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Abstract:

Discrete Spherical Harmonic Transforms (SHTs) are commonly defined for equiangular grids on the sphere. However, when global array
data exhibit near equidistributed patterns rather than equiangular grids, discrete SHTs require appropriate adaptations for analysis
and synthesis. Computational efficiency and reliability impose structural constraints on possible equidistribution characteristics of data
patterns such as for instance with Chebychev quadratures and Fast Fourier Transforms (FFTs). Following some general introduction to
discrete SHTs and equidistributions on the sphere, equitriangular (near equiareal) lattices based on the octahedron and the icosahedron
are introduced for SHT analysis and synthesis. The developed formulations are described and implemented using simulated data and
geopotential models such as the Earth Geopotential Model EGM 2008. Comparative results for analysis and synthesis at different levels
of resolution show the potential of the spherical equitriangular approach for geodetic and other applications with nearly equidistributed

global data.
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1. Introduction

Spherical harmonic transforms are non-commutative Fourier trans-
formsonthesphere. These transforms are global asforany regional
subdomain of the sphere, ordinary Fourier transforms can be used
for spectral analysis and other applications. Discrete SHTs are most
often formulated for equiangular grids with equispaced parallels
for Chebychev quadratures and equispaced meridians for Fast
Fourier Transform (FFT) applications. Non-equispaced parallels
can be handled using least squares with much less computational
efficiency than with Chebychev quadratures, see e.g. Colombo
[1981], Sneeuw [1994], and Blais [2011] for details and references.
However when global data are nearly equidistributed, the equian-
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gular strategies need to be reconsidered especially for spherical
multiresolution analysis and synthesis.

From elementary geometry, the five Platonic (regular) polyhedra
provide the only rigorous equispaced regular sets of points on
the circumscribing sphere. Explicitly, the tetrahedron, the cube,
the octahedron, the icosahedron and the dodecahedron are the
only convex regular polyhedra. The well-known duality between
the cube and the octahedron can be exploited in the sense that
associating discrete values to the vertices of a cube is equiva-
lent to associating those quantities with the face centres of the
octahedron. Similarly for the vertices of the dodecahedron and
the face centres of the icosahedron. The triangular faces of the
octahedron and the icosahedron can be subdivided to generate
a spherical quad-tree (or two-dimensional binary tree) structure
of equal triangular projections onto the circumscribed sphere (see
e.g. [Haagmans, 2000] and [Klees et al, 2001]). Such a strategy
which has been extensively used with global environmental data
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[e.g. Fekete and Treinish, 1990] can be seen to be very closely
compatible with the usual equiangular approach to discrete spher-
ical harmonic transforms using Chebychev quadratures and least
squares.

The approach of estimating spherical harmonic transforms using
octahedron and icosahedron based triangulations can be shown
to be appropriate to handle near-equiareal lattices of geodetic and
similar data with fast decreasing power spectra (see e.g. [Rapp,
1989] and [Flury, 2006]). This is demonstrated using spherical
harmonic synthesis and analysis simulations based on the Earth
Geopotential Model EGM 2008 [Pavlis et al, 2008]. The limitations
of the approach for data with slowly decreasing power spectra are
also briefly discussed and general recommendations are included
for practical applications.

2. Spherical Harmonic Transforms

The orthogonal or Fourier expansion of a function (6, A) on the
sphere S? is given by

f(6,4) = i > famY(6.4) e))

n=0 |m|<n

using colatitude 6 and longitude A, where the basis functions
Y7 (6, ) are called the spherical harmonics of degree n and

order m. The usual geodetic spherical harmonic formulation is

given correspondingly as

(6, = Z Z[Enm €oS MA + 5, Sin m)\],E’n,,,(cos 0) (2)

n=0 m=0

where

Com | _ l cosmh | =
{ . ]» = /52 f(@,)\){ <in mA }P,,,,,(cos@)da 3)

with the geodetically normalized Legendre functions F’nm(cos 0)
expressed in terms of the usual spherical harmonics Y," (6, A) (see
e.g. [Heiskanen and Moritz, 1967] and [Blais and Provins, 2002] for
details). The tilde “~ " is used herein to indicate the usual geodetic
normalization.

Explicitly, using the geodetic formulation and convention, one has
for synthesis with spherical band limit N

N=1 n

f(6,)) = Z Z[En,,, €oS MA + €y SIN m)\],B,,,,,(cos 6) @

n=0 m=0

and for analysis, using complex notation,

21 T . T .
Com + iSpm = 41—” / / (6, A)(cos mA + i sin mA) P, (cos ) sin 6dOdA = / [Um(O) + ivin(0)]Pym(cos B) sin 6dO  (5)
o Jo 0

where

2

Up(0)+ivy(6) = 417 (6, A(cos mA + i sin mA)dA (6)

0

which is simply the parallel-wise Fourier transform of the spatial
array data.

Using equiangular grids for degree N, the Chebychev Quadrature
(CQ) is as follows

IN-1
e+ is, = Z qj(Ujm + iVin)Pam(cosB;) (1)
=0

with Ujm = Un(6;) and vj, = v,(6;) (shifted) isolatitudes
0, =(+ %)JT/ZN and CQ weights
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gy = 5y sin ((j+§)7r/2N) > Tl ((2h+1)(j+§)71/2N)
h=0

)
with gon—; = q; for j = 0,1,..., N — 1 by hemispherical
symmetry. These computations are roughly O(N?) for degree
N. More details about these Chebychev weights can be found in
[Blais, 2011].

A Least-Squares (LS) formulation per order m (for maximum degree
N)) can also be used for spherical harmonic analysis:

z

Pom(c0s 6))(€%, + i300) = Un(6)) + iva(6)  (9)

n

I
3

with (shifted) isolatitudes 6; = (j + %)JT/N forj =0,1,...,
N — 1, again taking advantage of hemispherical symmetry. The
least-squares computations for €, + i3, per order m are ob-



viously very demanding and roughly O(N*). More details can be
found in Blais [2011].
For some practical applications, equiangular grids are not appro-

priate for various reasons and some equidistribution alternatives
are desirable. Moreover, in cases involving spherical convolutions
such as filtering and multiresolution applications, the use of FFTs
and SHTs are highly desirable for computational efficiency and reli-
ability in large computations. Hence with appropriate constraints,
equidistributed arrays of nodes are investigated as alternatives for
equiangular grids for spherical harmonic analysis and synthesis.

3. Equidistributions on the Sphere

A spherical equiangular lattice of points obviously does not exhibit
an equidistributed point set over the two-dimensional spheri-
cal surface. Equidistribution or uniform areal distribution of a
point set is measured by discrepancy quantities which correspond
to the supremum of cell point densities relative to the corre-
sponding uniform densities. Considering the points or nodes
&, :n=1,..., Nonthe spherical surface, for an arbitrary cell C,

discrepancy can be defined by

N
2)IN
discrepancy = sup — 2= )LC(GZ )/
att ces? WMnSoo Y g X (En)IN

10)

in which x¢c(&,) denotes the characteristic function for the cell C.
There are numerous definitions of discrepancy in the literature but
the simple preceding definition is sufficient to convey the concep-
tual idea for the sphere S2. In more general contexts, it is known
that for the s-dimensional cube, pseudo-random numbers can
only achieve a discrepancy level of (log log N)"2/N'2 while it is
possible to construct quasi-random (deterministic) sequences with
discrepancy level of (log N)>/N (see e.g. Morokoff and Caflisch
[1994] for details and references). Notice that the dependency of
the discrepancy on the dimension implies that quasi-random se-
quences are potentially advantageous over pseudo-random num-
bers in higher dimensions (see e.g. Blais and Zhang [2011]).

For spherical harmonic applications, Cui [1995], Cui and Freeden
[1997] and Freeden [1998] discuss various node sequences of
low discrepancy on the sphere. From a geometrical perspective,
the vertices of regular polyhedra inscribed in the sphere obvi-
ously imply low discrepancy sequences, e.g. the tetrahedron, the

Level One:
(7r/4,0), (7t/4, 7[2), (4, 1), (7t/4, 37/2)
(37/4,0), (37/4, 7/2), (37/4, x), (37/4, 37/2)
Level Two:
7/8,0), (r/8, w/2), (7/8, 7), (7/8, 37/2)
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cube, the octahedron, the icosahedron and the dodecahedron.
Adaptations of these and other sequences due to Faure, Halton,
Hammersley, Sobol, Niederreiter and van der Corput among others
are well known in quasi Monte Carlo methods (see the preceding
references). For spherical harmonic analysis and synthesis for mul-
tiresolution applications, different constraints are most important
such as the hierarchical or pyramidal properties of the data struc-
ture (which imply that any level data set becomes a subset of all
higher-level data sets) and the various requirements for SHTs using
FFTs, Chebychev quadratures and least-squares formulations.

In the following, the equiangular approach will be adapted to
densifications of the octahedron and icosahedron triangular faces
projected onto the circumscribing sphere to achieve near equiareal
triangulation structures. These quad-tree structures (implied by
the partitioning of the triangular faces) have advantageous char-
acteristics such as equilatitude subsets of equispaced points for
quadratures and Fast Fourier computations. Furthermore, these
configurations can readily be generated by applying a mask to the
corresponding equiangular lattices of points. This is very advan-
tageous for practical experimentation with and without any mask
for comparative analysis and computational efficiency. Simula-
tions will be carried out using the EGM 2008 spherical harmonic
coefficients.

4, Octahedron-Based Strategies

An octahedron is a regular polyhedron with six vertices, eight
(equitriangular) faces and twelve edges. Each triangular face can
be subdivided into four equitriangular areas whose vertices can
be projected onto the spherical surface for a higher level partition
of the surface. This is the spherical quad-tree structure shown
graphically in Figure 1. It is important to notice the octahedron is
dual to the cube which has eight vertices, six (square) faces and
twelve edges. Hence associating data values with the octahedron
face centres is equivalent to associating data values with the
vertices of a cube, and so on at higher levels of spherical partition.
Using the cube and/or the octahedron, a near-equiareal partition
of the (unit) sphere has been constructed and used extensively in
the Healpix project [Gorski et al, 1998]. This strategy has proven
very appropriate in astrophysical and related applications such as
COBE and WMAP. One discrete gridding of the sphere goes as
follows in colatitude 6 by longitudes A:

57/8,0), (57/8, 7/6), (57/8, /3), (5r/8, 7/2), ..., (Bx/8,117/6)

(
(37/8,0), (37/8, 7/6), (3/8, 7/3), (37/8, 7/2), ..., (37/8, 117/6)
(
(

7718,0), (7/8, n/2), (78, 7), (77/8, 37/2)
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Figure 1. Octahedron and Spherical Quadtree Densification
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Figure 2. Octahedron Based Spherical Quad-tree Data Structure for
Resolution Levels 1,2 and 3

and so on for higher levels, as shown graphically in Figure 2. Notice
that the latitudes have been recentered (at each level) to take ad-
vantage of the hemispherical symmetry in the computations. The
triangular faces (A\'s) lead to a recursive near-equiareal partition of
the spherical surface (see Figure 1) and a spherical quad-tree data
structure:

2x (BA's > 2 x (4 +12)A's —
2x (4+12+20+ 28)A's — ... (11)

with isogridlines and constant AA thereon for FFT computations.
Notice that such grid has overall dimensions N x 4(N — 1) with
N even at each level, with exact hemispherical symmetry, which
is compatible with the Chebychev quadrature and least-squares
approaches discussed in the previous Section.

From Level One in Figure 2, the configuration is simply the same

as an equiangular one giving a data matrix of two rows and four
—~
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columns. From Level Two in Figure 2, the configuration is different
from the equiangular one with four rows and 12 columns with
only 32 values out of the 48 elements. In general for Level L,

22541 data values out of a regular matrix of 2 rows

one has only
and 4 x (25 — 1) columns. Notice that the resulting data have a

quad-tree data structure in both configurations for variable levels
L=1,23,...

5. lcosahedron-Based Strategies

An icosahedron is a regular polyhedron with twelve vertices,
twenty (equitriangular) faces and thirty edges. Each triangular face
can be subdivided into four equitriangular areas whose vertices
can be projected onto the spherical surface for a higher level parti-
tion of the surface. This is the spherical quad-tree structure shown
graphically in Figure 3. It is important to notice the icosahedron
is dual to the dodecahedron which has twenty vertices, twelve
(pentagonal) faces and thirty edges. Again this implies that asso-
ciating data values with the icosahedron face centres is equivalent
to associating data values with the vertices of a dodecahedron,
and so on at higher levels of spherical partition. However, for exact
hemispherical symmetry, the lower hemisphere has to be rotated
clockwise or counterclockwise by an angle of 77/5. However, this
offset is only really significant at Level 1 which is a special case
when using geopotential and similar geodetic data because of the
null spectral coefficients of degrees zero and one [Heiskanen and
Moritz, 1967].

Based on the icosahedron, assuming an approximate hemispheri-
cal symmetry, the discrete gridding of the sphere goes as follows
in colatitude 6 by longitudes A:



Level One:
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(7/6,0), (/6, 27/5), (7/6, 47/5), (7/6, 67/5), (7/6, 87/5)

(7/2,0), ()2, 7/5), (712, 27/5), ... ., (7/2, 9 [5)

(57/6,0), (57/6, 27/5), (5716, 47/5), (5:1/6, 6:t/5), (5716, 87/5)

Level Two:

7/12,0), (/12, 27/5), (/12, 47/5), (/12, 651/5), (/12, 87/5)
7/4,0), (7/4, £/10), (7t/4, 37/10), (/4, 27/5), . . ., /4, 197/10)

77/12,0), (7712, 7/10), (7712, 7 /5), (7/12,37/10), .. ., (77/12,197/10)

37/4,0), (37/4, ©/10), (37/4,37/10), (37/4, 27/5), ..

., (37/4,197/10)

(
(
(57/12,0), (5/12, 7/10), (512, 7/5), (5/12,37/10), . .., (57/12,197/10)
(
(
(

117/12,0), (117212, 27/5), (1 7/12, 47 /5), (117/12, 67/5), (11712, 87/5)

and so on for higher levels, as shown graphically in Figure 4.
Again, notice that the latitudes have been recentered (at each
level) to take advantage of the hemispherical symmetry in the
computations. The triangular faces (A\’s) lead to a recursive near-
equiareal partition of the spherical surface (see Figure 3) and a
spherical quad-tree data structure:

2x (5)+10A's - 2 x (5+15) + 10(4)A's —
2x (5+15)+...As — ... (12)
with isogridlines and constant AA thereon for FFT computations.
From Level Onein Figure 4, the configuration exhibits a data matrix
of three rows and ten columns with only 20 nodes out of the 30
elements. From Level Two in Figure 4, the configuration has six
rows and 20 columns with only 80 values out of the 120 elements.
In general for Level L, one has only 5 x 21+ data values out of
a regular matrix of 3 x 2" rows and 5 x 2% columns. Notice
that the resulting icosahedron-based data have a quad-tree data
structure in both configurations forvariable Levels L = 1,2,3, ...
but Level One is not compatible with the Chebychev quadrature
as the number of rows is odd.

6. Numerical Experimentation

The latest Earth Geopotential Model EGM 2008 of maximum de-
gree and order 2190, available from http://earth-info.nima.mil/
GandG/, can be considered as the most complete combined
geopotential model for terrestrial applications such as geoid un-
dulations, deflections of the vertical, etc. (see [Pavlis et al, 2008] for
details). The EGM 2008 spectrum is well known to decrease rapidly
with increasing degrees so that the high latitude gaps in the data
matrices will be much less problematic than when using noise
simulations with constant spectra (as done e.g. in [Blais, 2011]).
Obviously, this is only significant in the analysis part of nearly
equidistributed data as the synthesis is completely unaffected.

The EGM 2008 spectrum has null coefficients of degrees zero
and one as these are the so-called forbidden harmonics which is
well-known in geodesy [Heiskanen and Moritz, 1967]. Such null co-
efficients obviously affect any low-level octahedral and icosahedral
simulations with EGM 2008 and other similar geopotential data.

The spherical harmonic transform formulation does not obviously
have any such constraint for degrees zero and one.

6.1. Using the Octahedron-Based Triangulation Approach

Using the data matrix templates corresponding to the octahedron
shown in Figure 2, simulations have been carried out for the
first 12 levels of octahedral triangulation using the Chebychev
quadrature (CQ) and the first 11 levels using least squares (LS).
Tables 1 and 2 show respectively the CQ and LS results in terms
of spectral RMS (i.e. after synthesis and analysis) and spatial
RMS (i.e. after a second synthesis) first, without mask (i.e. full
equiangular grid) and second, with mask (i.e. equitriangular grid).
The results corresponding to the full data matrices (without mask)
are very stable and essentially of the same order of magnitude
as for corresponding equiangular results with EGM 2008 given in
Blais [2011]. The results corresponding to the octahedron-based
data (i.e. applying the masks) are less accurate as expected but
very stable numerically. The loss of accuracy with equidistributed
data depends on the corresponding spectrum as the missing high
latitude equiangular values affect the FFT results in the first part of
the analysis.

6.2. Using the Icosahedron-Based Triangulation Approach

Using the data matrix templates corresponding to the icosahedron
shown in Figure 3, simulations have been carried out for 10 levels
of icosahedral triangulation using the Chebychev quadrature (CQ)
and least squares (LS). Tables 3 and 4 show respectively the CQ
and LS results in terms of spectral RMS (i.e. after synthesis and
analysis) and spatial RMS (i.e. after a second synthesis) first,
without mask (i.e. full equiangular grid) and second, with mask
(i.e. equitriangular grid). The results corresponding to the full data
matrices (without mask) are very stable and essentially of the same
order of magnitude as for corresponding equiangular results with
EGM 2008 given in Blais [2011]. The results corresponding to the
icosahedron-based data (i.e. applying the masks) are much less
accurate as expected but very stable numerically.

Notice that in Table 4, Level One with the 3x10 grid is not
compatible with the CQ approach and the RMS values are trivial

v
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Figure 3. Icosahedron and Spherical Quad-Tree Densification
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Figure 4. Icosahedron Based Spherical Quadtree Data Structure for
Resolution Levels 1, 2 and 3

with LS because of the null spectral coefficients of degrees zero
and one in EGM 2008.

7. Concluding Remarks

The equiangular grids which are conventional with discrete spher-
ical harmonic transforms are not always appropriate in practice
when the observational data are nearly equispaced or equidis-
tributed on the sphere. Spherical quad-tree triangulation ap-
proaches using the octahedron and icosahedron triangular faces
have been investigated for spherical harmonic analysis and syn-
thesis. The modified SHT approach for multiple resolutions shows
good accuracy and numerical stability with EGM 2008 and similar
geodetic data with rapidly decreasing spectra. The high-latitude
sparsity of data with such spherical equidistribution affects the es-
timation of high-degree spectral coefficients but the implications
have been demonstrated to be quite acceptable with common
™~
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geodetic data such as simulated using EGM 2008. In practice
with noise-like data (i.e. with nearly constant spectra), following
a preliminary analysis with near-equidistributed data, a synthesis
on an equiangular grid may be required to refine the estimated
spectral coefficients through a second analysis of the estimated
equiangular grid values.

Notice that the approximate hemispherical symmetry assumed
in the case of icosahedron-based simulated data gives analysis
and synthesis results comparable with the octahedron-based data
where the hemispherical symmetry is exact. Furthermore, such
an approximation which is required for equilongitude patterns
needed with CQ and LS appears to improve with higher levels of
resolution at least in simulations using EGM 2008.

In conclusion, when dealing with approximately equidistributed
geodetic and other similar data on the sphere, the equitriangular
quad-tree approach based on the octahedron and the icosahedron
provides an effective adaptation of the usual equiangular spherical
harmonic transform for multiresolution analysis and synthesis.
Furthermore, the computational efficiency of the modified SHTs is
comparable to the previously documented SHT using CQ and LS.

References

Blais, J.A.R.: Discrete Spherical Harmonic Transforms for Equiangu-
lar Grids of Spatial and Spectral Data. Journal of Geodetic Science,
Volume 1, Issue 1, 7 pages, 2011, Versita and Springer-Verlag.

Blais, J.A.R.: Optimal Spherical Triangulation for Global Multireso-
lution Analysis and Synthesis. Poster presentation at the 2007 Fall
Meeting of the American Geophysical Union in San Francisco, CA.



Journal of Geodetic Science 27

Table 1. Spherical Analysis and Synthesis of 12 Resolution Levels of Octahedral Simulation Using the Chebychev Quadrature Formulation on the

Unit Sphere
OCTAHEDRAL CQ SHT of EGM2008 without mask CQ SHT of EGM2008 with mask
Level: Grid Spectral RMS Spatial RMS Spectral RMS Spatial RMS
1: 2x4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2:4x12 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
3: 8x28 5.015181E-22 2.466575E-22 3.463142E-07 1.760880E-07
4: 16x60 4.601885E-22 2.710648E-22 2.951471E-07 1.351625E-07
5:32x124 3.490756E-22 2.488107E-22 1.751641E-07 5.954642E-08
6: 64x252 3.273669E-22 1.955235E-22 9.366299E-08 2.821412E-08
7: 128 x508 2.354253E-22 1.492452E-22 4.831483E-08 1.368716E-08
8: 256x1020 2.955694E-22 4.467785E-22 2.452613E-08 6.727131E-09
9: 512x2044 2.445121E-22 3.411378E-22 1.235035E-08 3.334926E-09

10: 1024 x4092
11: 2048 x 8188
12: 4096 x 16380

1.869314E-22
2.635941E-22
1.793038E-22

1.980601E-22
1.341339E-21
4.370611E-22

6.196520E-09
3.103560E-09
1.930379E-09

1.659675E-09
8.277541E-10
2.611492E-11

Table 2. Spherical Analysis and Synthesis of 11 Resolution Levels of Octahedral Simulation Using the Least-Squares Formulation on the Unit

Sphere
OCTAHEDRAL LS SHT of EGM2008 without mask LS SHT of EGM2008 with mask
Level: Grid Spectral RMS Spatial RMS Spectral RMS Spatial RMS
1: 2x4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
2:4x12 1.697587E-22 5.946380E-22 4.372804E-07 1.477959E-06
3: 8x28 1.997728E-22 1.728191E-21 2.818574E-07 2.039057E-06
4: 16x60 1.313014E-22 2.137550E-21 1.695670E-07 1.822784E-06
5:32x124 1.121353E-22 3.273131E-21 9.212659E-08 1.767461E-06
6: 64x252 7.957850E-23 4.512217E-21 4.791357E-08 1.732168E-06
7: 128508 5.157020E-23 5.277815E-21 2.442382E-08 1.712134E-06
8: 256x1020 3.448122E-23 7.576252E-21 1.232450E-08 1.702431E-06
9: 512x2044 2.723784E-23 1.145658E-20 6.190027E-09 1.696969E-06

10: 1024 x4092
11: 2048 x 8188

1.826069E-23
1.271623E-23

1.496024E-20
2.125242E-20

3.101933E-09
1.552696E-09

1.693970E-06
1.692318E-06

Blais, J.A.R. and D.A. Provins: Spherical Harmonic Analysis and
Synthesis for Global Multiresolution Applications. Journal of

Geodesy, vol. 76, no. 1, pp. 2935, 2002.

Blais, J.A.R. and Z. Zhang: Exploring Pseudo- and Chaotic Random
Monte Carlo Simulations. Computers and Geosciences (2011),
doi:10.1016/j.cage0.2011.01.009, Elsevier Ltd.

Colombo, O.L.: Numerical Methods for Harmonic Analysis on the
Sphere. Report no. 310, Department of Geodetic Science and
Surveying, The Ohio State University, 1981.

Cui, J.: Finite Pointset Methods on the Sphere and Their Application
in Physical Geodesy. Ph.D. thesis, 1995, University of Kaiserlautern,
Geomathematics Group, Germany.

Cui, J. and W. Freeden: Equidistribution on the Sphere. SIAM
Journal of Scientific Computations, Vol. 18, No. 2, pp. 595--609,
1997.

Flury, J.: Short-Wavelength Spectral Properties of the Gravity Field
from a Range of Regional Data Sets. Journal of Geodesy, 79,
624--640, 2006.

Freeden, W.: Constructive Approximation on the Sphere with
Applications to Geomathematics. 427 pages, 1998, Clarendon
Press.

Gorski KM., Hivon E., Banday A.J., Wandelt B.D., Hansen F.K,
Reinecke M. and Bartelmann M., HEALPix: A Framework for High
Resolution Discretization and Fast Analysis of Data Distributed on
the Sphere. The Astronomical Journal, 622(2):759--771, 2005.

Haagmans, RH.: A Synthetic Earth for Geodesy. Journal of

Geodesy, 74, pp. 503--511, 2000.

Heiskanen, W.A. and H. Moritz: Physical Geodesy, W.H. Freeman
and Company, San Francisco, 363pp, 1967.

\//
VERSITA



2 Journal of Geodetic Science

Table 3. Spherical Analysis and Synthesis of 10 Resolution Levels of Icosahedral Simulation Using the Chebychev Quadrature Formulation on the

Unit Sphere

ICOSAHEDRAL CQ SHT of EGM2008 without mask

CQ SHT of EGM2008 with mask

Level: Grid Spectral RMS Spatial RMS Spectral RMS Spatial RMS
2: 6x20 5.804421E-22 3.089255E-22 5.169650E-08 2.974115E-08
3: 12x40 5.365887E-22 3.109832E-22 2.349163E-07 1.178687E-07
4: 2480 5.341677E-22 4.003079E-22 1.488747E-07 6.880287E-08
5: 48x160 3.906096E-22 2.792877E-22 8.434646E-08 2.841566E-08
6: 96x320 2.393798E-22 1.717077E-22 4.363152E-08 1.329424E-08
7: 192x640 2.348442E-22 2.536293E-22 2.218180E-08 6.423378E-09
8: 384 %1280 3.764144E-22 7.514292E-22 1.117999E-08 3.140013E-09
9: 768 x2560 2.441085E-22 5.553739E-22 5.611133E-09 1.552097E-09

10: 1536x5120
11: 3072x 10240

2.102354E-22
2.673822E-22

7.987596E-22
1.172834E-21

2.810755E-09
1.406672E-09

7.712216E-10
3.843184E-10

Table 4. Spherical Analysis and Synthesis of 10 Resolution Levels of Icosahedral Simulation Using the Least-Squares Formulation on the Unit

Sphere

ICOSAHEDRAL LS SHT of EGM2008 without mask

LS SHT of EGM2008 with mask

Level: Grid Spectral RMS Spatial RMS Spectral RMS Spatial RMS
1: 3x10 1.252378E-22 2.117582E-22 1.252378E-22 2.593498E-22
2: 6x20 2.951397E-22 1.510085E-21 2.510529E-07 1.465168E-06
3: 12x40 1.524520E-22 2.203792E-21 1.529617E-07 1.681240E-06
4: 24x80 1.155720E-22 2.779775E-21 8.480966E-08 1.357296E-06
5:48x160 1.058833E-22 4.664491E-21 4.372940E-08 1.274377E-06
6: 96x320 5.348252E-23 4.455022E-21 2.220202E-08 1.231983E-06
7: 192x640 4.069242E-23 6.624655E-21 1.118425E-08 1.205037E-06
8: 384 %1280 3.885973E-23 1.155375E-20 5.612149E-09 1.191590E-06
9: 768 x2560 2.022858E-23 1.247948E-20 2.810998E-09 1.184380E-06
10: 1536x5120 1.586258E-23 1.930839E-20 1.406731E-09 1.180518E-06
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