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Abstract:

Variance components (VCs) in linear adjustment models are usually successfully computed by unbiased estimators. However, for many
unbiased VC techniques estimated variance components might be negative, a result that cannot be tolerated by the user. This is, for
example, the case with the simple additive VC model 0012 + b022 with known coefficients a and b, where either of the unbiasedly
estimated variance components 012 and 022 may frequently come out negative. This fact calls for so-called non-negative VC estimators.
Here the Best Quadratic Minimum Bias Non-negative Estimator (BQMBNE) of a two-variance component model is derived. A special case

with independent observations is explicitly presented.
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1. Introduction

Variance component (VC) estimation by Minimum Norm Quadratic
Unbiased Estimation (MINQUE) (Rao 1973) is a well-known tech-
nique applied in many fields working with adjustment of discrete
data. It is also well known that MINQUE has the bad property that
the estimated VCs may be negative, a reality that, of course, is
not satisfactory. Typical reasons for such unwanted results could
be that the adjustment and/or VC models are bad and or that the
redundancy in the adjustment problem is poor (i.e. the number of
observations are too few with respect to the number of estimated
variance components). Another reason could be that the approx-
imate VCs, used in an iterative procedure to estimate the VCs,
are bad. To avoid such a problem special techniques have been
designed that warrant non-negative VC estimates. The ideal non-
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negative estimator is unbiased and has minimum variance among
all non-negative estimators. However, the desires on non-negative
and unbiased estimation can seldom be met simultaneously, and
La Motte (1973} and Pukelsheim (1981) demonstrated that such
“non-negative MINQU estimators” do not generally exist. Hence,
in order to search for a practical non-negative estimator, one has
to give up the condition on unbiasedness, which implies that the
estimator will be biased.

This brings us to the idea of finding the Best Quadratic Non-
Negative Estimator (BQNE), which is the non-negative VC estimator
that minimizes the mean square error, i.e. the sum of the variance
and the bias squared. However, as shown by Sjoberg (1984), it
turns out thatthe BQNE is the same as the Best Quadratic Estimator,
which, unfortunately is not a practical one that can be improved,
e.g. by iteration, but it is totally based on the a priori estimated
variance-covariance matrix of the observations.

Some comments on non-negative VC estimation can be found also
in Amiri-Simkooei (2007, Sects. 3.3.6 and 4.8.1).



The best thing one can do then is to find the non-negative esti-

mators that has minimum bias (which is usually not a unique one),
and, among these, the one that has smallest variance. Such an es-
timator, introduced by Hartung (1981), discussed also by Chaubey
(1991), we call the Best Quadratic Minimum Bias Non-Negative
Estimator (BQMBNE) when applied to normally distributed data. It
thus has the properties of being non-negative with minimum bias,
and it has the minimum variance among those estimators.

A typical situation for non-negative estimation is the case for an
observation with an additive two-variance component model for
the observation variance (d7’) as follows:

o} = ao} + bo3, 1)

where @ and b are given coefficients and o7 and 07 are the un-
known variance components. This type of VC model is very com-
mon for various types of observations, e.g. EDM measurements,
angle measurements, GNSS observations, gravity observations to
mention a few, and for correlated data it is generalized below to
the model of Eq. (7). Frequently, the estimators for 012 and 022
come out negative by MINQUE, and in Sect. 3 we illustrate also
that these variance components cannot be estimated as unbiased
non-negative estimators. That is, we cannot warrant the unbiased
estimators to be non-negative. Hence, the BOMBNE is useful for
this type of VC models. The BQMBNE for Eq. (1) was derived in
Sjoberg (1984). However, as the proof was too short to be appre-
ciated by some geodesists, we will give a more extensive proof of
it in Ch. 4. Sect. 2 starts with the general, linear adjustment model
condition adjustment with unknowns, which is the general basis
for the VC estimation models.

2. Linear adjustments

The Gauss-Helmert adjustment model, or condition adjustment with
unknowns, is given by (e.g. Bjerhammar 1973, pp. 278-279)

AX+Be=W, E{ee’} =QandE{e} =0, (la

where A and B are known design matrices of dimension (k x m)
and (k x n), respectively, where n > k > m, and

W = BL — ¢; ¢ = constant, knownvector;
L = vectorofobservations. (1b)

Furthermore, X and € are the vectors of unknowns and normal
distributed errors, and the covariance matrix Q is assumed to be
positive definite.

The least squares solution to Eq. (1), minimizing ‘ETQ*1 &, becomes

X = (ATC'A)'ATC'W (2a)
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and

&=QB'C (w - A>“<) , (2b)

where

C = BQBwithrank (C) = k. (2¢)

Note. A may be rank deficient, implying that the inverse of Eq. (2a)
is any generalized inverse, X is non-unique but AX is unique.

Premultiplying each term of Eq. (1a) by (I — AO), where A =
A (ATC‘1A)_1 ATC™", one obtains

(1-A%) Be =W, (3a)

where

W=W_AX=(1-A%)W. (3b)

Equation (3a) is the basic linear adjustment model for VC compo-
nent estimation. It includes two important special cases:

Case | (adjustment by elements): B = land ¢ = 0, implying
(1-A%) e=W=(I-A°%) L. )
Case Il (condition adjustment): A = 0, implying

Be =W. )

3. Quadratic estimation of variance components

We will be concerned with the two-variance component model for
the observation variance (U,f) and covariance (Ul[l/ ) ie.
o = a,07 + b;o; (6a)

and

(U[i[/') = G,‘I‘U‘|2 + b,‘j(fzz, (6b)

where the coefficients are regarded as known parameters and
the two variance components 07 and 07 are the unknowns to
be estimated. Equations (6a) and (6b) applied to the observation
vector L then yields the error covariance matrix

Q = Q1 + 07Q,, (7

where the cofactor matrices Q1 and Q5 given by the coefficients
of Egs. (6a) and (6b).

The quadratic estimation of the variance components g2, i = 1and
2, is provided by the general model under translational invariance

52 = WTMW, ®)
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where M is an arbitrary matrix. Assuming that W is normally
distributed, it follows that the expectation and variance of the
above VC estimator are

E{a?} = E{WTMW} = tr [ME {WWT}] = tr[MK],
and .
Var {67} = 2tr[KMKM], (9b)

where
K=(1-A(1-A)T =CI-AY" =(1-A%C (90

with C = BQB.

Note. Translation invariant estimability implies here that W is sub-
stituted by W, which is invariant/independent of the unknown
vector X. (See e.g. Rao and Kleffe 1988, p.78.)

Assuming that Eq. (9a ) yields an unbiased estimate of o7, and
introducing a decomposition of K as

K = 07K, + 02Ka, with K; = (I — A)Cy(l — A%)T
and C'l = BQ{BT (10)

one readily obtains from Eq. (9a):
07 = o7 tr[MKy] + 05 tr [MK;] . (11)
Hence, unbiased estimation of o7 requires that the two conditions
tr[MK;] = 1 and tr[MKj] = 0 (12)

are satisfied. This type of estimators always exists, and we may
derive the Best Quadratic Unbiased Estimator (BQUE) among all
the estimators satisfying Eqgs. (12). See e.g. Sjéberg (1984).

Now, if we want to warrant non-negative unbiased estimation by

Eq. (8), it should satisfy the conditions (12) ( condition for an

unbiased estimation) as well as the following condition on non-
negative estimation:

L

MIGiGi, l=1,2, (13)

where Gjare arbitrary (with compatible dimensions). Inserting
Eq. (13) into Eq. (12) we readily obtain:

tr[GI (1 — A%)Ci(1 — A°)"G;] = 1 and
tr[GI (1 = A)Cu(1—A%)TG] = oO. (14)

In the standard case, where both C; and C, are non-singular,

the two parts of Eq. (14) has no common solution for G;. This is
—~
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because the only solutions for G; of the second equation are then
those matrices that satisfy (I — A%)TG; = 0. However, for these
choices of G; the first trace of Eq. (14) cannot be equated to unity.

Unfortunately, this negative result is generally valid when applying
the variance-covariance model of Egs. (6a) and (6b). The conditions
on having an unbiased and non-negative estimator cannot both
be met, and this implies that one must make a choice to either go
for an unbiased or a non-negative estimator. Below we study the
non-negative estimators with minimum bias.

4. The Quadratic Minimum Bias Estimators

As already suggested in Sect. 3 the non-negative estimators of
variance components Ul-z are given by the formula

5 = WGGIW, (15)

where matrices G; are arbitrary (but with compatible dimensions).
From now on we only study the variance component o7 (and we
drop the index of G1). Then we obtain:

E{a7} =oiti + o3t (16)
where t; = tr [GGTKi], implying that 7 has the bias

b=t —1)+ 03ty a7

If one tries to minimize the bias squared by differentiating itw.r.t. G
and equating to zero, it results in the two equations

t1=—(0’22/0'12) t, and t4 21—(0'22/0'12) t. (18)

The first equation leads to the bias —012, which corresponds to a
maximum for b2. The second equation yields b = 0, which was
discussed above to have no solution for G. So this way does not
lead to a minimum bias solution for the estimator.

As an alternative we start from the target function

H=a'(1-t)+dt, (19)

and we define the minimum bias estimator as the one that mini-

mizes H. Assuming that C; is non-singular, differentiating H w.r.t.
G and equating to zero, one obtains:
—(1=t)K:G+ v'tLK,G =0, (20a)

or

D(1-A°)' G =0, (20b)



where

D=«l— C51C1 (20¢)

k=vt/(1—1t) (20d)

andv = 0>/0y.Onesolution to Eq. (20b} is that (I — AO)T G=0,
which is the case with no solution for the VC discussed in Sect. 3.
On the other hand, if (I — AO)T G +# 0, Egs. (20b) and (20¢)
imply that each column vector (x) of (I — AO)T G must satisfy
the equation

(Kl = C;'Cy) x =0, @1

which is nothing but the equation for the eigenvector x of the
matrix C§1 C, (see e.g. Bjerhammar 1973, pp. 102 and 145}, and
the eigen-values k can be determined from the determinant

|kl = C;'Cy| = 0. (22)

Hence, by solving Eq. (22) each solution for K yields a candidate for
matrix D, useful for computing the minimum bias non-negative VC.

A relevant question is, of course, which k should be used for the
BQMBNE. To answer this question we first return to Eq. (20a), which
we post-multiply by GT. The trace of the new equation becomes

—(1=t)t +v'E2 =0, (23)
which, after considering also Eq. (20d), yields
ti = kty = K/ (k¥ + v*) (24)
and, from Eq. (19),
H=a/[1- (< +v')]. (25)

It is thus obvious that the minimum of H is provided by the largest
eigen-value kK = A, ax. From Egs. (17) and (24) one can express the
corresponding bias as
2
K—V
b = g?v? —_— 26
YUk 4w (26)
which also shows that that the bias approaches zero when k goes
to large values.

Returning to Eq. (20b), it follows (see Bjerhammar 1973, p.112) that

(1-A°)"G=(1-D°)N, @7)

where D® = D™D and N is arbitrary (with compatible dimen-
sions). Here D~ is an arbitrary generalized inverse to D. Inserting
Eq. (27) into Eq. (15), the estimator for 012 becomes:

6f=WT(I-D°)U(1-D°)'W,  (28)
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or,as | — A% is idempotent,

=W (1-D)U(1-D°)"w,  (28b)

where U = NNT, which shows that the estimator is not unique.

Assuming that the observation errors are normally distributed, it
follows from Eq. (28a) that the variance of the estimator is given
by

Var {67} = 2tr {RURU}, (29a)
where
R=R"=(1-D°"C(1-D°). (29b)
By considering Eq. (20c) C can be rewritten as
C=GCy[(koi + 05)1—07D], (30)
so that Eq. (29b) reduces to
R=R"= (ko +a?)(1-D°)"C, (1-D°)
= (ko} +03)P, 3D
and Eq. (29a) becomes
Var {67} = 2 (ko + 03)*tr {PUPU}. (32

In view of Eq. (27) matrix U = NNT is not arbitrary, but related
with matrix G, which in turn is constrained by Eq. (24). If the latter
equation is rewritten in the form

t, =tr (GGTK2) = Amax/ ()‘zax + V4) !

m (33)
where Ap., has been defined as the eigen-value that minimizes
the target function (“bias”) H, and Egs. (27) and (31) are considered,
Eq. (33) can be written

t=t[U(1-D°)"C; (1-D°)] = tr (UP)
:/\max/ (/\2

fa V). (34)

Hence, the remaining task is to find the minimum variance of
Eq. (32) under the condition of Eq. (33). To solve this problem we
define the target function

F=Var{a7} —4c[tr — A/ (Aoax + V*)].  (39)
where cis introduced as a Lagrange’s multiplicator. The BOQMBE is

provided by the minimum for Fw.r.t. U, which solution is obtained
by the matrix equation

oF
U =0. (36)
\//
VERSITA



24 Journal of Geodetic Science

In view of Egs. (33) and (34) this equation can be written
UPU - cP =0, 37)
where ¢ is a constant to be determined below. Hence, we obtain
U=cP, (38)

where P~ is any generalized inverse of P.

Now, the constant ¢ is obtained by inserting Eq. (38) into Eq. (34).

The result is .,
— max , 39
¢ (A2, + vt (39)

max

where t = tr (PP~) = rank(P). Finally, the BQMBNE is ob-
tained from Egs. (38), (39) and (28a) or (28b):

67 = c(WT(I—D%P~ (1-D°)"W (40a)
or
67 = WT(1—D°)P~ (I-D°)"W.  (40b)

In a similar way the BOMBNE of 62 can be estimated.

Note. The estimated variance component 612 is unique with respect
to the choice of inverse P~. This is because both the trace of ¢
and (I — DO)P~ (I - Do)T are invariant under a change of this
inverse.

For a numerical example, see Sjoberg (2004).
4.1. A special case
Here we follow Sjoberg (1995) to present the explicit solution for

the case with two VCs and n independent observations, yielding
the covariance matrix of the observations:

Q = d?l 4+ oF, (41a)

where

F = diag. (f, f,.... fa) - (41b)

The VCs 07 and 07 are estimated for adjustment by elements:

AX = E{L}, (42)

which correspondsto Case | of Sect. 1. It follows that the BQMBNEs
can be expressed as

52 Fin & d,&2 (43a)
1= n = a1&
T v Y (1= A%)
~
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and

22
A2 fmax J

22
0’2 = - = dzg.,
Bt v S = A0 1

(43b)

where f.,i;, and fa are the minimum and maximum elements
of F and i and j denote the corresponding rows in the matrix
(I - AO).The variances of these estimators become

Var {62} = 2d2 [ (07 + 03fs) — el A°Qe,, ]’
=2d2 (o} + a3f,) [1 = (A?) ]°. (44a)

where
dy = —min ! (44b)
AV T (= A
and p
max 1
d, (44c)

) i g— PP

Fiox VT (1= A £y
Here m = 1,2 and e is a vector with elements d,;and 0y,
respectively, 0 being Kronecker's delta function.

5. Concluding remark

In general the MINQUE is preferred to the BQMBNE, and this is
primarily due to its property of being unbiased in opposite to the
latter. However, if the MINQUE of a VC becomes negative, which
is frequently a reality in additive VC models, the BQMBNE can
solve the problem. A typical example is that the observation errors
are the sums of two or more error components, whose variance
components are to be estimated. It remains to generalize this
approach to more than two VCs.
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