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Abstract:

Determination of the geoid with a high accuracy is a challenging task among geodesists. Its precise determination is usually carried

out by combining a global geopotential model with terrestrial gravity anomalies measured in the region of interest along with some

topographic information. In this paper, Molodensky's approach is used for precise determination of height anomaly. To do this, optimum

combination of global geopotential models with the validated terrestrial surface gravity anomalies and some deterministic modification

schemes are investigated. Special attention is paid on the strict modelling of the geoidal height and height anomaly difference. The

accuracy of the determined geoid is tested on the 513 points of Iranian height network the geoidal height of which are determined by

the GPS observations.
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1. Introduction

The recent developments in precise measurements of terrestrial

gravity data and extra-terrestrial observations have made it pos-

sible to determine high-resolution and accurate solutions to the

geodetic boundary value problems (GBVP). The geoid as a solu-

tion of the GBVP has an essential role in precise geodesy such as

GPS-levelling as well as in geophysics. The Stokes andMolodensky

formulas are two by-products of the GBVP providing the geoidal

height and height anomaly respectively.

There are many researchers who employed Stokes' approach for

the geoid determination, see e.g., Ellmann and Vaníček (2007),
Sjöberg (2003a), Vaníček and Kleusberg (1987). In this approach, the

terrestrial gravity observations must be downward continued to
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sea level considering the gravity effects of topographic masses.

To do that, the mass distributions inside the topography must be

known. In addition, the computational methods for downward

continuation of the terrestrial gravities are another challenging

task, e.g., in, Huang and Véronneau (2005), Martinec (1996), Moritz
(1980), Vaníček et al. (1996).

In order to avoid the removal of the topographic masses, Moloden-
sky et al. (1962) selected the Earth's surface, instead of the geoid,

as the boundary to solve the Laplace second order differential

equation for the height anomaly. In comparison with Stokes'

method, there is no need to reduce the gravity observations from

the Earth's surface down to the geoid (i.e., to the Earth's interior).

The height anomaly, however, can be converted to the geoidal

height by downward continuation. Themain purpose of this paper

is to explain a procedure for precise determination of the height

anomaly based on a linearized simple Molodensky problem and a

strategy for converting the height anomaly to the geoidal height.

During the past two decades, some well-known approaches were

applied to compute the geoid models of Iran. Weber and Zommor-
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rodian (1988) were the first to compute such a model in Iran. Their

methodwas based on the GPM2 geopotential model tailored with

regional gravity data. Hamesh and Zommorrodian (1992) applied

the remove-compute-restore technique along with the classical

Stokes's formula for the geoid computation. The testing of this

model using 200 GPS-levelling points showed an error of ±114
cm. Najafi (2004) employed the Stokes-Helmert scheme (Vaníček et
al., 1995) for the central part of Iran. Kiamehr and Sjöberg (2005a)
assessed the accuracy of this model and showed a standard devi-

ation of±1.32 m using 22 GPS-levelling data. In 2005, Safari et al.
(2005) computed another geoid model based on a new ellipsoidal

boundary value problem (Grafarend et al., 1999) and found an ac-

curacy of±1.06m in 51 GPS-levelling stations along the first-order

levelling network of Iran. In another effort, Kiamehr (2006) used the

KTH approach (Sjöberg, 2003a,b,c) for computation of a new geoid

model. This model showed better accuracy than the previous

models as the absolute error fit with 260 GPS-levelling data was

0.58 m.

In section 2, Molodensky's solution to GBVP and the procedure for

precise determination of the height anomaly are briefly outlined.

The geoidal height and height anomaly difference is formulated

in section 3, while the numerical investigations are the subject of

section 4. Finally, the paper concludes with the discussion of the

outcomes in section 5.

2. Molodensky’s solution and precise determination of the height
anomaly

Molodensky's solution to modern geodetic boundary value prob-

lem leads to Fredohlm's integral equations of the second type.

Its solution can be obtained iteratively and may be expressed

as Stokes' formula after employing some approximations. This

expression can be successfully applied in the remove-compute-

restore technique in conjunction with different methods of kernel

modification. In zero approximation, the derived disturbing po-

tential under an assumption of a spherical shape of the telluroid

coincides with Stokes’ solution (1849) to classical geodetic bound-

ary value problem. However, in this approximation the effects of

topographic variations are ignored so that the additive G1 and

G2 corrections are taken into account by considering the height

differences and inclination of the telluroid. The corresponding

contributions of these additive terms to disturbing potential are

computed utilizing Stokes' formula. The disturbing potential can

be then converted to the height anomaly by use of thewell-known

Bruns formula.

With the recent dedicated gravimetric and gradiometric satellite

missions of CHAMP, GRACE and GOCE, the accuracy of regional

geoid/quasi-geoid have been highly improved. The combina-

tion of a satellite derived geopotential model, e.g., EIGEN-GL05S

(Förste et al., 2008) with local gravity data is the most well-known

approach for a regional gravimetric geoid/quasi-geoid determi-

nation (see, e.g., Forsberg, 1998; Sideris, 1990; Sideris and Schwarz;

1987, Sjöberg, 2005; Tscherning and Forsberg, 1987). The different

combinations of the geopotential models with local gravity data

in Stokes' formula are experimented by many authors. Generally,

they can be divided into two categories including determinis-

tic approaches (e.g., Featherstone et al., 1998; Molodensky et al.,
1960; Vaníček and Kleusberg, 1987; Vaníček and Sjöberg, 1991) and
stochastic approaches (e.g., Sjöberg, 1984; Vaníček and Sjöberg,
1991). The stochastic approaches require reliable estimate of error

variance of the Earth's gravity data and is not currently known in

the area of study (see, section 4).

The basic formulation of the remove-compute-restore technique

for Molodensky's solution of the height anomaly can be written

by:

ζP = ζM + ζM0 + ζMG1 + ζMG2 (1)

whereζM is theportionofheightanomalydeterminedfromaglobal

geopotential model up to degree M , ζM0 is zero approximation

of height anomaly from integration of residual terrestrial gravity

anomalies ∆gM , ζMG1 and ζMG2 are higher approximations of height

anomaly or contributions of the Molodensky G1 and G2 terms.

In geodetic literature Eq. (1) is called Molodensky's series and

it converges only when the terrain inclination angle is less than

45◦ (Moritz, 1980; Ch.48), i.e., convergence of series cannot be

guaranteed if the grid spacing of gravity anomalies is too small in

rugged areas (Li et al., 1995).

The global geopotential models (GGM) have the most contri-

bution to the geoidal height and height anomaly (see, Ta-

ble 2). Over the past two decades, several GGMs were pre-

sented from the dedicated satellite gravity field missions (see,

e.g., http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html). Ap-
plying different strategies and observation time span for satellite

data processing make their accuracies different from each other.

It is well-known that the published error estimate for any GGM is

global and not necessarily representative of its performance in a

particular region. Therefore, as a first step in precise determination

of the height anomaly we should investigate the accuracy of the

GGMs in the area of interest. The standard way is to compare

the GPS-levelling geoidal height and the particular GGM geoid.
Kiamehr and Sjöberg (2005b) investigated the absolute and relative

accuracy of some combined and satellite only GGMs versus 260

GPS-levelling points in Iran. However, our research study focuses

on satellite only models which they are in high demand for the

regional gravimetric geoid determination (see, e.g., Ellmann and
Vaníček, 2007). The numerical results in Table 1 reveal that the

geopotential model EIGEN-GL05S from the GRACE and LAGEOS

missions fits the513GPS-levellingpoints of Iranwith thebest abso-

luteaccuracyamongtheGGMssuchas ITG-Grace2010S (Mayer-Gürr
et al., 2010), AIUB-GRACE02S (Jäggi et al., 2009) andGGM03S (Tapley
et al., 2007).

The high-frequency components of the height anomaly are given

by convolution of the residual gravity anomalies and G1 and G2
terms with Stokes' function. The residual gravity anomalies ∆gM

http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
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are obtained by subtracting the GGM anomalies ∆gM from the

observed free-air gravity anomalies∆gFA :
∆gM = ∆gFA − ∆gM (2)

The high frequency Stokes integration can be numerically evalu-

ated using a quadrature based summation. In compensation for

the incomplete coverage of terrestrial gravity data on the Earth,

the modified kernel of integration relevant to a partial integration

zone of spherical radius ψ0 is substituted for the original Stokes

integration over the full solid angle. We can split the integration

zone into three parts: contribution of the computation point itself

ζM0• ; the rest of the integration cap ζM0� ; and the contribution of

far zones ζM0⊕ (Novák et al., 2001):

ζM0 (P) = ζM0• + ζM0� + ζM0⊕
=− R∆gM (P)2γP ′ QM0 (ψ0)+ R4πγP ′

K∑
Q

(∆gM (Q)− ∆gM (P))
SM (ψQ , ψ0)∆ΩQ+ R2γP ′

nmax∑
n=M+1Q

M
n (ψ0)∆gn(P)

(3)

whereR is themean Earth's radius, the subscriptsP andQ refer to

the computation and integration points, respectively, ψ0 defines

the integration radius of spherical cap for Stokes' integral, ψQ
denotes the spherical distance between the computation point

and the center of the Q-th cell, ∆ΩQ is the surface area of

integration element, K is the number of cells within the spherical

cap and γP ′ is the normal gravity at point P ′ on telluroid. The

function SM (ψQ ,ψ0) in Eq. (3) is the modified Stokes kernel,

and QM
n (ψ0) is the truncation coefficients corresponding to the

modified kernel.

Applying a modification of Stokes' kernel not only reduces the

truncation error, but also attenuates the low-frequency errors

more likely contaminated in the high frequencies of terrestrial

gravity data ∆gM , (Vaníček and Featherstone, 1998). It is known

that terrestrial gravity anomalies are influenced by variety of

systematic effects such as biases in the base gravity, uncertainties

in horizontal and vertical datum as well as inconsistencies in the

type of height system and approximation errors due to use of a

simplified free-air reduction formula. According to Vaníček and
Featherstone (1998) the spheroidal kernel (the kernel referring to

a low frequency spheroid) attenuates these errors to a greater

extent than the modified types and yields preferable high-pass

filter properties to low-frequency errors of terrestrial data. Hence,

although the truncation error are minimized in modified kernel,

the amount of leakage of low-frequency errors from the terrestrial

gravity data into the solution is more than that when using the

spheroidal Stokes kernel. However, Owing to the spatially varying

error characteristic of the gravity anomalies, different results are

usually expected in different areas.

The height anomaly obtained by Eq. (3) is improved by applying

two corrective terms - the so called G1 and G2 terms. The G1
termpresents the effects of irregularities of the Earth's topography

which is expressed by Molodensky et al. (1962) as:

G1(P) =R22π
∫∫

σ

H(Q)−H(P)
l30(ψQ , ψ1)

(∆g(Q)+3γP ′ (Q)2R ζ0(Q))dσ
(4)

where H(Q) and H(P) are the Molodensky normal height of

the integration and computation points, l0(ψQ ,ψ1) stands for

the spherical distance between the computation point and the

integration point and ψ1 is the radius of spherical cap for G1
integral. By applying the high frequencies of gravity anomalies∆gM and height anomalies ζM0 one can compute GM1 and its

corresponding contribution to the height anomaly from Stokes's

integral. The contribution of computation point, rest of cap and

the distance zone read:

ζM1 (P) = ζM1• + ζM1� + ζM1⊕ =
−RG

M1 (P)2γP ′ QM0 (ψ0) + R4πγP ′
K∑
Q

(
GM1 (Q)−GM1 (P))

SM (ψQ , ψ0)∆ΩQ + R2γP ′
nmax∑

n=M+1Q
M
n (ψ0)G1n (P)

(5)

where nmax is the maximum harmonic degree for computation of

truncationerror fromaGGMandG1n is n-thharmonic in expansion

ofG1 term into spherical harmonics given by Heiskanen and Moritz
(1967).

In G2 term, the second power of height differences and inclina-

tion of telluroid to reference ellipsoid β are considered and the

integration is performedwithin the spherical capof radiusψ2 (ibid):

G2(P)= R22π
∫∫

σ

H(Q)−H(P)
l30(ψQ , ψ2)

(
G1(Q) + 3γP ′ (Q)2R ζ1(Q))dσ

−3R8π
∫∫

σ

(H(Q)−H(P))2
l30(ψQ , ψ2)

(∆g(Q) + 3γP ′ (Q)2R ζ0(Q))dσ
+(∆g(P) + 3γP ′ (P)2R ζ0(P)) tan2 βP

(6)

As a matter of fact, β is an angle between normal to telluroid

(approximately normal to the Earth's surface) and the reference

ellipsoid. It can be approximated by inclination of the Earth's

surface in meridian and prime vertical planes, i.e.,

tan2 βP ∼= (∂hP∂x )2 + (∂hP∂y )2 = tan2 βxP + tan2 βyP (7)

where the above relation expresses the maximum inclination

of the Earth' surface as function of gradients at West-East and
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North-South directions. Using a grid-based DEM, one of the

most common approaches is to use a moving 3×3 window to

derive finite differential or local surface fit polynomial for the

calculation. Zhou and Liu (2004) studied six popular algorithms of

finite differential for analysis of errors of derived slope from DEM.

However, in our numerical studies we observed that applying

different algorithms causes small discrepancies inG2 term, i.e., the

maximum differences reach below 200 µGal level. The reasons

are probably because of using a smoothed DEM, i.e., a grid of

5’×5’ and remove-compute-restore technique which smooths

the gravity and height anomalies.

Again correction to the height anomaly is computed from Stokes'

formula by splitting the integration zone to the computation point

and rest of cap:

ζM2 (P) = ζM2• + ζM2� = −RGM2 (P)2γP ′ QM0 (ψ0) + R4πγP ′
K∑
Q

(
GM2 (Q)−GM2 (P))SM (ψQ , ψ0)∆ΩQ −

R24πγP ′
N∑
Q[(H(Q)−H(P))2

l30(ψQ , ψ4)
(∆gM (Q) + 3γP ′ (Q)2R ζM0 (Q))]∆ΩQ

(8)

The numerical evaluation ofζM2 shows that it varies between -2 cm

and +1 cm in Iran, see e.g., Table 2. Therefore, we expect a small

truncation error in Eq. (8). The magnitude of the third constituent

on the most right hand side of Eq. (8) is between -13 mm and

+14 mmwhich should be considered for precise determination of

the height anomaly. In this term ψ4 refers to integration radius of

spherical cap.

3. Geoidal height and height anomaly difference

The geoidal height and height anomaly difference, equivalently

to the difference between normal and orthometric heights, is

approximatedusing the conventional formula: the simpleBouguer

anomaly times the topographic height divided by the normal

gravity (Heiskanen and Moritz, 1967). However, this formula suffers

from some assumptions made on the evaluation of mean value

of the gravity along the plumb line. For instance, applying the

Poincaré-Prey reduction for determining the gravity inside the

topography with constant density as well as approximating the

vertical gradient of gravity with the normal gradient yield even

decimeter errors in the value of the geoidal height and height

anomaly difference. Sjöberg (1995) slightly improved the formula

by considering a small term related to the vertical derivative of

the gravity anomaly. But it was concluded that his approximation

might be insufficient in mountainous regions. Later on, Sjöberg
(2006) presented an improved formula including corrective terms

due to roughness of the topography and lateral variations of

topographic mass density and a term related with the downward

continuation of topographic potential from the Earth's surface to

sea level. Tenzer et al. (2006) derived an explicit formula based on

the mean value of the gravity disturbances along the plumb line

and a corrective term as a function of the height anomaly and

normal height. To evaluate the mean gravity disturbance, they

decomposed it into themean value of the geoid-generated gravity

disturbance and the mean value of the topography-generated

gravitational attraction. The former is computed by convolution

of the residual Stokes kernel and downward continued geoid-

generated gravity anomaly and the latter is evaluated by Newton's

integration. In another similar effort, Flury and Rummel (2009)
extended the conventional formula of N − ζ and derived a

corrective term based on the difference between the gravitational

potential of the topographic masses on the Earth's surface and on

sea level multiplied by the reciprocal value of the mean normal

gravity. However, they ignored the vertical change of the Bouguer

disturbance and non-linear change in the normal gravity γ which

cause an error in the order of several cm (ibid).

In this research we derive a strict expression based on the math-

ematical formulas of the geoidal height and height anomaly. Our

formula is very similar to that of Sjöberg (2006) but with a more

rigorous derivation. To begin with, according to Vaníček et al.
(2004)wework on the No-Topography gravity space (NT-space). In
the NT-space, the gravitational attractions of topographic masses

are removed before hand. Denoting the disturbing potentialTP at

pointP on the Earth's surface in the real space, andTNT
P being the

disturbing potential at the same point in NT-space, the following

relation holds:

TNT
P = TP − V T

P (9)

where V T
P are Newtonian volume integral for the gravitational

potential by topographic masses. It is well-known that due to

weak singularity of Newton's integral at computation point, V T
P is

decomposed into the effects of the spherical shell V T .S
P and the

roughness termV T .R
P (see, e.g., Martinec, 1998):

V T
P = V T .S

P + V T .R
P (10)

Disregarding the ellipsoidal correction, the gravity anomaly ∆gP
on the Earth's surface is expressed by the well-known relation, the

fundamental formula of physical geodesy:

∆gP ∼= −∂T∂r |P − 2
rP
TP (11)

Applying Eq. (11) to NT-spacewhere inserting Eq. (9) into Eq. (11)
the relation between real gravity anomaly and NT gravity anomaly

(geoid-generated gravity anomaly) becomes:

∆gNTP ∼= ∆gP + ∂V T

∂r |P + 2
rP
V T
P (12)
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where the second term on the right-hand side of the equation rep-

resents the direct topographic effects and the third term stands for

the secondary indirect topographic effects on gravity. The math-

ematical formulas of direct and secondary indirect topographic

effects can be found in geodetic literature (see, e.g., Vaníček et al.
2004). Now, by noting that the NT disturbing potential is harmonic

everywhere outside the geoid, the Poisson integral equation as

the solution of Dirichlet's boundary value problem can be used for

upward/downward continuation of NT gravity anomaly:

∆gNTP = R24πrP
∫∫

σ

r2
P − R2

L3(rP , ψ, R )∆gNT∗Q dσ (13)

where∆gNT∗ is the gravity anomaly on the geoid. Eq. (13) shows
that the gravity anomaly on the Earth's surface can be obtained

from a linear combination of geoid-generated gravity anomalies

on the geoid. Practically, in the case of downward continuation,

the discrete inverse operation to the Poisson integral is applied

and the NT gravity anomaly is downward continued to the geoid.

Now, the geoidal height is determined from downward continued

NT gravity anomalies and Stokes' formula applies:

NP = R4πγP ′0
∫∫

σ
∆gNT∗Q S(ψ)dσ + V T

P0
γP ′0

(14)

where γP0 ′ denotes the normal gravity on the reference ellipsoid

andV T
P0 refer to the topographic potential on the geoid. Transfor-

mation of the real space to the NT-space, i.e., using ∆gNT∗ makes

Stokes' formula to compute a co-geoid rather than the geoid.

But addition of indirect effects computed by the second term in

the right hand side of Eq. (14) changes the co-geoid back to the

geoidal heightNP .

Equivalently, accordingtoHeiskanen and Moritz (1967, Eq. 8-96), the
extended Stokes formula for evaluation of the disturbing potential

on the Earth's surface and consequently for the determination of

the height anomaly can be used:

ζP = R4πγP ′
∫∫

σ
∆gNT∗Q S(rQ , ψ)dσ + V T

P
γP ′

(15)

where S(rQ , ψ) is the extended Stokes kernel and γP ′ is normal

gravity on the telluroid. According to Eq. (15) the height anomaly

can be alternatively determined from downward continuation

of NT gravity anomalies and the indirect effects given by the

topographic potential at point P on the Earth's surface. Now by

subtracting Eq. (15) from Eq. (14), one obtains:

(N − ζ)P = R4πγP ′0
∫∫

σ
∆gNT∗Q

(
S(ψ)− S(rQ , ψ))dσ

+ 1
γP ′0

(
V T
P0 − V T

P
) + dζP

(16)

Figure 1. Extended S(r, ψ) and residual ∆S(r, ψ) Stokes kernel for
different spherical caps r = R + 9 km

Figure 2. Normalized truncation coefficients, a) for the extended
Stokes kernel S(r, 3◦) b) for the residual Stokes kernel∆S(r, 3◦); r = R + 9 km

where the small correction dζP is given:

dζP = ζP ( γP ′γP ′0
− 1) (17)

Equation (16) is the main formula for the geoidal height and

height anomalydifference computation. According to the formula,

the surface gravity anomaly should be transformed into the NT-

space by removal of the whole masses above the geoid and then

continued downward to the sea level by using the inverse Poisson

integral. Applying the so-called residual Stokes integral, the first

term on the right-hand side of Eq. (16), the values of N − ζ
are determined in the NT-space. Now we return to real space by

adding the so-called residual indirect effects. The formula (16) is
very similar to that of Tenzer et al. (2006) but was derived based

on the mathematical formulas of the geoidal height and height

anomaly.

Fig. 1 presents a comparison between the values of the residual

Stokes kernel∆S(r, ψ) as a function of the spherical radiusψ and

the geocentric distance r, and extended Stokes kernel S(r, ψ). It
shows that the residual kernel in an extreme case (r = R + 9 km)

approachesmore rapidly to zero than the other kernels. Therefore,

selection of a small integration radius canbe efficient for numerical

evaluation of the integral formula in Eq. (16). Accordingly, Fig. 2
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shows thenumerical valueof the truncation coefficientsQn(r, ψ◦)
and ∆Qn(r, ψ◦) for the extended and residual Stokes kernels,

respectively. For the comparison to be more clear, the coefficients

have been normalized by multiplications of (n − 1)/2, which is

the inverse norm of Stokes' kernel. The value of r = 9 km and ψ0
= 3◦ have been chosen to show an extreme case of the coefficients

behaviour. An important point to observe from Fig. 2 is that the

truncation error is greatly reduced in the residual Stokes integral

because∆Qn(r, ψ◦)<<Qn(r, ψ◦). Thus, nomodification to the

residual Stokes kernel is necessary as the numerical value of the

truncation error reaches a maximum value of 5 mm in the area

of interest. Equivalently, the residual kernels in the evaluation of

the residual topographic indirect effects are well-behaved, and in

comparison with the original Newtonian kernel, they approach to

zero faster.

It is well-known that in the Stokes-derived approaches for geoid

determination, terrestrial gravity observations must be reduced

for the effects of topographic masses and then be downward

continued to a boundary surface through an unstable procedure

(see, e.g., Ellmann and Vaníček, 2007; Kiamehr, 2006). A number of

reduction methods have been proposed for this purpose which

requires the mass density distributions between the geoid and

Earth's surface to be known. In contrast, Molodensky's approach

to the gravimetric boundary value problem results in the height

anomaly, avoiding any gravity reduction and downward contin-

uation procedures. However, through the height anomaly to

geoidal height conversion, modelling themasses above geoid and

downward continuation of gravity anomaly is unavoidable. It is

appropriate to note that the main advantage of this approach for

the determination of the geoid is that the effects of mass density

variations and downward continuation of gravity anomaly enter

indirectly so that they become smaller comparing to the classical

Stokes idea. This can be easily seen from expression (16) where
the residual kernels guarantee such reductions in residual Stokes

integral and indirect effects. The effects of lateral mass density

variations appear in the residual indirect effects and are expected

to be small. It should be stated that these effects are very similar

to the primary indirect topographic effects on the geoid through

the Stokes-Helmert scheme for geoid determination. According

to Huang et al. (2001) these effects reach a maximum of -2.5 cm

over the Rocky Mountains. However, it should be noted that due

to small effects of lateral density variations on the residual indirect

effectswe left thenumerical evaluations tobeundertaken in future

work.

The downward continuation effects of NT gravity anomaly can be

computed for the geoidal height and height anomaly difference

as below:

δ(N − ζ) = R4πγP ′0
∫∫

σ

(∆gNT∗Q − ∆gNTQ ) ∆S(rQ , ψ)dσ
(18)

From the numerical evaluation of Eq. (18), we found that the

maximum absolute value of the effects of downward continuation

onN − ζ reaches the 5 cm level over the rough areas in Iran (see,

Fig. 5(b)). It is interesting to note that the downward continuation

effects on the geoidal height in the Stokes-derived approaches

are very noticeable as they approximately reach 1.6 m level in the

same area (Kiamehr, 2006). However, these effects are significantly
attenuated, i.e., up to 32 times, for the geoidal height and height

anomaly conversion. Importantly, the leakage of the downward

continuation-related errors to the geoidal height is reduced to

a larger extend and they are attenuated by the residual Stokes

kernel.

4. Numerical investigations

i) The 27,401 points of terrestrial and marine gravity data have

been collected by different organizations using different

gravimeters andmethods during 70 years. Various kinds of

systematic errors have affected the observations due to the

uncertainty of reference frames and equipment. Therefore,

a refinement process seems to be necessary prior to their

use for geoid determination. Correlations of spatially dis-

tributeddata canbeused todetect gross errors (Tscherning,
1991). We interpolated the gravity value at each observa-

tion point in order to compare the observed value and

the predicted one. If the difference is larger than a certain

threshold then the observation is considered as blunder.

The least-squares collocation is awell-proven interpolation

method in geodetic science and can be successfully used

for blunder removal (ibid). Instead, the Kriging interpola-

tion technique was used, primarily because this is readily

available in the gridding software such as Surfer software

and is suited to interpolating the geoscience data. As a

result, 7% of the available data were eliminated in the

numerical process. Since the gravity data are only avail-

able within Iran, we used a very high degree geopotential

model like EGM08 (Pavlis et al., 2008) to fill the gaps out

of the border. This somewhat reduces the omission error

in geoid model near the border of Iran. Furthermore, as

a sea-surface data, the recently altimetrically determined

gravity anomaly DNSC08GRA (Andersen et al., 2010) was
used to fill out the region of the Persian Gulf and Oman

Sea. Fig. 4(a) presents the distribution of the gravity data in

Iranian territory. It can be seen that large areas suffer from

poor number of observations.

ii) The digital elevation models (DEMs) are mainly used for grid-

dingof heterogeneousgravity data andevaluationof topo-

graphic effects through the geoid modelling procedures.

There are several public DEMs with global coverages. Most

of these models, in grid format, were generated based

on the remote sensing techniques. The digital elevation

model SRTM3 (Rodriguez et al., 2005) with resolution of 3

arc-second is the latest model based on satellite radar
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interferometry technique. Kiamehr (2005b) tested the ac-

curacy of some global models using GPS-levelling data in

Iran. According to that study, SRTM DEM with an esti-

mated accuracy of 6.5 m is the best among the various

tested DEMs. We therefore adopted SRTM DEM as our

background model.

iii) Traditionally, absolute and relative external accuracy of the

gravimetric regional geoid is evaluated by using GPS-

levelling points. The total numbers of GPS-levelling avail-

able in Iran is 513 which most of points belong to second-

and third-order levellingnetworks and a fewof themare lo-

cated in the first-ordernational network. It shouldbe stated

that systematic errors in the national levelling network like,

neglecting the orthometric correction to levelling observa-

tions, systematic biases in definition of the vertical datum

and etc, may affect the accuracy of GPS-levelling points.

According to Kiamehr (2005) the spirit levelled heights are

accurate at 0.7 m level. The geographic locations of GPS-

levelling points are shown in Fig. 4(b).

As the first step, the validated heterogeneous gravity data were

interpolated on 5’×5’ geographic grid. Since gridding of free air

gravity anomalies are subjected to aliasing effects they are usually

reduced for topographic effects before gridding process. Among

themethodsofgravity reductionsuchascompleteBouguermodel,

residual terrain model (RTM) and isostatic reductions, we found

that the isostatic reduction method of Airy-Heiskanen results in

smoother gravity anomaly in the area of interest. In addition, we

performed the geoid computations process for each reproduced

free air gravity anomaly. The fit to GPS/leveling geoid was a

criterion for our final decisions. In this respect, we reduced the free

air gravity anomalies by using the isostatic Airy-Heiskanen model

and EGM08 gravity anomaly. The reduced gravity anomalies were

interpolated into the regular 5’×5’ grid by using an arbitrary

interpolator scheme such as Kriging and then the free air gravity

anomalies obtained after restoring the topographic effects and

EGM08 contribution on the grid.

Table 1 gives the statistics properties of absolute comparison be-

tween the geoidal heights up to degree and order 150 derived

from some of the recent GRACE-based GGMs and available GPS-

levelling data. As can be seen, the EIGEN-GL05S gives superior

result in terms of RMSE and therefore was regarded as a refer-

ence geopotential model in the computational process of height

anomaly. It should be noted that at the time of this study, GOCE's

GGMs were not available to the user community and we just used

the GRACE models.

The height anomaly was determined based on the numerical

evaluation of Eq. (1) corresponding to contribution of the geopo-

tential model, terrestrial data, G1 andG2 terms. It was converted

to the geoidal height using the method presented in section

3. The geoid solutions, computed using different spherical caps,

maximum degree of modified kernels and geopotential model,

(a)

(b)

Figure 3. (a) Distribution of gravity data in Iran. (b) The 30” mean
digital elevation model based on 3” SRTM data and distri-
bution of GPS-levelling data. Location of five subzones for
GPS-levelling data.

Table 1. Statistics for GGMs geoid comparison with GPS-levelling
data, Unit: Metre.

Model Max. Min. Mean Std. RMSE

ITG-Grace2010S 3.03 -3.80 -0.60 1.15 1.30
GGM03S 2.95 -3.49 -0.68 1.22 1.39
AIUB-GRACE02S 2.89 -3.65 -0.60 1.14 1.30
EIGEN-GL05S 3.50 -3.63 -0.56 1.14 1.26
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were interpolated and compared with 513 GPS-levelling geoidal

heights. According to our numerical experiments (not presented

here), comparing with spheroidal kernel and Vaníček-Kluesberg
modification, Featherstone scheme with degree of modification

and geopotemtial model M = 100 and spherical cap ψ0 = 1◦
gives the best result. We noticed that the increasing degree of

modification and geopotential model degrades the RMSE fit with

the GPS-levelling geoidal height. This is expected due to growing

the errors in satellite-derived geopotential models for the high

harmonic degrees, e.g., for degrees higher than 130 the ratio of

noise to signal reaches to 50 percent. It is noted that the RMSE

fit degrades with increasing the spherical cap, e.g., for M = 100

ranging from 1◦ to 3◦ . The main reason for such behaviour is the

low quality of terrestrial gravity data in Iran which would allow

more leakages of errors to occur into the geoid for large spherical

cap.

Now by adopting the Featherstone scheme for modification of

Stokes' kernel, we present more details about the numerical eval-

uation of integral formulas and their corresponding magnitudes.

The important issue for the evaluation of theG1 andG2 terms is to

select the proper integration radii. The numerical tests show that

G1 andG2 terms evaluated from the integration caps 4◦ to 5◦ and

1◦ to 2◦ differ by less than 10 µGal in absolute values. Therefore,

integration radii equal to 4◦ and 2◦ were used to evaluate G1
and G2 terms, respectively. In Table 2, the contributions of these

two terms to the height anomaly are presented (see, Eq. (5) and
Eq. (8)). It shows that the corrective term ζ1001 reaches a maxi-

mum of 19 cm over the mountainous area. Our numerical results

revealed that the truncation error in evaluating of the ζ1001 term

through the truncated Stokes formula (see, Eq. (5)) reaches the
3 cm level, which is considerable for a geoid accuracy on the 1 cm

level. According to Table 2 we can also see that most contribution

of the height anomaly is related to the geopotential model ζ100 .
This means that the planar approximationmade on the solution of

linearized simple Molodensky problem, which at most introduces

0.4% error (Moritz, 1980), is only concerned on the residual height

anomaly through the remove-compute-restore technique.

From Table 2 we can also see that the values of ζ1002 minimally

reaches the -2 cm level. It should be again emphasized that we

used 5’×5’ mean gravity anomalies for computing the height

anomaly and geoidal height. According to Li. et al. (1995) a
denser dataset can provide more details in rough mountainous

areas. They reported on achieving significant improvement for the

height anomaly prediction over the Canadian RockyMountains by

using a grid spacing of 1 km by 1 km instead of 5’×5’. Indeed,
it is expected to see more significant values for terms ζ1 and ζ2
using the finer grid spacing. However, this does not appear to be

the case in Iran due to poor gravity data coverage, and makes it

impossible to reach finer grid spacing.

Fig. 5(a) shows a plot of the computed N − ζ values based on

Eq. (16). As expected, the minimum value, which reaches -2.33 m,

is connected with heights part of the Alborz Mountains. From

Table 2. Statistics for the height anomaly. Unit: Metre.

parameter Max. Min. Mean Std.

ζ100 34.48 -62.88 -13.69 19.93
ζ1000 4.07 -4.37 -0.03 0.71
ζ1001 0.19 -0.08 0.00 0.01
ζ1002 0.01 -0.02 0.00 0.00

Table 3. Statistics for the geoidal height and height anomaly differ-
ence. Unit: Metre.

Parameter Max. Min. Mean Std.

Res. Stokes 0.07 -0.13 -0.00 0.01
Res. indirect -0.03 -2.91 -0.29 0.33
dζ 0.02 -0.02 -0.00 0.00
N-ζ -0.03 -2.33 -0.27 0.31

Table 3wenotice that the greatest contribution ofN−ζ is related
to the residual indirect effect lying within the interval -2.91 to

-0.03m. Therefore, an optimal method for numerical integration is

essential for accurate topographic roughness potential modelling.

A complex investigation of this matter is still in progress and will

be reported in the future. Similar toG1 andG2 terms, a numerical

test was carried out for selecting a proper integration radius in

evaluationof theresidualStokes integral. Consequently, aspherical

cap of 3◦ was used to achieve mm accuracy. Prior to solving

the residual Stokes integral, the surface gravity anomalies were

transferred to NT-space by using Eq. (12). The integral formulas

for the direct and secondary indirect topographical effects were

numerically evaluated over the integration domain divided into

the far zone, near zone and inner zone. Different DEMs were used

with resolution of 30” and 5’ for the evaluation of inner zone and

near zone with integration radius of spherical cap of 30’ and 5◦ ,

respectively. A global DEM with 1◦ ×1◦ resolution was used for

the integration over the remaining spherical cap or the far zone

contribution. The downward continuedNTgravity anomalieswere

computed by using numerical evaluation of the Poisson formula

with integration radius 80’. The numerical estimate of Eq. (18)
reveals that the downward continuation effcets of NT gravity

anomaly on the geoidal height and height anomaly difference

varies between -5.3 cm and 2.8 cm. A plot of these values is

illustrated in Fig. 5(b).

By way of comparison, the geoid model based on the presented

strategy forN − ζ and conventional method was compared with

the49GPS-levellinggeoidal heights located in roughmountainous

areas, i.e., in an area with more than 2000 m in height. It was

observed that our technique improves the RMSE fit of geoid up to

±14 cm with respect to conventional method.

Fig. 5 presents the geoid model for Iran computed based on the

Molodensky's approach and the presented technique for convert-
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(a)

(b)

Figure 4. (a) Geoidal height and height anomaly difference N − ζ.
Unit: Metre (b) Downward continuation effects of NT grav-
ity anomaly on the geoidal height and height anomaly dif-
ference. Unit: Centimeter.

ing the height anomaly to geoidal height. The internal accuracy

of the geoid can be evaluated by propagating the errors of the

source data into the result. The reliability depends on how realistic

the source data errors are. However, we left such assessment for

the future because there is no reliable estimate for the error of

the gravity and height data. As was mentioned before, the exter-

nal accuracy of the geoid is verified using GPS-levelling geoidal

heights in absolute and relative sense. In the absolute verification,

the external accuracy is achieved by comparing the gravimetric

Figure 5. Gravimetric geoid model for Iran. Unit: Metre.

Table 4. Statistics for new geoid model absolute and relative compar-
ison with GPS-levelling data, Unit: Metre.

Parameter No. points. Max. Min. Mean RMSE ppm

New Geoid - 24.55 -43.84 -12.39 13.08(Std) -
Abs. 513 1.41 -1.72 -0.05 0.53 -
North 74 2.05 -2.45 0.04 0.61 4.30
East 32 1.38 -1.05 0.14 0.49 3.60
South 38 1.49 -1.54 -0.12 0.50 1.95
West 34 0.62 -0.95 -0.22 0.38 2.77
Centre 35 1.91 -2.13 -0.02 0.65 4.05

geoid with GPS-levelling derived geoid. The grid of gravimetric

geoid was interpolated to the position of GPS stations based on a

gridding scheme such as Kriging. We note that the problems of

selecting a suitable interpolation scheme are out of scope of this

paper and left for future.

To take theassessmentofexternal accuracy further, thegravimetric

geoid was verified in relative sense. In this case, the difference

in orthometric height is subtracted from the difference in the

ellipsoidal height to give gradient over specific baselines. The

main benefit of this method is that it removes systematic errors.

For instance, vertical datum-related errors are noticeably reduced,

especially over short baselines. In order to avoid long baselines,

we verified the relative accuracy of the new geoid model in five

subzones as illustrated in Fig. 4(b). The relative differences were

computed over all the possible baselines between GPS stations.

The results are summarized in Table 4.

The differences in absolute values of the geoidal heights are

1.41 m maximum, -1.72 m minimum and ±53 cm RMSE on 513

GPS-levelling points. The relative RMSE vary from ±38 cm in the

West zone to ±65 cm in Central zone. The relative difference

can be expressed in parts per million (ppms) upon division with

the baseline length. The mean values of the relative differences
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over each zone are shown in Table 4. As expected, the minimum

relative differences are observed over the Southern area and it

increases when moving towards the North of the country. Most

likely, the main reason for such behaviour stems from increasing

cumulativeerrorsofspirit levellingfromthezeropointof the Iranian

height system in the southern coastal areas. Furthermore, growing

orthometric corrections tospirit levelleddata towards theNorthern

part anddisregarding this correctionwill cause suchdiscrepancies.

Over the west zone, the gravimetric geoid model performs much

better than other zones, partly because of the high density of

gravity measurements. However, in rough areas like the Northern

and Central zones, we observed larger discrepancies where our

geoid model and GPS-levelling data include errors. Improper

spatial coverage and quality of the terrestrial data, interpolation

error of the free air gravity anomalies, instability of the downward

continuation procedure and dicretization error in modelling of

topographic effects as well as the planar approximation implied in

solving of the simple Molodensky's problem are the main reasons

for the low quality of gravimetric geoid model in these areas.

It is interesting to note that, the absolute RMSE fit of the EIGEN-

GL05S geoid up to degree and order 100 with GPS-levelling data

decreases by more than 65% in comparison with the new com-

putedgeoid, i.e., reduced from±152 cm to±53 cm. Thegravimet-

ric geoid model is usually fitted to the GPS-levelling data by four,

five or seven parametric models to eliminate possible systematic

errors in the geoid (Kotsakis and Sideris, 1999). However, In order

to avoid the prolongation of the paper we do not consider such

fitting procedure in our study. We note that detailed discussion

on verifying the gravimetric geoid model and GPS-levelling data

forms an entirely different scope of study.

5. Summary and conclusions

This paper summarized the main theoretical principles of Molo-

densky's approach toprecisedeterminationof theheight anomaly.

The validated land and marine gravity data as well as the most

recent geopotential model (EIGEN-GL05S from the GRACE and

LAGEOS missions) and new digital elevation model (SRTM) were

used in precise computation of the height anomaly. Compar-

ing different deterministic approaches to modification of Stokes'

kernel, we can say that in our experiment (not presented in the

paper), Featherstonemethod gives the best result. In addition, the

principles of selecting the appropriate modification degree and

integration radius of spherical cap were revised and the values

ofM = 100 and ψ0 = 1◦ were selected, respectively. We also

conclude that aiming to compute the geoid accurate on 1 cm

level, the truncation error for ζ1001 is significant as its magnitudes

reached as much as 3 cm.

The relation between the height anomaly and geoidal height was

modelled based on rigorous formula. To achieve N − ζ in No-

Topography space, the topographic effects on gravity anomalies

need to be formulated and NT gravity anomalies be continued

downward to the geoid level. The residual Stokes kernel is

then employed to determine N − ζ in NT-space. Afterwards,

by adding indirect effects the separation of height anomaly and

geoidal height obtains in real space. For the Iranian territory,

we observed values of N − ζ varying between -3 cm and -

233 cm. We emphasize that the main advantage of the presented

method for precise determination of geoid is that the effects of

mass density variations and downward continuation of gravity

anomaly together with related errors are greatly reduced, e.g.,

contribution of downward continuation to the geoidal height and

height anomaly difference is 32 times smaller than the Stokes-

derived approaches for geoid determination.

Finally the gravimetric geoid was evaluated by comparing the

geoid with 513 GPS-levelling data in absolute and relative sense.

An absolute agreement of ±53 cm RMSE was determined. The

relative investigations in five subzones across the country show the

mean relative accuracy varying between 1.95 ppm and 4.30 ppm.

The presented strategy shows its own efficiency comparing with

the other tested methods in the area of study. The results are

relevant for a number of geodetic applications. Further on, this

model can be advantageous to future studies of geophysics and

geodynamics in Iran.
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Vaníček P., Kleusberg A., 1987, The Canadian geoid-Stokesian
approach. Manuscr. Geod, 12, 86-98.
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Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P.
and TerHorst B., 1996, Downward continuation of Helmert’s gravity
anomaly. J. Geod., 71, 21-34.
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