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Abstract:

Variance components (VCs) in linear adjustment models are usually successfully computed by unbiased estimators. However, for many

unbiased VC techniques estimated variance components might be negative, a result that cannot be tolerated by the user. This is, for

example, the case with the simple additive VC model aσ21 + bσ22 with known coefficients a and b, where either of the unbiasedly

estimated variance components σ21 and σ22 may frequently come out negative. This fact calls for so-called non-negative VC estimators.

Here the Best Quadratic Minimum Bias Non-negative Estimator (BQMBNE) of a two-variance component model is derived. A special case

with independent observations is explicitly presented.
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1. Introduction

Variance component (VC) estimation byMinimumNormQuadratic

Unbiased Estimation (MINQUE) (Rao 1973) is a well-known tech-

nique applied in many fields working with adjustment of discrete

data. It is also well known that MINQUE has the bad property that

the estimated VCs may be negative, a reality that, of course, is

not satisfactory. Typical reasons for such unwanted results could

be that the adjustment and/or VC models are bad and or that the

redundancy in the adjustment problem is poor (i.e. the number of

observations are too few with respect to the number of estimated

variance components). Another reason could be that the approx-

imate VCs, used in an iterative procedure to estimate the VCs,

are bad. To avoid such a problem special techniques have been

designed that warrant non-negative VC estimates. The ideal non-
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negative estimator is unbiased and has minimum variance among

all non-negative estimators. However, the desires on non-negative

and unbiased estimation can seldom be met simultaneously, and

La Motte (1973) and Pukelsheim (1981) demonstrated that such

``non-negative MINQU estimators'' do not generally exist. Hence,

in order to search for a practical non-negative estimator, one has

to give up the condition on unbiasedness, which implies that the

estimator will be biased.

This brings us to the idea of finding the Best Quadratic Non-

Negative Estimator (BQNE),which is thenon-negativeVCestimator

that minimizes the mean square error, i.e. the sum of the variance

and the bias squared. However, as shown by Sjöberg (1984), it

turnsout that theBQNE is the sameas theBestQuadratic Estimator,

which, unfortunately is not a practical one that can be improved,

e.g. by iteration, but it is totally based on the a priori estimated

variance-covariance matrix of the observations.

Some comments on non-negative VC estimation can be found also

in Amiri-Simkooei (2007, Sects. 3.3.6 and 4.8.1).
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The best thing one can do then is to find the non-negative esti-

mators that has minimum bias (which is usually not a unique one),

and, among these, the one that has smallest variance. Such an es-

timator, introduced by Hartung (1981), discussed also by Chaubey

(1991), we call the Best Quadratic Minimum Bias Non-Negative

Estimator (BQMBNE) when applied to normally distributed data. It

thus has the properties of being non-negative withminimumbias,

and it has the minimum variance among those estimators.

A typical situation for non-negative estimation is the case for an

observation with an additive two-variance component model for

the observation variance (σ 2
l ) as follows:

σ 2
l = aσ 21 + bσ 22 , (1)

where a and b are given coefficients and σ 21 and σ 22 are the un-

known variance components. This type of VC model is very com-

mon for various types of observations, e.g. EDM measurements,

angle measurements, GNSS observations, gravity observations to

mention a few, and for correlated data it is generalized below to

the model of Eq. (7). Frequently, the estimators for σ 21 and σ 22
come out negative by MINQUE, and in Sect. 3 we illustrate also

that these variance components cannot be estimated as unbiased

non-negative estimators. That is, we cannot warrant the unbiased

estimators to be non-negative. Hence, the BQMBNE is useful for

this type of VC models. The BQMBNE for Eq. (1) was derived in

Sjöberg (1984). However, as the proof was too short to be appre-

ciated by some geodesists, we will give a more extensive proof of

it in Ch. 4. Sect. 2 starts with the general, linear adjustment model

condition adjustment with unknowns, which is the general basis

for the VC estimation models.

2. Linear adjustments

The Gauss-Helmert adjustment model, or condition adjustment with
unknowns, is given by (e.g. Bjerhammar 1973, pp. 278-279)

AX + Bε = W, E
{
εεT

} = Q and E {ε} = 0, (1a)

where A and B are known design matrices of dimension (k x m)

and (k x n), respectively, where n ≥ k ≥ m, and

W = BL− c; c = constant, knownvector;
L = vectorofobservations. (1b)

Furthermore, X and ε are the vectors of unknowns and normal

distributed errors, and the covariance matrix Q is assumed to be

positive definite.

The least squares solution toEq. (1),minimizingεTQ−1ε, becomes

X̂ = (ATC−1A
)−1 ATC−1W (2a)

and

ε̂ = QBTC−1
(
W − AX̂

)
, (2b)

where

C = BQBTwithrank (C) = k. (2c)

Note.A may be rank deficient, implying that the inverse of Eq. (2a)

is any generalized inverse, X̂ is non-unique butAX̂ is unique.

Premultiplying each term of Eq. (1a) by
(
I− A0), where A0 =

A
(
ATC−1A

)−1 ATC−1 , one obtains

(
I− A0)Bε = W̄, (3a)

where

W̄ = W − AX = (I− A0)W. (3b)

Equation (3a) is the basic linear adjustment model for VC compo-

nent estimation. It includes two important special cases:

Case I (adjustment by elements):B = I and c = 0, implying

(
I− A0) ε = W̄ = (I− A0) L. (4)

Case II (condition adjustment):A = 0, implying

Bε = W. (5)

3. Quadratic estimation of variance components

Wewill be concernedwith the two-variance componentmodel for

the observation variance
(
σ 2
li

)
and covariance

(
σlilj
)
, i.e.

σ 2
li = aiσ 21 + biσ 22 (6a)

and (
σlilj
) = aijσ 21 + bijσ 22 , (6b)

where the coefficients are regarded as known parameters and

the two variance components σ 21 and σ 22 are the unknowns to

be estimated. Equations (6a) and (6b) applied to the observation

vector L then yields the error covariance matrix

Q = σ 21 Q1 + σ 22 Q2, (7)

where the cofactor matrices Q1 and Q2 given by the coefficients

of Eqs. (6a) and (6b).

The quadratic estimation of the variance componentsσ 2
i , i = 1 and

2, is provided by the general model under translational invariance

σ̃ 2
i = W̄TMW̄, (8)
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where M is an arbitrary matrix. Assuming that W̄ is normally

distributed, it follows that the expectation and variance of the

above VC estimator are

E
{
σ̃ 2
i
} = E

{
W̄TMW̄

} = tr [ME
{

W̄W̄T
}] = tr [MK] ,

(9a)
and Var {σ̃ 2

i
} = 2tr [KMKM] , (9b)

where

K = (I− A0)C(I− A0)T = C(I− A0)T = (I− A0)C (9c)

withC = BQBT .

Note. Translation invariant estimability implies here that W is sub-

stituted by W̄ , which is invariant/independent of the unknown

vectorX. (See e.g. Rao and Kleffe 1988, p.78.)

Assuming that Eq. (9a ) yields an unbiased estimate of σ 2
i , and

introducing a decomposition of K as

K = σ 21 K1 + σ 22 K2, with Ki = (I− A0)Ci(I− A0)Tand Ci = BQiBT (10)

one readily obtains from Eq. (9a):

σ 2
i = σ 21 tr [MK1] + σ 22 tr [MK2] . (11)

Hence,unbiased estimationofσ 2
i requires that the twoconditions

tr [MKi] = 1 and tr [MKj6=i] = 0 (12)

are satisfied. This type of estimators always exists, and we may

derive the Best Quadratic Unbiased Estimator (BQUE) among all

the estimators satisfying Eqs. (12). See e.g. Sjöberg (1984).

Now, if we want to warrant non-negative unbiased estimation by

Eq. (8), it should satisfy the conditions (12) ( condition for an

unbiased estimation) as well as the following condition on non-
negative estimation:

M = GiGT
i ; i = 1, 2, (13)

where Giare arbitrary (with compatible dimensions). Inserting

Eq. (13) into Eq. (12) we readily obtain:

tr [GT
i (I− A0)Ci(I− A0)TGi

] = 1 andtr [GT
i (I− A0)Cj 6=i(I− A0)TGi

] = 0. (14)

In the standard case, where both C1 and C2 are non-singular,

the two parts of Eq. (14) has no common solution for Gi . This is

because the only solutions forGi of the second equation are then

those matrices that satisfy (I − A0)TGi = 0. However, for these
choices ofGi the first trace of Eq. (14) cannot be equated to unity.

Unfortunately, this negative result is generally validwhen applying

the variance-covariancemodel of Eqs. (6a) and (6b). The conditions

on having an unbiased and non-negative estimator cannot both

be met, and this implies that one must make a choice to either go

for an unbiased or a non-negative estimator. Below we study the

non-negative estimators with minimum bias.

4. The Quadratic Minimum Bias Estimators

As already suggested in Sect. 3 the non-negative estimators of

variance components σ 2
i are given by the formula

σ̃ 2
i = W̄TGiGT

i W̄, (15)

wherematricesGi are arbitrary (but with compatible dimensions).

From now on we only study the variance component σ 21 (and we

drop the index ofG1). Then we obtain:

E
{
σ̃ 21} = σ 21 t1 + σ 22 t2, (16)

where ti = tr [GGTKi
]
, implying that σ̃ 21 has the bias

b = σ 21 (t1 − 1) + σ 22 t2. (17)

If one tries tominimize thebias squaredbydifferentiating itw.r.t.G
and equating to zero, it results in the two equations

t1 = − (σ 22 /σ 21 ) t2 and t1 = 1− (σ 22 /σ 21 ) t2. (18)

The first equation leads to the bias −σ 21 , which corresponds to a

maximum for b2 . The second equation yields b = 0, which was

discussed above to have no solution for G. So this way does not

lead to a minimum bias solution for the estimator.

As an alternative we start from the target function

H = σ 41 (1− t1)2 + σ 42 t22 , (19)

and we define the minimum bias estimator as the one that mini-

mizes H. Assuming that C2 is non-singular, differentiating H w.r.t.

G and equating to zero, one obtains:

− (1− t1) K1G + ν4t2K2G = 0, (20a)

or

D
(
I− A0)T G = 0, (20b)
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where

D = κI− C−1
2 C1 (20c)

κ = ν4t2/ (1− t1) (20d)

andν = σ2/σ1 . Onesolution toEq. (20b) is that(I− A0)T G = 0,
which is the case with no solution for the VC discussed in Sect. 3.

On the other hand, if
(
I− A0)T G 6= 0, Eqs. (20b) and (20c)

imply that each column vector (χ) of (I− A0)T G must satisfy

the equation (
κI− C−1

2 C1
)
χ = 0, (21)

which is nothing but the equation for the eigenvector χ of the

matrix C−1
2 C1 (see e.g. Bjerhammar 1973, pp. 102 and 145), and

the eigen-values κ can be determined from the determinant∣∣κI− C−1
2 C1

∣∣ = 0. (22)

Hence, by solving Eq. (22) each solution for κ yields a candidate for

matrixD, useful for computingtheminimumbiasnon-negativeVC.

A relevant question is, of course, which κ should be used for the

BQMBNE. To answer this questionwe first return to Eq. (20a), which

we post-multiply byGT . The trace of the new equation becomes

− (1− t1) t1 + ν4t22 = 0, (23)

which, after considering also Eq. (20d), yields

t1 = κt2 = κ2/ (κ2 + ν4) (24)

and, from Eq. (19),

H = σ 41 [1− κ2/ (κ2 + ν4)] . (25)

It is thus obvious that the minimum of H is provided by the largest

eigen-value κ = λmax . From Eqs. (17) and (24) one can express the

corresponding bias as

b = σ 21 ν2 κ − ν2
κ2 + ν4 , (26)

which also shows that that the bias approaches zero when κ goes

to large values.

Returning to Eq. (20b), it follows (see Bjerhammar 1973, p.112) that(
I− A0)T G = (I−D0)N, (27)

where D0 = D−D and N is arbitrary (with compatible dimen-

sions). Here D− is an arbitrary generalized inverse to D. Inserting

Eq. (27) into Eq. (15), the estimator for σ 21 becomes:

σ̃ 21 = WT (I−D0)U
(
I−D0)T W, (28a)

or, as I− A0 is idempotent,

σ̃ 21 =↼
W

T (
I−D0)U

(
I−D0)T ↼

W, (28b)

whereU = NNT , which shows that the estimator is not unique.

Assuming that the observation errors are normally distributed, it

follows from Eq. (28a) that the variance of the estimator is given

by Var {σ̃ 21} = 2tr {RURU} , (29a)

where

R = RT = (I−D0)T C
(
I−D0) . (29b)

By considering Eq. (20c)C can be rewritten as

C = C2
[(
κσ 21 + σ 22 ) I− σ2

1 D
]
, (30)

so that Eq. (29b) reduces to

R = RT = (
κσ 21 + σ 22 ) (I−D0)T C2

(
I−D0)= (

κσ 21 + σ 22 )P, (31)

and Eq. (29a) becomes

Var {σ̃ 21} = 2 (κσ 21 + σ 22 )2 tr {PUPU} . (32)

In view of Eq. (27) matrix U = NNT is not arbitrary, but related

with matrix G, which in turn is constrained by Eq. (24). If the latter

equation is rewritten in the form

t2 = tr (GGTK2
) = λmax/ (λ2max + ν4) , (33)

where λmax has been defined as the eigen-value that minimizes

the target function (``bias'') H, and Eqs. (27) and (31) are considered,

Eq. (33) can be written

t2 = tr [U (I−D0)T C2
(
I−D0)] = tr (UP)= λmax/ (λ2max + ν4) . (34)

Hence, the remaining task is to find the minimum variance of

Eq. (32) under the condition of Eq. (33). To solve this problem we

define the target function

F = Var {σ̃ 21}− 4c [t2 − λmax/ (λ2max + ν2)] , (35)

where c is introduced as a Lagrange's multiplicator. The BQMBE is

provided by theminimum for Fw.r.t.U, which solution is obtained

by the matrix equation

∂F
∂U = 0. (36)
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In view of Eqs. (33) and (34) this equation can be written

UPU− cP = 0, (37)

where c is a constant to be determined below. Hence, we obtain

U = cP−, (38)

whereP− is any generalized inverse ofP.

Now, the constant c is obtained by inserting Eq. (38) into Eq. (34).

The result is

c = λmax(λ2max + ν4) t , (39)

where t = tr (PP−) = rank(P). Finally, the BQMBNE is ob-

tained from Eqs. (38), (39) and (28a) or (28b):

σ̂ 21 = cWT(I−D0)P− (I−D0)T W (40a)

or

σ̂ 21 = cW̄T(I−D0)P− (I−D0)T W̄. (40b)

In a similar way the BQMBNE of σ 22 can be estimated.

Note. The estimated variance component σ̂ 21 is uniquewith respect

to the choice of inverse P− . This is because both the trace of t
and (I − D0)P− (I−D0)T are invariant under a change of this

inverse.

For a numerical example, see Sjöberg (2004).

4.1. A special case

Here we follow Sjöberg (1995) to present the explicit solution for

the case with two VCs and n independent observations, yielding

the covariance matrix of the observations:

Q = σ 21 I + σ 22 F, (41a)

where

F = diag. (f1, f2,..., fn) . (41b)

The VCs σ 21 and σ 22 are estimated for adjustment by elements:

AX = E {L} , (42)

which corresponds toCase I of Sect. 1. It follows that the BQMBNEs

can be expressed as

σ̂ 21 = fmin1 + ν4f2min
ε̂2
i∑n

k=1 (I− A0)2
ik
fk

= d1ε̂2
i (43a)

and

σ̂ 22 = fmax
f2max + ν−4 ε̂2

j∑n
k=1 (I− A0)2

jk
fk

= d2ε̂2
j , (43b)

where fmin and fmax are the minimum and maximum elements

of F and i and j denote the corresponding rows in the matrix(
I− A0). The variances of these estimators become

Var {σ̂ 2
m
} = 2d2

m
[(
σ 21 + σ 22 fm)− eT

mA0Qem
]2

= 2d2
m
(
σ 21 + σ 22 fm)2 [1− (A0)

mm

]2 , (44a)

where

d1 = fmin1 + ν4f2min
1∑n

k=1 (I− A0)2
ik
fk

(44b)

and

d2 = fmax
f2max + ν−4 1∑n

k=1 (I− A0)2
jk
fk
. (44c)

Here m = 1, 2 and e is a vector with elements δmiand δmj ,
respectively, δ being Kronecker's delta function.

5. Concluding remark

In general the MINQUE is preferred to the BQMBNE, and this is

primarily due to its property of being unbiased in opposite to the

latter. However, if the MINQUE of a VC becomes negative, which

is frequently a reality in additive VC models, the BQMBNE can

solve the problem. A typical example is that the observation errors

are the sums of two or more error components, whose variance

components are to be estimated. It remains to generalize this

approach to more than two VCs.
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