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Abstract:

Discrete Spherical Harmonic Transforms (SHTs) are commonly defined for equiangular grids on the sphere. However, when global array

data exhibit near equidistributed patterns rather than equiangular grids, discrete SHTs require appropriate adaptations for analysis

and synthesis. Computational efficiency and reliability impose structural constraints on possible equidistribution characteristics of data

patterns such as for instance with Chebychev quadratures and Fast Fourier Transforms (FFTs). Following some general introduction to

discrete SHTs and equidistributions on the sphere, equitriangular (near equiareal) lattices based on the octahedron and the icosahedron

are introduced for SHT analysis and synthesis. The developed formulations are described and implemented using simulated data and

geopotential models such as the Earth Geopotential Model EGM 2008. Comparative results for analysis and synthesis at different levels

of resolution show the potential of the spherical equitriangular approach for geodetic and other applications with nearly equidistributed

global data.
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1. Introduction

Sphericalharmonic transformsarenon-commutativeFourier trans-

formson thesphere. These transformsareglobal as for any regional

subdomain of the sphere, ordinary Fourier transforms can be used

for spectral analysis and other applications. Discrete SHTs aremost

often formulated for equiangular grids with equispaced parallels

for Chebychev quadratures and equispaced meridians for Fast

Fourier Transform (FFT) applications. Non-equispaced parallels

can be handled using least squares with much less computational

efficiency than with Chebychev quadratures, see e.g. Colombo

[1981], Sneeuw [1994], and Blais [2011] for details and references.

However when global data are nearly equidistributed, the equian-
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gular strategies need to be reconsidered especially for spherical

multiresolution analysis and synthesis.

From elementary geometry, the five Platonic (regular) polyhedra

provide the only rigorous equispaced regular sets of points on

the circumscribing sphere. Explicitly, the tetrahedron, the cube,

the octahedron, the icosahedron and the dodecahedron are the

only convex regular polyhedra. The well-known duality between

the cube and the octahedron can be exploited in the sense that

associating discrete values to the vertices of a cube is equiva-

lent to associating those quantities with the face centres of the

octahedron. Similarly for the vertices of the dodecahedron and

the face centres of the icosahedron. The triangular faces of the

octahedron and the icosahedron can be subdivided to generate

a spherical quad-tree (or two-dimensional binary tree) structure

of equal triangular projections onto the circumscribed sphere (see

e.g. [Haagmans, 2000] and [Klees et al, 2001]). Such a strategy

which has been extensively used with global environmental data
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[e.g. Fekete and Treinish, 1990] can be seen to be very closely

compatiblewith the usual equiangular approach todiscrete spher-

ical harmonic transforms using Chebychev quadratures and least

squares.

The approach of estimating spherical harmonic transforms using

octahedron and icosahedron based triangulations can be shown

to be appropriate to handle near-equiareal lattices of geodetic and

similar data with fast decreasing power spectra (see e.g. [Rapp,

1989] and [Flury, 2006]). This is demonstrated using spherical

harmonic synthesis and analysis simulations based on the Earth

Geopotential Model EGM 2008 [Pavlis et al, 2008]. The limitations

of the approach for data with slowly decreasing power spectra are

also briefly discussed and general recommendations are included

for practical applications.

2. Spherical Harmonic Transforms

The orthogonal or Fourier expansion of a function f(θ, λ) on the

sphereS2 is given by

f(θ, λ) = ∞∑
n=0

∑
|m|≤n

fn,mYm
n (θ, λ) (1)

using colatitude θ and longitude λ, where the basis functions

Ym
n (θ, λ) are called the spherical harmonics of degree n and

order m. The usual geodetic spherical harmonic formulation is

given correspondingly as

f(θ, λ) = ∞∑
n=0

n∑
m=0[c̃nm cosmλ+ s̃nm sinmλ]P̃nm(cosθ) (2)

where

{
c̃nm
s̃nm

} = 14π
∫
s2 f(θ, λ)

{ cosmλsinmλ
}
P̃nm(cosθ)dσ (3)

with the geodetically normalized Legendre functions P̃nm(cosθ)
expressed in terms of the usual spherical harmonics Ym

n (θ, λ) (see
e.g. [Heiskanen and Moritz, 1967] and [Blais and Provins, 2002] for

details). The tilde ``~ '' is used herein to indicate the usual geodetic

normalization.

Explicitly, using the geodetic formulation and convention, one has

for synthesis with spherical band limitN

f(θ, λ) = N−1∑
n=0

n∑
m=0[c̃nm cosmλ+ c̃nm sinmλ]P̃nm(cosθ) (4)

and for analysis, using complex notation,

c̃nm + is̃nm = 14π
∫ 2π

0
∫ π

0 f(θ, λ)(cosmλ+ i sinmλ)P̃nm(cosθ) sinθdθdλ = ∫ π

0 [um(θ) + iνm(θ)]P̃nm(cosθ) sinθdθ (5)

where

um(θ) + iνm(θ) = 14π
∫ 2π

0 f(θ, λ(cosmλ+ i sinmλ)dλ (6)

which is simply the parallel-wise Fourier transform of the spatial

array data.

Using equiangular grids for degreeN , the Chebychev Quadrature

(CQ) is as follows

c̃′nm + is̃′nm = 2N−1∑
j=0 qj (ujm + iνjm)P̃nm(cosθj ) (7)

with ujm ≡ um(θj ) and νjm ≡ νm(θj ) (shifted) isolatitudes

θj = (j + 12 )π/2N and CQ weights

qj = 1
N sin ((j+12 )π/2N) N−1∑

h=0
12h+ 1 sin ((2h+1)(j+12 )π/2N)

(8)
with q2N−j = qj for j = 0, 1, . . . , N − 1 by hemispherical

symmetry. These computations are roughly O(N3) for degree

N . More details about these Chebychev weights can be found in

[Blais, 2011].

A Least-Squares (LS) formulationperorderm (formaximumdegree

N) can also be used for spherical harmonic analysis:

N−1∑
n=m P̃nm(cosθj )(c̃′′nm + is̃′′nm) = um(θj ) + iνm(θj ) (9)

with (shifted) isolatitudes θj = (j + 12 )π/N for j = 0, 1, . . . ,
N − 1, again taking advantage of hemispherical symmetry. The

least-squares computations for c̃′′nm + is̃′′nm per order m are ob-
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viously very demanding and roughly O(N4). More details can be

found in Blais [2011].

For some practical applications, equiangular grids are not appro-

priate for various reasons and some equidistribution alternatives

are desirable. Moreover, in cases involving spherical convolutions

such as filtering and multiresolution applications, the use of FFTs

and SHTs are highly desirable for computational efficiency and reli-

ability in large computations. Hence with appropriate constraints,

equidistributed arrays of nodes are investigated as alternatives for

equiangular grids for spherical harmonic analysis and synthesis.

3. Equidistributions on the Sphere

A spherical equiangular lattice of points obviously does not exhibit

an equidistributed point set over the two-dimensional spheri-

cal surface. Equidistribution or uniform areal distribution of a

point set is measured by discrepancy quantities which correspond

to the supremum of cell point densities relative to the corre-

sponding uniform densities. Considering the points or nodes

ξn : n = 1, . . . , N on the spherical surface, for an arbitrary cell C,

discrepancy can be defined by

discrepancy = sup
all C∈S2

∑N
n=1 χC (ξn)/NlimN→∞
∑N

n=1 χC (ξn)/N (10)

in which χC (ξn) denotes the characteristic function for the cell C.

There are numerous definitions of discrepancy in the literature but

the simple preceding definition is sufficient to convey the concep-

tual idea for the sphere S2 . In more general contexts, it is known

that for the s-dimensional cube, pseudo-random numbers can

only achieve a discrepancy level of (log logN)1/2/N1/2 while it is

possible to construct quasi-random (deterministic) sequenceswith

discrepancy level of (logN)S/N (see e.g. Morokoff and Caflisch

[1994] for details and references). Notice that the dependency of

the discrepancy on the dimension implies that quasi-random se-

quences are potentially advantageous over pseudo-random num-

bers in higher dimensions (see e.g. Blais and Zhang [2011]).

For spherical harmonic applications, Cui [1995], Cui and Freeden

[1997] and Freeden [1998] discuss various node sequences of

low discrepancy on the sphere. From a geometrical perspective,

the vertices of regular polyhedra inscribed in the sphere obvi-

ously imply low discrepancy sequences, e.g. the tetrahedron, the

cube, the octahedron, the icosahedron and the dodecahedron.

Adaptations of these and other sequences due to Faure, Halton,

Hammersley, Sobol, Niederreiter andvanderCorput amongothers

are well known in quasi Monte Carlo methods (see the preceding

references). For spherical harmonic analysis and synthesis for mul-

tiresolution applications, different constraints are most important

such as the hierarchical or pyramidal properties of the data struc-

ture (which imply that any level data set becomes a subset of all

higher-level data sets) and the various requirements for SHTs using

FFTs, Chebychev quadratures and least-squares formulations.

In the following, the equiangular approach will be adapted to

densifications of the octahedron and icosahedron triangular faces

projectedonto thecircumscribing sphere toachievenearequiareal

triangulation structures. These quad-tree structures (implied by

the partitioning of the triangular faces) have advantageous char-

acteristics such as equilatitude subsets of equispaced points for

quadratures and Fast Fourier computations. Furthermore, these

configurations can readily be generated by applying amask to the

corresponding equiangular lattices of points. This is very advan-

tageous for practical experimentation with and without any mask

for comparative analysis and computational efficiency. Simula-

tions will be carried out using the EGM 2008 spherical harmonic

coefficients.

4. Octahedron-Based Strategies

An octahedron is a regular polyhedron with six vertices, eight

(equitriangular) faces and twelve edges. Each triangular face can

be subdivided into four equitriangular areas whose vertices can

be projected onto the spherical surface for a higher level partition

of the surface. This is the spherical quad-tree structure shown

graphically in Figure 1. It is important to notice the octahedron is

dual to the cube which has eight vertices, six (square) faces and

twelve edges. Hence associating data values with the octahedron

face centres is equivalent to associating data values with the

vertices of a cube, and so on at higher levels of spherical partition.

Using the cube and/or the octahedron, a near-equiareal partition

of the (unit) sphere has been constructed and used extensively in

the Healpix project [Gorski et al, 1998]. This strategy has proven

very appropriate in astrophysical and related applications such as

COBE and WMAP. One discrete gridding of the sphere goes as

follows in colatitude θ by longitudes λ:

Level One:(π/4, 0), (π/4, π/2), (π/4, π), (π/4, 3π/2)(3π/4, 0), (3π/4, π/2), (3π/4, π), (3π/4, 3π/2)
Level Two:(π/8, 0), (π/8, π/2), (π/8, π), (π/8, 3π/2)(3π/8, 0), (3π/8, π/6), (3π/8, π/3), (3π/8, π/2), . . . , (3π/8, 11π/6)(5π/8, 0), (5π/8, π/6), (5π/8, π/3), (5π/8, π/2), . . . , (5π/8, 11π/6)(7π/8, 0), (7π/8, π/2), (7π/8, π), (7π/8, 3π/2)
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be projected onto the spherical surface for a higher level partition of the surface. This is the 
spherical  quad-tree  structure  shown  graphically  in  Figure  1.   It  is  important  to  notice  the 
octahedron is dual to the cube which has eight vertices,  six (square) faces and twelve edges. 
Hence associating data values with the octahedron face centres is equivalent to associating data 
values with the vertices of a cube, and so on at higher levels of spherical partition.

Using the cube and/or the octahedron, a near-equiareal partition of the (unit) sphere 
has been constructed and used extensively in the Healpix project [Gorski et al, 1998]. 
This strategy has proven very appropriate in astrophysical and related applications 
such as COBE and WMAP.  One discrete gridding of the sphere goes as follows in 
colatitude θ by longitudes λ:

Level One:
  (π/4, 0), (π/4, π/2), (π/4, π), (π/4, 3π/2)

(3π/4, 0), (3π/4, π/2), (3π/4, π), (3π/4, 3π/2)
Level Two:

(π/8, 0), (π/8, π/2), (π/8, π), (π/8, 3π/2)
(3π/8, 0), (3π/8, π/6), (3π/8, π/3), (3π/8, π/2), …, (3π/8, 11π/6)
(5π/8, 0), (5π/8, π/6), (5π/8, π/3), (5π/8, π/2), …, (5π/8, 11π/6)
(7π/8, 0), (7π/8, π/2), (7π/8, π), (7π/8, 3π/2)

Figure 1. Octahedron and Spherical Quadtree Densification

and so on for higher levels, as shown graphically in Figure 2. Notice that the latitudes 
have  been  recentered  (at  each  level)  to  take  advantage  of  the  hemispherical 
symmetry in the computations. The triangular faces (∆′s) lead to a recursive near-
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From Level One in Figure 2, the configuration is simply the same as an equiangular one giving a 
data matrix of two rows and four columns.  From Level Two in Figure 2, the configuration is 
different from the equiangular one with four rows and 12 columns with only 32 values out of the 
48 elements.  In general for Level L, one has only  22L+1  data values out of a regular matrix of 2L 
rows and  4× (2L – 1)  columns.  Notice that the resulting data have a quad-tree data structure  in 
both configurations for variable levels L = 1, 2, 3, …  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Octahedron Based Spherical Quad-tree Data Structure for Resolution Levels 1, 2 and 3 
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and thirty edges. Again this implies that associating data values with the icosahedron face centres 
is equivalent to associating data values with the vertices of a dodecahedron, and so on at higher 
levels of spherical partition.  However, for exact hemispherical symmetry, the lower hemisphere 
has to be rotated clockwise or counterclockwise by an angle of π/5.  However, this offset is only 
really significant at Level 1 which is a special case when using geopotential and similar geodetic 
data because of the null spectral coefficients of degrees zero and one [Heiskanen and Moritz, 
1967]. 
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Figure 2. Octahedron Based Spherical Quad-tree Data Structure for
Resolution Levels 1, 2 and 3

and so on for higher levels, as showngraphically in Figure 2. Notice

that the latitudes have been recentered (at each level) to take ad-

vantage of the hemispherical symmetry in the computations. The

triangular faces (∆′s) lead to a recursive near-equiareal partition of

the spherical surface (see Figure 1) and a spherical quad-tree data

structure:

2× (4)∆′s → 2× (4 + 12)∆′s →2× (4 + 12 + 20 + 28)∆′s → . . . (11)

with isogridlines and constant ∆λ thereon for FFT computations.

Notice that such grid has overall dimensionsN × 4(N − 1) with

N even at each level, with exact hemispherical symmetry, which

is compatible with the Chebychev quadrature and least-squares

approaches discussed in the previous Section.

From Level One in Figure 2, the configuration is simply the same

as an equiangular one giving a data matrix of two rows and four

columns. From Level Two in Figure 2, the configuration is different

from the equiangular one with four rows and 12 columns with

only 32 values out of the 48 elements. In general for Level L,
one has only 22L+1 data values out of a regular matrix of 2L rows

and 4 × (2L − 1) columns. Notice that the resulting data have a

quad-tree data structure in both configurations for variable levels

L = 1, 2, 3, . . .
5. Icosahedron-Based Strategies

An icosahedron is a regular polyhedron with twelve vertices,

twenty (equitriangular) faces and thirty edges. Each triangular face

can be subdivided into four equitriangular areas whose vertices

can be projected onto the spherical surface for a higher level parti-

tion of the surface. This is the spherical quad-tree structure shown

graphically in Figure 3. It is important to notice the icosahedron

is dual to the dodecahedron which has twenty vertices, twelve

(pentagonal) faces and thirty edges. Again this implies that asso-

ciating data values with the icosahedron face centres is equivalent

to associating data values with the vertices of a dodecahedron,

and so on at higher levels of spherical partition. However, for exact

hemispherical symmetry, the lower hemisphere has to be rotated

clockwise or counterclockwise by an angle of π/5. However, this

offset is only really significant at Level 1 which is a special case

when using geopotential and similar geodetic data because of the

null spectral coefficients of degrees zero and one [Heiskanen and

Moritz, 1967].

Based on the icosahedron, assuming an approximate hemispheri-

cal symmetry, the discrete gridding of the sphere goes as follows

in colatitude θ by longitudes λ:
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Level One:(π/6, 0), (π/6, 2π/5), (π/6, 4π/5), (π/6, 6π/5), (π/6, 8π/5)(π/2, 0), (π/2, π/5), (π/2, 2π/5), . . . , (π/2, 9π/5)(5π/6, 0), (5π/6, 2π/5), (5π/6, 4π/5), (5π/6, 6π/5), (5π/6, 8π/5)
Level Two:(π/12, 0), (π/12, 2π/5), (π/12, 4π/5), (π/12, 6π/5), (π/12, 8π/5)(π/4, 0), (π/4, π/10), (π/4, 3π/10), (π/4, 2π/5), . . . , (π/4, 19π/10)(5π/12, 0), (5π/12, π/10), (5π/12, π/5), (5π/12, 3π/10), . . . , (5π/12, 19π/10)(7π/12, 0), (7π/12, π/10), (7π/12, π/5), (7π/12, 3π/10), . . . , (7π/12, 19π/10)(3π/4, 0), (3π/4, π/10), (3π/4, 3π/10), (3π/4, 2π/5), . . . , (3π/4, 19π/10)(11π/12, 0), (11π/12, 2π/5), (11π/12, 4π/5), (11π/12, 6π/5), (11π/12, 8π/5)

and so on for higher levels, as shown graphically in Figure 4.

Again, notice that the latitudes have been recentered (at each

level) to take advantage of the hemispherical symmetry in the

computations. The triangular faces (∆′s) lead to a recursive near-

equiareal partition of the spherical surface (see Figure 3) and a

spherical quad-tree data structure:

2× (5) + 10∆′s → 2× (5 + 15) + 10(4)∆′s →2× (5 + 15) + . . . ∆′s → . . . (12)

with isogridlines and constant∆λ thereon for FFT computations.

FromLevelOne in Figure 4, the configuration exhibits a datamatrix

of three rows and ten columns with only 20 nodes out of the 30

elements. From Level Two in Figure 4, the configuration has six

rows and 20 columns with only 80 values out of the 120 elements.

In general for Level L, one has only 5 × 2L+1 data values out of

a regular matrix of 3 × 2L−1 rows and 5 × 2L columns. Notice

that the resulting icosahedron-based data have a quad-tree data

structure inboth configurations for variable LevelsL = 1, 2, 3, . . .
but Level One is not compatible with the Chebychev quadrature

as the number of rows is odd.

6. Numerical Experimentation

The latest Earth Geopotential Model EGM 2008 of maximum de-

gree and order 2190, available from http://earth-info.nima.mil/
GandG/, can be considered as the most complete combined

geopotential model for terrestrial applications such as geoid un-

dulations, deflections of the vertical, etc. (see [Pavlis et al, 2008] for

details). The EGM 2008 spectrum is well known to decrease rapidly

with increasing degrees so that the high latitude gaps in the data

matrices will be much less problematic than when using noise

simulations with constant spectra (as done e.g. in [Blais, 2011]).

Obviously, this is only significant in the analysis part of nearly

equidistributed data as the synthesis is completely unaffected.

The EGM 2008 spectrum has null coefficients of degrees zero

and one as these are the so-called forbidden harmonics which is

well-known in geodesy [Heiskanen andMoritz, 1967]. Such null co-

efficients obviously affect any low-level octahedral and icosahedral

simulations with EGM 2008 and other similar geopotential data.

The spherical harmonic transform formulation does not obviously

have any such constraint for degrees zero and one.

6.1. Using the Octahedron-Based Triangulation Approach

Using the data matrix templates corresponding to the octahedron

shown in Figure 2, simulations have been carried out for the

first 12 levels of octahedral triangulation using the Chebychev

quadrature (CQ) and the first 11 levels using least squares (LS).

Tables 1 and 2 show respectively the CQ and LS results in terms

of spectral RMS (i.e. after synthesis and analysis) and spatial

RMS (i.e. after a second synthesis) first, without mask (i.e. full

equiangular grid) and second, with mask (i.e. equitriangular grid).

The results corresponding to the full data matrices (without mask)

are very stable and essentially of the same order of magnitude

as for corresponding equiangular results with EGM 2008 given in

Blais [2011]. The results corresponding to the octahedron-based

data (i.e. applying the masks) are less accurate as expected but

very stable numerically. The loss of accuracy with equidistributed

data depends on the corresponding spectrum as the missing high

latitude equiangular values affect the FFT results in the first part of

the analysis.

6.2. Using the Icosahedron-Based Triangulation Approach

Using the datamatrix templates corresponding to the icosahedron

shown in Figure 3, simulations have been carried out for 10 levels

of icosahedral triangulation using the Chebychev quadrature (CQ)

and least squares (LS). Tables 3 and 4 show respectively the CQ

and LS results in terms of spectral RMS (i.e. after synthesis and

analysis) and spatial RMS (i.e. after a second synthesis) first,

without mask (i.e. full equiangular grid) and second, with mask

(i.e. equitriangular grid). The results corresponding to the full data

matrices (withoutmask) are very stable and essentially of the same

order of magnitude as for corresponding equiangular results with

EGM 2008 given in Blais [2011]. The results corresponding to the

icosahedron-based data (i.e. applying the masks) are much less

accurate as expected but very stable numerically.

Notice that in Table 4, Level One with the 3×10 grid is not

compatible with the CQ approach and the RMS values are trivial

http://earth-info.nima.mil/GandG/
http://earth-info.nima.mil/GandG/
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and thirty edges. Again this implies that associating data values with the icosahedron face centres 
is equivalent to associating data values with the vertices of a dodecahedron, and so on at higher 
levels of spherical partition.  However, for exact hemispherical symmetry, the lower hemisphere 
has to be rotated clockwise or counterclockwise by an angle of π/5.  However, this offset is only 
really significant at Level 1 which is a special case when using geopotential and similar geodetic 
data because of  the null spectral coefficients of degrees zero and one [Heiskanen and Moritz, 
1967].

Figure 3. Icosahedron and Spherical Quad-Tree Densification

Based on the icosahedron, assuming an approximate hemispherical symmetry, the 
discrete gridding of the sphere goes as follows in colatitude θ by longitudes λ:

Level One:
(π/6, 0), (π/6, 2π/5), (π/6, 4π/5), (π/6, 6π/5), (π/6, 8π/5)
(π/2, 0),  (π/2, π/5), (π/2, 2π/5), …, (π/2, 9π/5)
(5π/6, 0), (5π/6, 2π/5), (5π/6, 4π/5), (5π/6, 6π/5), (5π/6, 8π/5) 

Level Two:
(π/12, 0), (π/12, 2π/5), (π/12, 4π/5), (π/12, 6π/5), (π/12, 8π/5)
(π/4, 0),  (π/4, π/10), (π/4, 3π/10), (π/4, 2π/5), …, (π/4, 19π/10)
(5π/12, 0), (5π/12, π/10), (5π/12, π/5), (5π/12, 3π/10), …, (5π/12, 19π/10)
(7π/12, 0), (7π/12, π/10), (7π/12, π/5), (7π/12, 3π/10), …, (7π/12, 19π/10) 
(3π/4, 0),  (3π/4, π/10), (3π/4, 3π/10), (3π/4, 2π/5), …, (3π/4, 19π/10)

                       (11π/12, 0), (11π/12, 2π/5), (11π/12, 4π/5), (11π/12, 6π/5), (11π/12, 
8π/5)
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Figure 3. Icosahedron and Spherical Quad-Tree Densification
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in both configurations for variable Levels L = 1, 2, 3, …  but Level One is not compatible with 
the Chebychev quadrature as the number of rows is odd. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure 4. Icosahedron Based Spherical Quadtree Data Structure for Resolution Levels 1, 2 and 3 
 
 
6   Numerical Experimentation 
 
The latest Earth Geopotential Model EGM 2008 of maximum degree and order 2190, available 
from http://earth-info.nima.mil/GandG/, can be considered as the most complete combined 
geopotential model for terrestrial applications such as geoid undulations, deflections of the 
vertical, etc. (see [Pavlis et al, 2008] for details). The EGM 2008 spectrum is well known to 
decrease rapidly with increasing degrees so that the high latitude gaps in the data matrices will be 
much less problematic than when using noise simulations with constant spectra (as done e.g. in 
[Blais, 2011]).  Obviously, this is only significant in the analysis part of nearly equidistributed 
data as the synthesis is completely unaffected.  
 
The EGM 2008 spectrum has null coefficients of degrees zero and one as these are the so-called 
forbidden harmonics which is well-known in geodesy [Heiskanen and Moritz, 1967].  Such null 
coefficients obviously affect any low-level octahedral and icosahedral simulations with EGM 
2008 and other similar geopotential data. The spherical harmonic transform formulation does not 
obviously have any such constraint for degrees zero and one. 
 
a)  Using the Octahedron-Based Triangulation Approach 
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Figure 4. Icosahedron Based Spherical Quadtree Data Structure for
Resolution Levels 1, 2 and 3

with LS because of the null spectral coefficients of degrees zero

and one in EGM 2008.

7. Concluding Remarks

The equiangular grids which are conventional with discrete spher-

ical harmonic transforms are not always appropriate in practice

when the observational data are nearly equispaced or equidis-

tributed on the sphere. Spherical quad-tree triangulation ap-

proaches using the octahedron and icosahedron triangular faces

have been investigated for spherical harmonic analysis and syn-

thesis. The modified SHT approach for multiple resolutions shows

good accuracy and numerical stability with EGM 2008 and similar

geodetic data with rapidly decreasing spectra. The high-latitude

sparsity of data with such spherical equidistribution affects the es-

timation of high-degree spectral coefficients but the implications

have been demonstrated to be quite acceptable with common

geodetic data such as simulated using EGM 2008. In practice

with noise-like data (i.e. with nearly constant spectra), following

a preliminary analysis with near-equidistributed data, a synthesis

on an equiangular grid may be required to refine the estimated

spectral coefficients through a second analysis of the estimated

equiangular grid values.

Notice that the approximate hemispherical symmetry assumed

in the case of icosahedron-based simulated data gives analysis

and synthesis results comparable with the octahedron-based data

where the hemispherical symmetry is exact. Furthermore, such

an approximation which is required for equilongitude patterns

needed with CQ and LS appears to improve with higher levels of

resolution at least in simulations using EGM 2008.

In conclusion, when dealing with approximately equidistributed

geodetic and other similar data on the sphere, the equitriangular

quad-tree approachbasedon theoctahedronand the icosahedron

provides an effective adaptation of the usual equiangular spherical

harmonic transform for multiresolution analysis and synthesis.

Furthermore, the computational efficiency of the modified SHTs is

comparable to the previously documented SHT using CQ and LS.
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