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Abstract:

Determination of the geoid with a high accuracy is a challenging task among geodesists. Its precise determination is usually carried
out by combining a global geopotential model with terrestrial gravity anomalies measured in the region of interest along with some
topographic information. In this paper, Molodensky’s approach is used for precise determination of height anomaly. To do this, optimum
combination of global geopotential models with the validated terrestrial surface gravity anomalies and some deterministic modification
schemes are investigated. Special attention is paid on the strict modelling of the geoidal height and height anomaly difference. The
accuracy of the determined geoid is tested on the 513 points of Iranian height network the geoidal height of which are determined by

the GPS observations.
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1. Introduction

The recent developments in precise measurements of terrestrial
gravity data and extra-terrestrial observations have made it pos-
sible to determine high-resolution and accurate solutions to the
geodetic boundary value problems (GBVP). The geoid as a solu-
tion of the GBVP has an essential role in precise geodesy such as
GPS-levelling as well as in geophysics. The Stokes and Molodensky
formulas are two by-products of the GBVP providing the geoidal
height and height anomaly respectively.

There are many researchers who employed Stokes’ approach for
the geoid determination, see e.g., Ellmann and Vani¢ek (2007),
Sjoberg (2003a), Vanitek and Kleusberg (1987). In this approach, the
terrestrial gravity observations must be downward continued to
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sea level considering the gravity effects of topographic masses.
To do that, the mass distributions inside the topography must be
known. In addition, the computational methods for downward
continuation of the terrestrial gravities are another challenging
task, e.g., in, Huang and Véronneau (2005), Martinec (1996), Moritz
(1980), Vanitek et al. (1996).

In order to avoid the removal of the topographic masses, Moloden-
sky et al. (1962) selected the Earth's surface, instead of the geoid,
as the boundary to solve the Laplace second order differential
In comparison with Stokes

’

equation for the height anomaly.
method, there is no need to reduce the gravity observations from
the Earth’s surface down to the geoid (i.e., to the Earth’s interior).
The height anomaly, however, can be converted to the geoidal
height by downward continuation. The main purpose of this paper
is to explain a procedure for precise determination of the height
anomaly based on a linearized simple Molodensky problem and a
strategy for converting the height anomaly to the geoidal height.
During the past two decades, some well-known approaches were
applied to compute the geoid models of Iran. Weber and Zommor-
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rodian (1988) were the first to compute such a model in Iran. Their
method was based on the GPM2 geopotential model tailored with
regional gravity data. Hamesh and Zommorrodian (1992) applied
the remove-compute-restore technique along with the classical
Stokes's formula for the geoid computation. The testing of this
model using 200 GPS-levelling points showed an error of £114
cm. Najafi (2004) employed the Stokes-Helmert scheme (Vanigek et
al., 1995) for the central part of Iran. Kiamehr and Sjoberg (2005a)
assessed the accuracy of this model and showed a standard devi-
ation of 21.32 m using 22 GPS-levelling data. In 2005, Safari et al.
(2005) computed another geoid model based on a new ellipsoidal
boundary value problem (Grafarend et al., 1999) and found an ac-
curacy of £1.06 min 51 GPS-levelling stations along the first-order
levelling network of Iran. In another effort, Kiamehr (2006) used the
KTH approach (Sjoberg, 2003a,b,c) for computation of a new geoid
model. This model showed better accuracy than the previous
models as the absolute error fit with 260 GPS-levelling data was
0.58 m.

In section 2, Molodensky’s solution to GBVP and the procedure for
precise determination of the height anomaly are briefly outlined.
The geoidal height and height anomaly difference is formulated
in section 3, while the numerical investigations are the subject of
section 4. Finally, the paper concludes with the discussion of the
outcomes in section 5.

2. Molodensky’s solution and precise determination of the height
anomaly

Molodensky’s solution to modern geodetic boundary value prob-
lem leads to Fredohlm's integral equations of the second type.
Its solution can be obtained iteratively and may be expressed
as Stokes' formula after employing some approximations. This
expression can be successfully applied in the remove-compute-
restore technique in conjunction with different methods of kernel
modification. In zero approximation, the derived disturbing po-
tential under an assumption of a spherical shape of the telluroid
coincides with Stokes’ solution (1849) to classical geodetic bound-
ary value problem. However, in this approximation the effects of
topographic variations are ignored so that the additive Gy and
G corrections are taken into account by considering the height
differences and inclination of the telluroid. The corresponding
contributions of these additive terms to disturbing potential are
computed utilizing Stokes’ formula. The disturbing potential can
be then converted to the height anomaly by use of the well-known
Bruns formula.

With the recent dedicated gravimetric and gradiometric satellite
missions of CHAMP, GRACE and GOCE, the accuracy of regional
geoid/quasi-geoid have been highly improved. The combina-
tion of a satellite derived geopotential model, e.g., EIGEN-GL05S
(Forste et al., 2008) with local gravity data is the most well-known
approach for a regional gravimetric geoid/quasi-geoid determi-
nation (see, e.g., Forsberg, 1998; Sideris, 1990; Sideris and Schwarz;
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1987, Sjdberg, 2005; Tscherning and Forsberg, 1987). The different
combinations of the geopotential models with local gravity data

in Stokes’ formula are experimented by many authors. Generally,
they can be divided into two categories including determinis-
tic approaches (e.g., Featherstone et al., 1998; Molodensky et al.,
1960; Vanitek and Kleusberg, 1987; Vanitek and Sjéberg, 1991) and
stochastic approaches (e.g., Sjoberg, 1984; Vani¢ek and Sjéberg,
1991). The stochastic approaches require reliable estimate of error
variance of the Earth’s gravity data and is not currently known in
the area of study (see, section 4).

The basic formulation of the remove-compute-restore technique
for Molodensky's solution of the height anomaly can be written
by:

=0+ G" + ¢+ (M

where (s isthe portion of heightanomaly determined froma global
geopotential model up to degree M, C[)‘A is zero approximation
of height anomaly from integration of residual terrestrial gravity
anomalies Ag", (g/: and Cg‘z are higher approximations of height
anomaly or contributions of the Molodensky G and G terms.
In geodetic literature Eq. (1) is called Molodensky’s series and
it converges only when the terrain inclination angle is less than
45° (Moritz, 1980; Ch.48), i.e., convergence of series cannot be
guaranteed if the grid spacing of gravity anomalies is too small in
rugged areas (Li et al., 1995).

The global geopotential models (GGM) have the most contri-
bution to the geoidal height and height anomaly (see, Ta-
ble 2). Over the past two decades, several GGMs were pre-
sented from the dedicated satellite gravity field missions (see,
e.g. http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html). Ap-
plying different strategies and observation time span for satellite
data processing make their accuracies different from each other.
It is well-known that the published error estimate for any GGM is
global and not necessarily representative of its performance in a
particular region. Therefore, as a first step in precise determination
of the height anomaly we should investigate the accuracy of the
GGMs in the area of interest. The standard way is to compare
the GPS-levelling geoidal height and the particular GGM geoid.
Kiamehr and Sjoberg (2005b) investigated the absolute and relative
accuracy of some combined and satellite only GGMs versus 260
GPS-levelling points in Iran. However, our research study focuses
on satellite only models which they are in high demand for the
regional gravimetric geoid determination (see, e.g., Ellmann and
Vani¢ek, 2007). The numerical results in Table 1 reveal that the
geopotential model EIGEN-GLO5S from the GRACE and LAGEOS
missions fits the 513 GPS-levelling points of Iran with the best abso-
lute accuracy among the GGMs such as ITG-Grace2010S (Mayer-Guirr
etal., 2010), AIUB-GRACEQ2S (J4ggi et al., 2009) and GGMO3S (Tapley
et al., 2007).

The high-frequency components of the height anomaly are given
by convolution of the residual gravity anomalies and Gy and G,
terms with Stokes’ function. The residual gravity anomalies AgM
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are obtained by subtracting the GGM anomalies Agys from the

observed free-air gravity anomalies Ag ra:
AQM = Agra —Agm @)

The high frequency Stokes integration can be numerically evalu-
ated using a quadrature based summation. In compensation for
the incomplete coverage of terrestrial gravity data on the Earth,
the modified kernel of integration relevant to a partial integration
zone of spherical radius () is substituted for the original Stokes
integration over the full solid angle. We can split the integration
zone into three parts: contribution of the computation point itself
Cg:’ ; the rest of the integration cap C(/J\g ; and the contribution of
far zones Cég (Novak et al., 2001):

GNPy =+ G + Gl
RA
T Z(Ag ~2g"(P))
SM(go. %)Aoo+7 S OM(wo)Arg,(P)
n=M+1
3)

where R is the mean Earth’s radius, the subscripts P and Q refer to
the computation and integration points, respectively, {5 defines
the integration radius of spherical cap for Stokes’ integral, o
denotes the spherical distance between the computation point
and the center of the Q-th cell, AQg is the surface area of
integration element, K is the number of cells within the spherical
cap and yp is the normal gravity at point P’ on telluroid. The
function SM(L/JQ,L/JO) in Eq. (3) is the modified Stokes kernel,
and QM(¢,) is the truncation coefficients corresponding to the
modified kernel.

Applying a modification of Stokes’ kernel not only reduces the
truncation error, but also attenuates the low-frequency errors
more likely contaminated in the high frequencies of terrestrial
gravity data AgM, (Vanitek and Featherstone, 1998). It is known
that terrestrial gravity anomalies are influenced by variety of
systematic effects such as biases in the base gravity, uncertainties
in horizontal and vertical datum as well as inconsistencies in the
type of height system and approximation errors due to use of a
simplified free-air reduction formula. According to Vani¢ek and
Featherstone (1998) the spheroidal kernel (the kernel referring to
a low frequency spheroid) attenuates these errors to a greater
extent than the modified types and yields preferable high-pass
filter properties to low-frequency errors of terrestrial data. Hence,
although the truncation error are minimized in modified kernel,
the amount of leakage of low-frequency errors from the terrestrial
gravity data into the solution is more than that when using the
spheroidal Stokes kernel. However, Owing to the spatially varying
error characteristic of the gravity anomalies, different results are
usually expected in different areas.
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The height anomaly obtained by Eq. (3) is improved by applying
two corrective terms - the so called Gy and G, terms. The G
term presents the effects of irregularities of the Earth’s topography
which is expressed by Molodensky et al. (1962) as:

=5 (Q)

5 /) i
“

where H(Q) and H(P) are the Molodensky normal height of
the integration and computation points, lo(io,4») stands for

P) (Ag(Q) 3YP( Q)

the spherical distance between the computation point and the
integration point and  is the radius of spherical cap for Gy
integral. By applying the high frequencies of gravity anomalies
AgM and height anomalies (' one can compute G and its
corresponding contribution to the height anomaly from Stokes’s
integral. The contribution of computation point, rest of cap and

the distance zone read:

QP = QI+ Go+ Gy =
_RGY(P) ~ (GM(0) — OV
2y QW)+ g(@ © -G o

Nmax

(o, A0 + 5 Y OY(Uh)G, (P)

n=M+1

where n 4y is the maximum harmonic degree for computation of
truncation error fromaGGMand Gy, is n-th harmonicin expansion
of G term into spherical harmonics given by Heiskanen and Moritz
(1967).

In G; term, the second power of height differences and inclina-
tion of telluroid to reference ellipsoid B are considered and the
integration is performed within the spherical cap of radius ¢, (ibid):

// Hf}Ql)lfo 2) 5 (G1(Q)+ wﬁ(o)) do

// l3(¢’o 5 e (Ag(Q” R (Q))

+ (Ag(P) + —3%’)) co(P)) tan’ Bp

(6)
As a matter of fact, B is an angle between normal to telluroid
(approximately normal to the Earth's surface) and the reference
ellipsoid. It can be approximated by inclination of the Earth’s

surface in meridian and prime vertical planes, i.e.,

ahp ohp .,

tan’ Bp _( )2 ( 3y ) = tan’ B +tan23yp @)

where the above relation expresses the maximum inclination
of the Earth’ surface as function of gradients at West-East and
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North-South directions. Using a grid-based DEM, one of the
most common approaches is to use a moving 3x3 window to
derive finite differential or local surface fit polynomial for the
calculation. Zhou and Liu (2004) studied six popular algorithms of
finite differential for analysis of errors of derived slope from DEM.
However, in our numerical studies we observed that applying
different algorithms causes small discrepancies in G; term, i.e,, the
maximum differences reach below 200 pGal level. The reasons
are probably because of using a smoothed DEM, i.e., a grid of
5’ X5’ and remove-compute-restore technique which smooths
the gravity and height anomalies.

Again correction to the height anomaly is computed from Stokes’
formula by splitting the integration zone to the computation point
and rest of cap:

M
Py = ¢+ ¢ = -2 ) +
K Rz N
> (G'(Q) = GY'(P) S™(ho, o)A — 7~
0 Pt
(H(Q) — H(P)* 3v2(Q) o
[ D(Go.dn) (AgM(Q)+ 4 (Q))]AQO

(3)
The numerical evaluation of @V’ shows that it varies between -2 cm
and +1 cm in Iran, see e.g., Table 2. Therefore, we expect a small
truncation error in Eq. (8). The magnitude of the third constituent
on the most right hand side of Eq. (8) is between -13 mm and
+14 mm which should be considered for precise determination of
the height anomaly. In this term (4 refers to integration radius of
spherical cap.

3. Geoidal height and height anomaly difference

The geoidal height and height anomaly difference, equivalently
to the difference between normal and orthometric heights, is
approximated using the conventional formula: the simple Bouguer
anomaly times the topographic height divided by the normal
gravity (Heiskanen and Moritz, 1967). However, this formula suffers
from some assumptions made on the evaluation of mean value
of the gravity along the plumb line. For instance, applying the
Poincaré-Prey reduction for determining the gravity inside the
topography with constant density as well as approximating the
vertical gradient of gravity with the normal gradient yield even
decimeter errors in the value of the geoidal height and height
anomaly difference. Sjoberg (1995) slightly improved the formula
by considering a small term related to the vertical derivative of
the gravity anomaly. But it was concluded that his approximation
might be insufficient in mountainous regions. Later on, Sjoberg
(2006) presented an improved formula including corrective terms
due to roughness of the topography and lateral variations of
topographic mass density and a term related with the downward
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continuation of topographic potential from the Earth’s surface to

sea level. Tenzer et al. (2006) derived an explicit formula based on
the mean value of the gravity disturbances along the plumb line
and a corrective term as a function of the height anomaly and
normal height. To evaluate the mean gravity disturbance, they
decomposed it into the mean value of the geoid-generated gravity
disturbance and the mean value of the topography-generated
gravitational attraction. The former is computed by convolution
of the residual Stokes kernel and downward continued geoid-
generated gravity anomaly and the latter is evaluated by Newton's
integration. In another similar effort, Flury and Rummel (2009)
extended the conventional formula of N — { and derived a
corrective term based on the difference between the gravitational
potential of the topographic masses on the Earth's surface and on
sea level multiplied by the reciprocal value of the mean normal
gravity. However, they ignored the vertical change of the Bouguer
disturbance and non-linear change in the normal gravity y which
cause an error in the order of several cm (ibid).

In this research we derive a strict expression based on the math-
ematical formulas of the geoidal height and height anomaly. Our
formula is very similar to that of Sjoberg (2006) but with a more
rigorous derivation. To begin with, according to Vanitek et al.
(2004) we work on the No-Topography gravity space (NT-space). In
the NT-space, the gravitational attractions of topographic masses
are removed before hand. Denoting the disturbing potential Tp at
point P on the Earth’s surface in the real space, and T,LVT being the
disturbing potential at the same point in NT-space, the following
relation holds:

T =T, -V} 9)

where VPT are Newtonian volume integral for the gravitational
potential by topographic masses. It is well-known that due to
weak singularity of Newton’s integral at computation point, VPT is

decomposed into the effects of the spherical shell VF('S and the
roughness term VF’T'R (see, e.g., Martinec, 1998):
Vi =VES + ViR (10)

Disregarding the ellipsoidal correction, the gravity anomaly Agp
on the Earth's surface is expressed by the well-known relation, the
fundamental formula of physical geodesy:

. (11
P

Applying Eq. (11) to NT-space where inserting Eq. (9) into Eq. (11)
the relation between real gravity anomaly and NT gravity anomaly
(geoid-generated gravity anomaly) becomes:

v’ 2

AghT = Agp + P lp + ;VP (12)



where the second term on the right-hand side of the equation rep-

resents the direct topographic effects and the third term stands for
the secondary indirect topographic effects on gravity. The math-
ematical formulas of direct and secondary indirect topographic
effects can be found in geodetic literature (see, e.g., Vanicek et al.
2004). Now, by noting that the NT disturbing potential is harmonic
everywhere outside the geoid, the Poisson integral equation as
the solution of Dirichlet’s boundary value problem can be used for
upward/downward continuation of NT gravity anomaly:

AgV AgNT*d 13
ge 4mp//L3rP¢R go "do (13

where AgNT*

is the gravity anomaly on the geoid. Eq. (13) shows
that the gravity anomaly on the Earth’s surface can be obtained
from a linear combination of geoid-generated gravity anomalies
on the geoid. Practically, in the case of downward continuation,
the discrete inverse operation to the Poisson integral is applied
and the NT gravity anomaly is downward continued to the geoid.
Now, the geoidal height is determined from downward continued

NT gravity anomalies and Stokes’ formula applies:

R Vi
Np = —— [[| Agy"S(y)d 0
P 4yp; //a 9o "SW)do+ 1728

where yp, denotes the normal gravity on the reference ellipsoid

and VFZO refer to the topographic potential on the geoid. Transfor-
NTx*

(14)

mation of the real space to the NT-space, i.e., using Ag makes
Stokes' formula to compute a co-geoid rather than the geoid.
But addition of indirect effects computed by the second term in
the right hand side of Eq. (14) changes the co-geoid back to the

geoidal height Np.

Equivalently, according to Heiskanen and Moritz (1967, Eq. 8-96), the
extended Stokes formula for evaluation of the disturbing potential
on the Earth’s surface and consequently for the determination of
the height anomaly can be used:

4 —L//A NTS(r ¢)du+v—"T 15)
P Gy J), 00 2 vp

where S(rg, i) is the extended Stokes kernel and yps is normal
gravity on the telluroid. According to Eq. (15) the height anomaly
can be alternatively determined from downward continuation
of NT gravity anomalies and the indirect effects given by the
topographic potential at point P on the Earth’s surface. Now by
subtracting Eq. (15) from Eq. (14), one obtains:

(N= Q) ] [ AgN™* (S() — S(ro. ) do

VE)+dip

4JT)/

(VA —

+

7

0

16)
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Figure 2. Normalized truncation coefficients, a) for the extended
Stokes kernel S(r,3°) b) for the residual Stokes kernel
AS(r,3°); r = R+ 9 km

where the small correction d (p is given:

dip = Cp(X2

/
Po

-1) (17

Equation (16) is the main formula for the geoidal height and
height anomaly difference computation. According to the formula,
the surface gravity anomaly should be transformed into the NT-
space by removal of the whole masses above the geoid and then
continued downward to the sea level by using the inverse Poisson
integral. Applying the so-called residual Stokes integral, the first
term on the right-hand side of Eq. (16), the values of N — {
are determined in the NT-space. Now we return to real space by
adding the so-called residual indirect effects. The formula (16) is
very similar to that of Tenzer et al. (2006) but was derived based
on the mathematical formulas of the geoidal height and height
anomaly.

Fig. 1 presents a comparison between the values of the residual
Stokes kernel AS(r
the geocentric distance r, and extended Stokes kernel S(r

, i) as a function of the spherical radius ¢ and
L) It
shows that the residual kernel in an extreme case (r = R + 9 km)
approaches more rapidly to zero than the other kernels. Therefore,
selection of a small integration radius can be efficient for numerical
evaluation of the integral formula in Eq. (16). Accordingly, Fig. 2
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shows the numerical value of the truncation coefficients Q, (r, ¢°)
and AQ,(r, ¢°) for the extended and residual Stokes kernels,
respectively. For the comparison to be more clear, the coefficients
have been normalized by multiplications of (n — 1)/2, which is
the inverse norm of Stokes’ kernel. The value of r = 9 km and ¢y
=3° have been chosen to show an extreme case of the coefficients
behaviour. An important point to observe from Fig. 2 is that the
truncation error is greatly reduced in the residual Stokes integral
because AQ, (r, ¥°) < < Q,(r, °). Thus, no modification to the
residual Stokes kernel is necessary as the numerical value of the
truncation error reaches a maximum value of 5 mm in the area
of interest. Equivalently, the residual kernels in the evaluation of
the residual topographic indirect effects are well-behaved, and in
comparison with the original Newtonian kernel, they approach to
zero faster.

It is well-known that in the Stokes-derived approaches for geoid
determination, terrestrial gravity observations must be reduced
for the effects of topographic masses and then be downward
continued to a boundary surface through an unstable procedure
(see, e.g., Ellmann and Vani¢ek, 2007; Kiamehr, 2006). A number of
reduction methods have been proposed for this purpose which
requires the mass density distributions between the geoid and
Earth’s surface to be known. In contrast, Molodensky’s approach
to the gravimetric boundary value problem results in the height
anomaly, avoiding any gravity reduction and downward contin-
uation procedures. However, through the height anomaly to
geoidal height conversion, modelling the masses above geoid and
downward continuation of gravity anomaly is unavoidable. It is
appropriate to note that the main advantage of this approach for
the determination of the geoid is that the effects of mass density
variations and downward continuation of gravity anomaly enter
indirectly so that they become smaller comparing to the classical
Stokes idea. This can be easily seen from expression (16) where
the residual kernels guarantee such reductions in residual Stokes
integral and indirect effects. The effects of lateral mass density
variations appear in the residual indirect effects and are expected
to be small. It should be stated that these effects are very similar
to the primary indirect topographic effects on the geoid through
the Stokes-Helmert scheme for geoid determination. According
to Huang et al. (2001) these effects reach a maximum of -2.5 cm
over the Rocky Mountains. However, it should be noted that due
to small effects of lateral density variations on the residual indirect
effects we left the numerical evaluations to be undertakenin future
work.

The downward continuation effects of NT gravity anomaly can be
computed for the geoidal height and height anomaly difference
as below:

R
4myp,

ON—=Q) = // (Agy™ —Agy") AS(ro, ) do
’ (18)

From the numerical evaluation of Eq. (18), we found that the

maximum absolute value of the effects of downward continuation
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on N — ( reaches the 5 cm level over the rough areas in Iran (see,

Fig. 5(b)). It is interesting to note that the downward continuation
effects on the geoidal height in the Stokes-derived approaches
are very noticeable as they approximately reach 1.6 m level in the
same area (Kiamehr, 2006). However, these effects are significantly
attenuated, i.e., up to 32 times, for the geoidal height and height
anomaly conversion. Importantly, the leakage of the downward
continuation-related errors to the geoidal height is reduced to
a larger extend and they are attenuated by the residual Stokes
kernel.

4. Numerical investigations

i) The 27,401 points of terrestrial and marine gravity data have
been collected by different organizations using different
gravimeters and methods during 70 years. Various kinds of
systematic errors have affected the observations due to the
uncertainty of reference frames and equipment. Therefore,
a refinement process seems to be necessary prior to their
use for geoid determination. Correlations of spatially dis-
tributed data can be used to detect gross errors (Tscherning,
1991). We interpolated the gravity value at each observa-
tion point in order to compare the observed value and
the predicted one. If the difference is larger than a certain
threshold then the observation is considered as blunder.
The least-squares collocation is a well-proven interpolation
method in geodetic science and can be successfully used
for blunder removal (ibid). Instead, the Kriging interpola-
tion technique was used, primarily because this is readily
available in the gridding software such as Surfer software
and is suited to interpolating the geoscience data. As a
result, 7% of the available data were eliminated in the
numerical process. Since the gravity data are only avail-
able within Iran, we used a very high degree geopotential
model like EGMO08 (Pavlis et al., 2008) to fill the gaps out
of the border. This somewhat reduces the omission error
in geoid model near the border of Iran. Furthermore, as
a sea-surface data, the recently altimetrically determined
gravity anomaly DNSCO8GRA (Andersen et al., 2010) was
used to fill out the region of the Persian Gulf and Oman
Sea. Fig. 4(a) presents the distribution of the gravity data in
Iranian territory. It can be seen that large areas suffer from
poor number of observations.

ii) The digital elevation models (DEMs) are mainly used for grid-
ding of heterogeneous gravity data and evaluation of topo-
graphic effects through the geoid modelling procedures.
There are several public DEMs with global coverages. Most
of these models, in grid format, were generated based
on the remote sensing techniques. The digital elevation
model SRTM3 (Rodriguez et al., 2005) with resolution of 3
arc-second is the latest model based on satellite radar



interferometry technique. Kiamehr (2005b) tested the ac-

curacy of some global models using GPS-levelling data in
Iran. According to that study, SRTM DEM with an esti-
mated accuracy of 6.5 m is the best among the various
tested DEMs. We therefore adopted SRTM DEM as our
background model.

iii) Traditionally, absolute and relative external accuracy of the
gravimetric regional geoid is evaluated by using GPS-
levelling points. The total numbers of GPS-levelling avail-
able in Iran is 513 which most of points belong to second-
and third-order levelling networks and a few of them are lo-
cated in the first-order national network. It should be stated
that systematic errors in the national levelling network like,
neglecting the orthometric correction to levelling observa-
tions, systematic biases in definition of the vertical datum
and etc, may affect the accuracy of GPS-levelling points.
According to Kiamehr (2005) the spirit levelled heights are
accurate at 0.7 m level. The geographic locations of GPS-
levelling points are shown in Fig. 4(b).

As the first step, the validated heterogeneous gravity data were
interpolated on 5’ x5’ geographic grid. Since gridding of free air
gravity anomalies are subjected to aliasing effects they are usually
reduced for topographic effects before gridding process. Among
the methods of gravity reduction such as complete Bouguer model,
residual terrain model (RTM)} and isostatic reductions, we found
that the isostatic reduction method of Airy-Heiskanen results in
smoother gravity anomaly in the area of interest. In addition, we
performed the geoid computations process for each reproduced
free air gravity anomaly. The fit to GPS/leveling geoid was a
criterion for our final decisions. In this respect, we reduced the free
air gravity anomalies by using the isostatic Airy-Heiskanen model
and EGMO8 gravity anomaly. The reduced gravity anomalies were
interpolated into the regular 5° x5’ grid by using an arbitrary
interpolator scheme such as Kriging and then the free air gravity
anomalies obtained after restoring the topographic effects and
EGMO8 contribution on the grid.

Table 1 gives the statistics properties of absolute comparison be-
tween the geoidal heights up to degree and order 150 derived
from some of the recent GRACE-based GGMs and available GPS-
levelling data. As can be seen, the EIGEN-GLO5S gives superior
result in terms of RMSE and therefore was regarded as a refer-
ence geopotential model in the computational process of height
anomaly. It should be noted that at the time of this study, GOCE’s
GGMs were not available to the user community and we just used
the GRACE models.

The height anomaly was determined based on the numerical
evaluation of Eq. (1) corresponding to contribution of the geopo-
tential model, terrestrial data, Gy and G terms. It was converted
to the geoidal height using the method presented in section
3. The geoid solutions, computed using different spherical caps,
maximum degree of modified kernels and geopotential model,
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Figure 3. (a) Distribution of gravity data in Iran. (b) The 30" mean
digital elevation model based on 3” SRTM data and distri-
bution of GPS-levelling data. Location of five subzones for
GPS-levelling data.

Table 1. Statistics for GGMs geoid comparison with GPS-levelling
data, Unit: Metre.

Model Max. Min. Mean Std. RMSE
ITG-Grace2010S  3.03 -3.80 -0.60 1.15 1.30
GGMO03S 295 -349 -0.68 1.22 1.39

AIUB-GRACEO02S 2.89 -3.65 -0.60 1.14 1.30
EIGEN-GLO5S 350 -3.63 -0.56 1.14 1.26

~
VERSITA



266 Journal of Geodetic Science

were interpolated and compared with 513 GPS-levelling geoidal
heights. According to our numerical experiments (not presented
here), comparing with spheroidal kernel and Vani¢ek-Kluesberg
modification, Featherstone scheme with degree of modification
and geopotemtial model M = 100 and spherical cap )y = 1°
gives the best result. We noticed that the increasing degree of
modification and geopotential model degrades the RMSE fit with
the GPS-levelling geoidal height. This is expected due to growing
the errors in satellite-derived geopotential models for the high
harmonic degrees, e.g., for degrees higher than 130 the ratio of
noise to signal reaches to 50 percent. It is noted that the RMSE
fit degrades with increasing the spherical cap, e.g., for M = 100
ranging from 1° to 3°. The main reason for such behaviour is the
low quality of terrestrial gravity data in Iran which would allow
more leakages of errors to occur into the geoid for large spherical
cap.

Now by adopting the Featherstone scheme for modification of
Stokes' kernel, we present more details about the numerical eval-
uation of integral formulas and their corresponding magnitudes.
The important issue for the evaluation of the Gy and G termsiis to
select the proper integration radii. The numerical tests show that
Gy and G terms evaluated from the integration caps 4° to 5° and
1° to 2° differ by less than 10 pGal in absolute values. Therefore,
integration radii equal to 4° and 2° were used to evaluate G,
and G; terms, respectively. In Table 2, the contributions of these
two terms to the height anomaly are presented (see, Eq. (5) and

100
1

Eq. (8)). It shows that the corrective term {;°° reaches a maxi-

mum of 19 cm over the mountainous area. Our numerical results
revealed that the truncation error in evaluating of the {{%° term
through the truncated Stokes formula (see, Eq. (5)) reaches the
3 cm level, which is considerable for a geoid accuracy on the 1 cm
level. According to Table 2 we can also see that most contribution
of the height anomaly is related to the geopotential model ;.
This means that the planar approximation made on the solution of
linearized simple Molodensky problem, which at most introduces
0.4% error (Moritz, 1980), is only concerned on the residual height
anomaly through the remove-compute-restore technique.

From Table 2 we can also see that the values of (3%

minimally
reaches the -2 cm level. It should be again emphasized that we
used 5° x5 mean gravity anomalies for computing the height
anomaly and geoidal height. According to Li. etal. (1995) a
denser dataset can provide more details in rough mountainous
areas. They reported on achieving significant improvement for the
height anomaly prediction over the Canadian Rocky Mountains by
using a grid spacing of 1 km by 1 km instead of 5’ x5’. Indeed,
it is expected to see more significant values for terms {; and {,
using the finer grid spacing. However, this does not appear to be
the case in Iran due to poor gravity data coverage, and makes it
impossible to reach finer grid spacing.

Fig. 5(a) shows a plot of the computed N — ( values based on
Eq. (16). As expected, the minimum value, which reaches -2.33 m,
is connected with heights part of the Alborz Mountains. From

v
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Table 2. statistics for the height anomaly. Unit: Metre.

parameter Max. Min. Mean Std.

Qg0 3448 -62.88 -13.69 19.93
0 407 -437 -0.03 0.71
4% 019 -008 000 001
2% 001 -002 0.00 0.00

Table 3. Statistics for the geoidal height and height anomaly differ-
ence. Unit: Metre.

Parameter ~ Max. Min. Mean Std.

Res. Stokes 0.07 -0.13 -0.00 0.01
Res. indirect -0.03 -2.91 -0.29 0.33
d¢ 0.02 -0.02 -0.00 0.00
N-¢ -0.03 -2.33 -0.27 0.31

Table 3 we notice that the greatest contribution of N — (is related
to the residual indirect effect lying within the interval -2.91 to
-0.03 m. Therefore, an optimal method for numerical integration is
essential for accurate topographic roughness potential modelling.
A complex investigation of this matter is still in progress and will
be reported in the future, Similar to Gy and G terms, a numerical
test was carried out for selecting a proper integration radius in
evaluation of the residual Stokesintegral. Consequently, a spherical
cap of 3° was used to achieve mm accuracy. Prior to solving
the residual Stokes integral, the surface gravity anomalies were
transferred to NT-space by using Eq. (12). The integral formulas
for the direct and secondary indirect topographical effects were
numerically evaluated over the integration domain divided into
the far zone, near zone and inner zone. Different DEMs were used
with resolution of 30” and 5’ for the evaluation of inner zone and
near zone with integration radius of spherical cap of 30’ and 5°,
respectively. A global DEM with 1° %X 1° resolution was used for
the integration over the remaining spherical cap or the far zone
contribution. The downward continued NT gravity anomalies were
computed by using numerical evaluation of the Poisson formula
with integration radius 80°. The numerical estimate of Eq. (18)
reveals that the downward continuation effcets of NT gravity
anomaly on the geoidal height and height anomaly difference
varies between -5.3 cm and 2.8 cm. A plot of these values is
illustrated in Fig. 5(b).

By way of comparison, the geoid model based on the presented
strategy for N — { and conventional method was compared with
the 49 GPS-levelling geoidal heights located in rough mountainous
areas, i.e, in an area with more than 2000 m in height. It was
observed that our technique improves the RMSE fit of geoid up to
+14 ¢cm with respect to conventional method.

Fig. 5 presents the geoid model for Iran computed based on the
Molodensky’s approach and the presented technique for convert-
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Figure 4. (a) Geoidal height and height anomaly difference N — ¢.
Unit: Metre (b) Downward continuation effects of NT grav-
ity anomaly on the geoidal height and height anomaly dif-
ference. Unit: Centimeter.

ing the height anomaly to geoidal height. The internal accuracy
of the geoid can be evaluated by propagating the errors of the
source data into the result. The reliability depends on how realistic
the source data errors are. However, we left such assessment for
the future because there is no reliable estimate for the error of
the gravity and height data. As was mentioned before, the exter-
nal accuracy of the geoid is verified using GPS-levelling geoidal
heights in absolute and relative sense. In the absolute verification,
the external accuracy is achieved by comparing the gravimetric
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Table 4. Statistics for new geoid model absolute and relative compar-
ison with GPS-levelling data, Unit: Metre.

Parameter No. points. Max. Min. Mean RMSE ppm
New Geoid - 24.55 -43.84 -12.39 13.08(Std) -

Abs. 513 141 -1.72 -0.05 0.53 -

North 74 2.05 -245 0.04 0.61 4.30
East 32 1.38 -1.05 0.14 049  3.60
South 38 149 -1.54 -0.12 0.50 1.95
West 34 0.62 -0.95 -0.22 038 277
Centre 35 191 -2.13 -0.02 0.65 4.05

geoid with GPS-levelling derived geoid. The grid of gravimetric
geoid was interpolated to the position of GPS stations based on a
gridding scheme such as Kriging. We note that the problems of
selecting a suitable interpolation scheme are out of scope of this
paper and left for future.

To take the assessment of external accuracy further, the gravimetric
geoid was verified in relative sense. In this case, the difference
in orthometric height is subtracted from the difference in the
ellipsoidal height to give gradient over specific baselines. The
main benefit of this method is that it removes systematic errors.
For instance, vertical datum-related errors are noticeably reduced,
especially over short baselines. In order to avoid long baselines,
we verified the relative accuracy of the new geoid model in five
subzones as illustrated in Fig. 4(b). The relative differences were
computed over all the possible baselines between GPS stations.
The results are summarized in Table 4.

The differences in absolute values of the geoidal heights are
141 m maximum, -1.72 m minimum and £53 ¢m RMSE on 513
GPS-levelling points. The relative RMSE vary from 38 cm in the
West zone to 65 cm in Central zone. The relative difference
can be expressed in parts per million (ppms) upon division with
the baseline length. The mean values of the relative differences

7
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over each zone are shown in Table 4. As expected, the minimum
relative differences are observed over the Southern area and it
increases when moving towards the North of the country. Most
likely, the main reason for such behaviour stems from increasing
cumulativeerrors of spiritlevelling from the zero point of the Iranian
height system in the southern coastal areas. Furthermore, growing
orthometric corrections to spirit levelled data towards the Northern
part and disregarding this correction will cause such discrepancies.
Over the west zone, the gravimetric geoid model performs much
better than other zones, partly because of the high density of
gravity measurements. However, in rough areas like the Northern
and Central zones, we observed larger discrepancies where our
geoid model and GPS-levelling data include errors. Improper
spatial coverage and quality of the terrestrial data, interpolation
error of the free air gravity anomalies, instability of the downward
continuation procedure and dicretization error in modelling of
topographic effects as well as the planar approximation implied in
solving of the simple Molodensky’s problem are the main reasons
for the low quality of gravimetric geoid model in these areas.

It is interesting to note that, the absolute RMSE fit of the EIGEN-
GLOS5S geoid up to degree and order 100 with GPS-levelling data
decreases by more than 65% in comparison with the new com-
puted geoid, i.e., reduced from £152 cm to =53 ¢cm. The gravimet-
ric geoid model is usually fitted to the GPS-levelling data by four,
five or seven parametric models to eliminate possible systematic
errors in the geoid (Kotsakis and Sideris, 1999). However, In order
to avoid the prolongation of the paper we do not consider such
fitting procedure in our study. We note that detailed discussion
on verifying the gravimetric geoid model and GPS-levelling data
forms an entirely different scope of study.

5. Summary and conclusions

This paper summarized the main theoretical principles of Molo-
densky’s approach to precise determination of the height anomaly.
The validated land and marine gravity data as well as the most
recent geopotential model (EIGEN-GLO5S from the GRACE and
LAGEOS missions) and new digital elevation model (SRTM) were
used in precise computation of the height anomaly. Compar-
ing different deterministic approaches to modification of Stokes’
kernel, we can say that in our experiment (not presented in the
paper), Featherstone method gives the best result. In addition, the
principles of selecting the appropriate modification degree and
integration radius of spherical cap were revised and the values
of M = 100 and {5y = 1° were selected, respectively. We also
conclude that aiming to compute the geoid accurate on 1 cm

100

level, the truncation error for {;"" is significant as its magnitudes

reached as much as 3 cm.

The relation between the height anomaly and geoidal height was
modelled based on rigorous formula. To achieve N — { in No-
Topography space, the topographic effects on gravity anomalies
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need to be formulated and NT gravity anomalies be continued

downward to the geoid level. The residual Stokes kernel is
then employed to determine N — { in NT-space. Afterwards,
by adding indirect effects the separation of height anomaly and
geoidal height obtains in real space. For the Iranian territory,
we observed values of N — { varying between -3 cm and -
233 cm. We emphasize that the main advantage of the presented
method for precise determination of geoid is that the effects of
mass density variations and downward continuation of gravity
anomaly together with related errors are greatly reduced, e.g,,
contribution of downward continuation to the geoidal height and
height anomaly difference is 32 times smaller than the Stokes-
derived approaches for geoid determination.

Finally the gravimetric geoid was evaluated by comparing the
geoid with 513 GPS-levelling data in absolute and relative sense.
An absolute agreement of 53 cm RMSE was determined. The
relative investigations in five subzones across the country show the
mean relative accuracy varying between 1.95 ppm and 4.30 ppm.
The presented strategy shows its own efficiency comparing with
the other tested methods in the area of study. The results are
relevant for a number of geodetic applications. Further on, this
model can be advantageous to future studies of geophysics and
geodynamics in Iran.
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