their derivatives can be formally written
as general functions f(x, y,z) and g(x,y, Zp). They can be
evaluated as:

foy, )l 1o 12

= f(x2, y2,22) — f(x2, y2, 21)

—f(x2, Y1, 22) + f(x2, y1, z1) (20)
—f(x1, Y2, 22) + f(x1, Y2, z1)

+f(x1, Y1, 22) — f(x1, y1, z1)

and
g0y, 2, )l 1
= g(x2, Y2, Zy) — g(x2, Y1, Zp) (21

—g(x1, 42, Zy) + g(x1, y1, Zp)

As a demonstration, the contribution of the innermost column
to the DTE and ITE is computed using the above equations at
few selected points that have the highest, medium and lower
elevations and are listed in the following table.

Table 1. Contributions of the innermost column to the DTE and ITE.

Latitude |Longitude |H(m) |DTE(mGal) |ITE(cm)
27.9792 86.9292 8685 51.9 -41.9
25.8792  |270.2542 0 0.0 0.0
39.1958  270.2542 202 43 -0.2
39.1958  |253.5208 4071 45.7 -16.7
-27.9875 290.3292 3077 46.3 -12.8

Itisimportant to pointout that the innermost column contributions
are significant, even if its size is small. The computation point of
the ITE is at the condensed layer that produces a slightly larger
potential than the innermost column, and the difference between
the two, namely the indirect topographic effect, is negative. For
the DTE, the computation point is on the Earth’s surface. The
surface layer is at the bottom of the topography and produces
slightly smaller attraction. Therefore, the DTE of the innermost
column is positive.
"
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4. Truncation errors

To speed up the computation, the global computations are limited
to an area in which the specified computation accuracy is met.
Thus the truncation error needs to be studied.

The truncation errors are usually discussed in the term of root
mean squares or standard deviations. More stringently, we chose
absolute maximum error as our criteria in this paper. We know
the maximum topographic effect is in the highest mountain,
so we compute the topographic effect at the highest point of
the Himalaya mountain (H=8685m according to SRTM30) with
different sizes of the computation areas. The DTE and ITE at this
point are -235.9 cm and 196.2 mGal, respectively. The truncation
errors due to different size of computation areas (equal angular
blocks) are shown in the following tables.

Table 2. Truncation error of ITE Units in cm.

Block Size | 0.05°|0.5° | 1° | 2° | 5° | 10° | 20° | 30° | 50°
Trunc. Err.(111.2]128/89(7.3(5.7{4.0|16|0.7|0.3

Table 3. Truncation error of DTE Units in mGal.

Block Size [0.05°|0.5° | 1° | 2° | 5° [10°|20°|30°|50°
Trunc.Err.| 1.7 |35.7]15.1/6.5{1.9/0.6|0.1 (0.0 (0.0

Table 2 shows that the contributions are mostly from the innermost
zone. Almost half of the contributions come from an innermost
block of 0.05° (less than a circle of 3 km in radius) for the indirect
effect. When the size of the innermost block becomes of a half
degree, the ITE is accounted for almost 95%. Unfortunately, the ITE
decreases slowly after a very quick drop. If point-wise cm-accuracy
is required, large computation area is required. In the above
example, the computation area has to be extended into more than
30° to reach the 1-cm goal at the peak of the Himalayas.

The similar conclusions can be drawn for the direct effect. If the
integration area is 10° X 10°, the truncation error is below 1 mGal.
The truncation error falls below 0.1 mGal if a 20° computation area
is used.

For 1D FFT computations, latitude bands are used. So we repeat
above computations for latitude bands and the results are listed in
Table 4 and 5.

The results are very similar to those computed in blocks. Table 4

shows that if the integration area is larger than or equal to 50°,

the truncation error is below 0.1cm. The truncation error of DTE is

below 0.1 mGalif a 20° latitude band is used. To treat the directand
7

VERSITA

Table 4. Truncation error of the ITE by latitude band (cm).

Band Size |0.05°[0.5°| 1° | 2° | 5° | 10°|20°|30° | 50°
Trunc.Err.| 70.2 | 9.8 |7.5/6.3(4.7|2.9|0.7 |03 | 0.1

Table 5. Truncation error of DTE by latitude band (mGal).

Band Size |0.05°|0.5° | 1° | 2° | 5° |10°|20° |30° | 50°
Trunc. Err.| 31,9 {18.217.4(3.3|1.1/0.3]0.0|0.0| 0.0

ITE computations equally, the computations for both are limited
to a 50° band.

5. Taylor expansions in the outer zone

As we showed in the previous section, a minim 50 degree of
latitude band is needed to reach 0.1cm accuracy of ITE. When a
DEM has very high resolution, such as the SRTM30, the numerical
computations for such a large area are practically impossible —
it requires years of computation time with today’s computation
power. In order to apply the most efficient FFT, the kernels of the
integrals are expanded into Taylor series of a function of height.
The series converges quickly in outer zones where height is much
smaller than the distance. In the remainder of this section, we
expand the kernel functions of the DTE and ITE into series of a
function of height, using MATHEMATICA 4.

5.1. ITE in outer zone

Using Egs. (10), (11a,b,c) and noting that

2
R—Rcos¢=R(1—costp)=21—R (22)

12H \/ H H?2
— 2 2 —
ISR_\/1+R+H l 1+R+lz, (23)

the ITE (10) is expanded into a series of H as

kinp = [73(1:0)[ + —‘7,R2]H

3(=1+9) |, R(14+39) 14R2 112
+[_ R T ol _C4Rl ]H

(—1439)(12—4R?)2 c(—4R?+312)—82R? 1 1 3
32 + ]RZIBH

+ 24

(—4R2+12)3(=1+59)2—4(1+39)R?] c(12R2-512)7 1 4
+ 256 + 64 ]WH

[(—4R2+12)[3(—1+70)12—4(1+90)R2] + c(48R4+35l4—120R212)] 15
512 R

+ 64012

6

+O(H")
(24)



where we have used

RZ
U = cos y, c=—(=1+39%

5 (25)

and O(H°®) includes all terms containing H® and higher orders.

Notice that function O can be written into a function of distance
[ using Eq. (22). Thus, each term in (24) becomes a convolution
of functions of / and H and their higher powers, so 1D FFT can be
applied.

To estimate the magnitude of the terms numerically, we compute

the contribution of each term at selected points having the highest
and some lower elevations.

Table 6. Contributions of different powers of height in the outer zone
that is the globe minus the 0.5° x 0.5° inner zone. Units in

cm.
Latitude| Longitude| Elev.| H| H*| H | H'| H°
27.9792| 86.9292 | 8685| 00| -84| -58| 00| 00
258792 | 2702542 0 | 00| 21| 00| 00| 00
391958 | 2702542 | 202 | 00| -22| 00| 00| 00
391958 | 2535208 | 4071| 00| -3.4| -19| 00| 00
-27.9875| 2903292 | 3077| 00| -39/ -27| 00| 00
-28.2375| 2903292 | 2999| 00| -39/ -29| 00| 00

Interestingly, the contribution of the linear term containing H is
trivial to the indirect effect. This may due to the fact that the most
contribution comes from the inner zone and the linear terms of
the topography and the condensed surface layer are very close.
The H term has meaningful contributions only in high mountains
regions. Based on the results in Table 6, terms of H? and H° are
computed only.

5.2. DTE in outer zone

After some simple algebraic operations on Eq. (12b), we have

rd+ R? — 135

cosy = SR (26a)
Substituting rs in Eq. (3) by (11a), we obtain
Isp =~/ap + 2H(R — rp cos ¢) + H?
— | 1 2H R rf,-%—Rz—lf?P H2
= lgpr /1 + @( - =)+ 2, (26b)

_ 2H %4+R2—12 H2
—IP\/H'K(R—%HK
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where we have abbreviated [rp by [p.

Inserting Eqs. (26a), (26b) into (12a) and using the “Series”
followed by the “Simplify” functions of MATHMATICA 4, we finally
obtain:

R (rp—R*+13)
kore = 2p03,
RBIL+3(rp—R%)+13,(2rp—6R%)]
8rpl}

HZ

+

315, +15(rp—R?)3+15(rE—21R*)+313 (1R —10R?r} —r}) H3
+ 48rpl},

_ 8R2S+18, 353 —R%) =61} (rp —2R?rg+9RY)+4014 2RO —3R* r} +rD) H4
128Rrpl}

+ mpz}f +315(r2 — R?)> — B&(r3 — 9R?)

—3502,(r2 — R2(19r3 + 21R?) + 6(5,(13R* + 2R?*r% — 7rb)
—3045(17R® — 7R*r2 + 3R2rh — 13r8)|H°

sy RA1 44 4 (4] + O(HY)
(27)

To estimate the magnitude of the terms numerically, we compute
the contribution of each term at the selected points.

Table 7. Contribution of different powers of height in the outer zone
to the direct effect. Units in mGals.

Latitude | Longitude| Elev.| H| H? | H*| HY| H°
27.9792 86.9292 8685| 0.0/ -298| -1.9| 01| 0.0
25.8792 270.2542 0 00| -0.0 00| 00| 0.0
39.1958 270.2542 202 | 0.0 -041 00| 00| 0.0
39.1958 253.5208 | 4071| 0.0f -17.3| -04| 0.1| 0.0
-27.9875 290.3292 3077 0.0| -19.8| -03| 0.1| 0.0
-28.2375 290.3292 2999 0.0| -214| -04| 01| 0.0

Again, the linear term of H is trivial, and the dominant term is H2,
Term H? contributes only 1.9 mGal at the Himalayas and sub-mGals
at other sites. Contributions of all other terms are under 0.1 mGal
point wise at those selected points.

Each term is Eq. (27) is not convolution because the distance [p is
a function of H. In order to apply 1D FFT, [p is approximated by [
in Eqg. (27). Retaining only terms of H? and H?, and noting that

2

re—Rcosy =rp—R+R(1—cos ) = rp—R-i-zlfR (28)
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Eq. (27) is approximated by

kore = (5

7_L)LHZ
8p  2R) I

R(=3r2—3R2+4hRrp) 12 | 3R(rd—R%72 12
+ 4rp e 8rp B

(29)

B=21R*> o R\ 13
) 3

1 1\ H
ey )T+ (P, — 75

TMRY-10R* —rp 13 | 15(FB—R*? 13
6rp 5 6rp

Each term in (29) is a convolution of functions of | and H and
their higher powers, so that 1D FFT can be applied. To show the
accuracy of Eq. (29), we repeat the same computation Table 7 and
the results are given the following Table 8.

Table 8. DTE computed using Eq. (29) in the outer zone. Units in

mGals.
Latitude |Longitude |Elev. |H? Abs. |H® Abs.
Err. Err.
27.9792 86.9292 8685 [-31.3 (1.5 -2.2 0.3
25.8792 270.2542 |0 -0.0 0.0 0.0 0.0
39.1958 270.2542 202 -0.1 0.0 0.0 0.0
39.1958 253.5208 (4071 |-17.6 (0.3 -0.5 0.1
-27.9875 |290.3292 (3058 |-19.9 |0.1 -0.3 0.0
-28.2375 |290.3292 (2999 |-21.5 |0.1 -04 0.0

The results in Table 8 show that the approximation formula is ac-
curate up to sub-mGal in most cases. At the Himalayas Mountains,
the errors of approximation reach 1.5 and 0.3 mGal for the terms
of H and H?, respectively. Based the results in Table 8, Eq. (29) is
adopted for the outer zone direct-effect computations.

6. Computation results

There are over 933 million 30"x30" cells of the SRTM30. Excluding
ocean areas, the mean and standard deviation are 1125 and 1157
meters, respectively. The maximum peak of the Earth's surface
modeled by SRTM30 is 8685 meters in the Himalayan Mountains.
Excluding the polar regions (-70° < ¢ < 70°), the mean and
standard deviation decrease to 670 and 838 meters, respectively.

The horizontal and vertical accuracy of the SRTM30 data is 20 and
16 m with a 90% confidence interval (Becker et al., 2009). However,
there are still some unrealistic sudden jumps in this DEM. There
are cells that abruptly rise or fall below neighboring cells by 3000
meters. The total number of cells that have slopes greater than 45°
is 6660. Even though they represent a very small fraction of the
total number of cells, they cause large errors at the location and
surrounding cells. The situation becomes worse at high latitude

v
VERSITA

where the cell size along the longitude direction becomes much

smaller due to the convergence of the meridian. It is plausible to
assume that the maximum DTE and ITE are close to those in the
Himalayas Mountains, so the maximum absolute DTE and ITE are
limited to 3 meter and 300 mGals, and the outliers are flagged by
32767.

Computations took space in 4 SUN workstations at NGS. The
computation time is around 10 days for the inner zones for indirect
or direct effects. The outer zone computations took about the
same time with workloads spread at 4 workstations. The follows
are the results of the computed DTE and ITE. Since larger values
of the DTE and ITE in the Polar Regions are produced by heights
with poor quality and problems of the convergence of the prime
meridian, the statistics are limited between latitude +70°. The
topography is defined over land only. However, based on Newton’s
gravitational law, it has an impact everywhere. Thus we have DTE
and ITE over oceans, even if does not have any practical meaning.
For this reason, we give the statistics over land areas only.

Table 9. statistics of ITE for land areas (area weighted) Units in cm.

Number 208353324
Mean -6.4

STD 15.6

Min. -235.9
Max. -1.2

The ITE is negative everywhere. The extreme value is -235.9 cm
at latitude 27.9792° and 86.9375° with height 8685 m. It is
worthwhile to point out that the global average of ITE is negative
and non-zero. If the zero mean is enforced, the geocenter shift
may occur (Martinec, 1998). Because Stokes function does not
contain those harmonic degrees, so that the contribution of DTE
to the geoid does not contain those harmonic degrees. If the
geoid is computed under the Stoke-Helmert scheme, the zero and
first degree of spherical harmonics are not compensated. Proper
treatment of the mean values in the direct and ITE needs to be
dealt carefully.

Grushinsky's formula is the first order approximation of the ITE
(Wichiencharoen, 1982, p. 25). To illustrate the error of the linear
approximation, we draw the ITE of Grushinsky's formula and the
one computed in this paper along a parallel latitude band across
the Himalayas in the figure 1.

Figure 1 clearly shows that the ITE computed in this paper is
smoother than that of Grushinsky's. The blue curve is the differ-
ence between the computed and that computed by Grushinsky’s
formula, namely the error of the linear approximation. This error
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Figure 1. ITE along latitude 27.9792°.

exceeds 1.7 meter at the peak, then fluctuates around 30 cmin the
region.

The statistics of the DTE are given in the following table.

Table 10. Statistics of the DTE for land areas (area weighted) Units

in mGal.
Number 205991612
Mean -0.8
STD 7.6
Min. -274.3
Max. 195.3

Unlike the ITE which is negative everywhere, the DTE changes
signs. The extreme value of -274.3 mGal happens at latitude
-13.5625° and longitude 289.4875° with height of 1426 m, due to
very rapid height rise of more than 800 meters in the neighboring
cells (1 km grid spacing). This large value of DTE implies that not
only the height, but also the slopes of height play a critical role in
computing the direct effect. The maximum DTE is 195.3 mGal and
is located at latitude 27.8958° and longitude 87.1125°, near the
peak of the Himalayan Mountains.

For the Conterminous United States (CONUS), the mean and
standard deviation of the ITE are -4.2 and 6.0 cm, respectively.
The minimum value is -80.5 cm and is located at latitude 39.3333°
and longitude 253.8833°. The maximum difference from the ITE
of Grushinsky is 42.7 cm. The RMS value of overall difference is

1.4 cm. The mean and standard deviation of DTE over CONUS
are -0.9 and 4.9 mGal, respectively. The extreme values are -135.9
m@Gal at latitude of 24.0° and longitude of 254.4167°. Again, large
mean value of the ITE (-4.2 cm) over CONUS calls for attention, if
cm-geoid accuracy is required.

7. Conclusions

The studies of DTE and ITE to the geoid computations are abundant
in geodetic literatures (e.g., Martinec and Vanicek, 1994 a, b;
Vanicek et al., 1999). In this paper, the DTE and ITE of Helmert's
2"Y method of condensation are computed globally by using the
digital elevation model SRTM30. In order to make the computation
possible and keep high computation accuracy (0.1 mgal and
0.1 cm for direct and indirect effect, respectively), we split the
computation area into an inner zone (0.5° x0.5°) and outer zone
(rest of the globe). The closed formulas are used in the inner zone
for high computation accuracy, and then expanded into Taylor
series for the use of 1D FFT in outer zone computations.

Notice that the mean value of ITEis-6.4 cm overland areas. If the ITE
is added to a geoid computed under the Stokes-Helmert scheme,
the geoid will be 6.4 cm lower. The bias should be compensated
by the procedure of “removing direct effect” and “adding indirect
effect” under the Stokes-Helmert scheme. However, the Stokes
function does not contain the zero and first degree spherical
harmonics, thus those harmonics in the ITE are not compensated
at all. Even if the long wavelengths of gravity field have been
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accurately determined by satellite gravity models, the very long
wavelengths in the geoid computed under the Stokes-Helmert
scheme may be affected. How to treat the biases in the DTE and ITE
in precise geoid computation under the Stokes-Helmert scheme is
needed.

The DTE and ITE are -235.9cm and 195.3 mGal at the highest point
on Earth. The RMS values of the DTE and ITE on land areas are
+15.6 cm and £7.6 mGal, respectively. It is worthwhile to point
out that the ITE computed in this paper is smoother than that
computed from Grushinsky's formula which has been used as an
approximation of the ITE to the geoid. The maximum difference
reaches 171.5 cm at the highest point on Earth. For the United
States, the maximum difference is 43.7 cm in the Rocky Mountains.
For this reason, Grushinsky’s formula should not be used for precise
geoid computation.
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Appendix

The sign in the legalism function of Eq. (2) is unnecessary, since
the following holds:

ré —rpcos s+ lsp > 0 (A1)

Inequality (A1) is easy to prove. Assume the opposite is true, that
is:

rs —rpcosty+ lsp < 0,(A2)

then the following must be true:

rpcosiy —rs > lsp > 0(A3)

Noting that

p = rk—2rsrpcosy + rp, (A4)

and using the square of (A3), we obtain

rj < r3 cos? (i (A5)

Sincecos? < 1,inequality (A5) cannot be true, thus proving (A1).
In the same way it can be proven that rg — rp cos ¢ + lgp > 0.
Thus the absolute sign in the legalism function is not needed.
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