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Abstract:

The mean sea level trend estimates from shorter records (less than 50 years) are easily influenced by a number of additional transient
effects including atmospheric pressure variations, interannual and decadal changes in the mean sea level or various station dependent
disturbances, which are not always accounted for in previous studies because their influences may be negligible for stations longer than
100 years or simply such information may not have been available. In this study, we detected and modeled 8,072 transient changes (a
nearly periodic, or non-periodic variation, a shift or an episodic change in the mean sea level that may last several months or longer)
from all of the globally distributed 1,862 tide gauge stations with approximately 47,000 years of tide gauge data in the Permanent
Service Mean Sea Level repository. It was shown that 1,264 out of 1,862 globally distributed tide gauge station solutions were affected
significantly by modeling transient changes in the mean sea level. The solutions R2 values improved at a 95 % confidence level with the
inclusion of new empirical model parameters representing transient changes as mean shifts as well as the trend estimates that fall within
[-1 to +3] mm/year interval.
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1. Introduction

Understanding the global and local mean sea level (MSL) changes

is important for global climate change studies. The Intergov-

ernmental Panel on Climate Change (IPCC) reported that global

average sea level rose at an average rate of 1.8 [1.3 to 2.3]mm per

year over 1961 to 2003 and at an average rate of about 3.1 [2.4

to 3.8]mm per year from 1993 to 2003 (IPCC, 2007), which largely

relied on the long-term (>50 years) tide gauge records distributed

around the world (Bindoff et al., 2007).

The recentMSL trend analyses use the data sets extracted from the

Permanent Service for Mean Sea Level (PSMSL) repository (Wood-
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worth & Player 2003). In these studies, the number of available

tide gauge (TG) records is restricted by the different selection

criteria such as completeness of the records, referencing to differ-

ent geographic regions, exclusion of records in tectonically active

regions (Gutenberg 1941; Fairbridge & Krebs 1962; Gornitz et al.

1982; Barnett 1983a; Peltier & Tushingham 1989; Douglas 1991),

by the record lengths (Gornitz et al. 1982; Gornitz & Lebedeff 1987;

Barnett 1983a; Douglas 1991), and as a result of careful correc-

tions and verification of tide gauge vertical datum and benchmark

changes. Currently, only less than 10 % of the existing tide gauge

records span over 100 years and the restricted number of globally

distributed tide gauge stations biases the global MSL trend esti-

mates, thereby there is anurgentneed for theuseof additional tide

gauge stations with shorter records. Nevertheless, the estimates

from shorter records are easily influenced by unmodeled effects



Journal of Geodetic Science222

such as local and regional interannual or decadal fluctuations in

the MSL which can not be eliminated or reduced effectively using

tide gauge data averaged over long time intervals (Iz 2006).

In this study, we examine the existing PSMSL tide gauge records

and show that 1,264 out of 1,862 globally distributed tide gauge

stations in the PSMSL repository are significantly influenced by

transient MSL changes, sometimes abrupt, but mostly subtle MSL

transient variations that are difficult to detect. These changes

occur, in addition to the well-known periodic MSL variations due

to ocean tides, not well known variations caused by lunar nodal

spectrum and changes, long-termmass, and volume changes due

to melting of ice and thermal expansion, salinity, etc. Some of

these changes are induced by almost periodic components of

air pressure variations, global and regional temperature changes,

interannual and decadal variations in ocean circulation includ-

ing wind, episodic sea level changes caused by eddies, thermal

and salinity (steric) variations, nearby ice-sheet/glaciermelt or river

discharges, changes in theoceanbasindue to theprocesses includ-

ing glacial isostatic adjustment or tectonics. Local vertical crustal

movements due to tectonic motion, anthropogenic subsidence

and glacial isostatic adjustment, elastic loading from atmospheric,

tide, or hydrologic loading, also affect the tide gauge records (Van-

icek 1978). Furthermore, someof these records experiences datum

changes caused by instrument or benchmark replacements, and

all of them are subject to random measurement errors at each

station.

The response of the MSL to these effects can be modeled if

additional information exists. The impact of pressure variations,

for instance, can be included in the model if local atmospheric

pressure data is available (Iz & Shum 1998, Ponte 2006). In

other cases, such data are hard to come by for all of the tide

gauge stations. In the absence of auxiliary information about

their sources, changes in the MSL can be modeled empirically
to alleviate their impact on the estimation of local MSL trends.

However these changes are sometimes not visually discernable

and buried in the noise of the tide gauge data and they may still

have an impact on the MSL trend estimates (Iz 2006).

In this long list of factors that affect the MSL time series, periodic

variations are represented by trigonometric series inmodeling the

tide gauge data whereas aperiodic (transient) or almost periodic

(episodic) MSL changes require additional information that is not

always available for all of the tide gauge series.

Iz (2006)quantified that the impactof transientorepisodic changes

on trend estimates may be negligible for very long data series

(longer than 100 years) but influential for shorter series up to 0.5

mm/year as a function of series length, the epoch of the transient

effect and its magnitude. Because of the availability of spatially

well distributed stations is equally important formonitoring global

MSL changes as well as availability of long records, shorter series

can also be used in the pool of tide gauge stations for the analysis

of global MSL studies by improving the current models, which are

appropriate for the long series but not the shorter ones.

In the following sections, we concentrate on modeling the tran-

sient or episodic variations in the MSL. We first give an example

in which the tide gauge data were contaminated with transient or

episodic changes and discuss an algorithm to detect the presence

of these variations and their starting epochs. Subsequently, we es-

tablish amodel which is blind to the source of the transient effects

but account for their lump-sum impact on the MSL trend. These

changes are represented by binary (indicator) variables together

with trend parameters and trigonometric functions representing

the periodic changes in the data. A comparison of a sample solu-

tion with and without modeling transient changes demonstrates

that systematic effects may unduly bias the trend estimates and

influence the solution statistics. Another nearby tide gauge station

series is also analyzed to validate the new model. Finally, we use

the newly parameterized model for solving the local trend esti-

mates for all the 1,862 stations with the metric tide gauge data in

the PSMSL repository including almost all of the global tide gauge

station records and analyze the results.

2. Modeling of MSL Tide gauge Data for Local Trend Estimation

The following trigonometric model can be used to explain a

number of periodic variations in the PSMSL data including a long

trend.

yt = a+ b(t − t̄) +3∑
h=1
[
αh cos(2π

Ph

) (t − t̄) + γh sin(2π
Ph

) (t − t̄)] + et (1)

In this expression yt represents the monthly averaged PSMSL

time series data, a is the y-intercept, b represents the local MSL

trend, t is the time tag for the averaged values of the tide gauge

data, and t̄ refers to the middle epoch of the series. The Greek

lettersα and γ represent themagnitudes of periodic functions due

to the tidal constituents with periods,Ph , including semi-annual,

annual, and nodal (18.6 years) periods.

The random variable et represents the lump-sumeffect of random

instrument errors and unmodeled stochastic effects in the MSL

with the following properties:

E [et ] = 0, Var[et ] = σ 2. (2)

The current solutions assume that the errors are not serially corre-

lated and stationary in time.

The unknown parameters in the above formulation can be esti-

mated from the tide gauge data using the least squares method.

The influence of the unmodeled random or systematic effects

attenuates with averaging, thereby reducing their impact on the

solution. In this solution, unmodeled periodic and almost-periodic

variations, if present, are either absorbed by the coefficients of the

existing trigonometric model parameters or present in the resid-

uals without significantly biasing the trend estimates. However,
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Figure 1. A trend estimate is biased by a transient effect if it is not
included in the model. In the above cases, a 100 mm MSL
change occurs at the beginning and at the end of each se-
ries of different length, and lasts for 6 months and 2 years,
respectively (Iz 2006).

Figure 2. In this graph, the magnitude of the trend estimate bias is
a function of the location of a transient MSL change in the
series for two scenarios. In the first case, the change oc-
curs at the end of the series, and lasts 6 months; in the
latter, it lasts for 2 years (Iz 2006).

as illustrated in Fig. 1 and Fig. 2, the impact of these effects can

be significant on the MSL trend estimates if they are not included

in modeling tide gauge series shorter than 100 years. Fig. 1, for

instance, shows that a 100 mm MSL change that occurs at the

beginning and at the end of each series of different lengths and

lasts for 2 years can bias the trend estimate of a 50-year long tide

gauge series by as much as 0.5 mm/year (Iz, 2006). The maximum

bias occurs if the change takes place at the beginning or at the end

of the series and the trend bias vanishes if the change happens in

the middle of the series (Fig. 2).

Figure 3. Monthly averaged tide gauge data from Port Jefferson,
USA.

3. Detection and Modeling of Transient Changes in Tide Gauge Se-
ries: A Sample Solution

In this section, the tide gauge data (Fig. 3), Port Jefferson in the

USA, from the PSMSL repository is analyzed as an example to

demonstrate the detection and estimation of transient change

in the MSL. Another nearby station series, New York City USA, is

also considered to validate the new model results. The nearby

station tide gauge series coincidentallywere not influencedby any

transient changes during the same overlapping period with the

Port Jefferson station tide gauge data series.

PSMSL considers the Port Jefferson Metric and RLR records to be

the same, apart from an overall offset, and classifies it as a good

record (Woodworth 2005). The data set spans over 33 years and

may contribute to the pool of tide gauge stations in the study of

global MSL.

The local trend of the model given by (1) from the Port Jefferson,

USA tide gauge station datawas estimated using the ordinary least

squares solution. The model includes semi-annual, annual, and

nodalMSL variations in addition to the trendand the intercept. The

estimated trend is 1.9 mm/year with a standard deviation of 0.3

mm/year (Table 1). TheR2 value (the coefficient of determination)

of the solution indicates that the model can only explain up to

50 % of the variation in the tide gauge data which is not a very

impressive model performance. Fig. 4 shows the residuals of the

solution (RMS=53.2 mm) which are now free from any periodic

changes in the MSL, but may be contaminated by a number of

transient variations, which are also visually evident in the residuals,

whose starting epochs can be detected by statistical methods.

In this study, we use the Cumulative Sum (CUSUM) method for

the detection of starting epochs, change point (CP) of transient

or episodic change in the MSL (mean shifts), from the residuals

of solution models that do not include the parameters for such

effects. Although there are a number of competing methods for
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Figure 4. Port Jefferson station residuals (RMS = 53.2 mm) exhibit
no visually evident periodic changes in the MSL, but still
contaminated by a number of transient variations, whose
starting epochs, indicated by green arrows, were detected
by the CUSUM algorithm.

Figure 5. CUSUM Chart for Port Jefferson station residual ranks.
The percentages indicate the probability of a change in the
MSL at the corresponding epoch.

CP detection (mean shift analysis), our choice is motivated by the

method's simplicity and its ease of automation for programming

for a large number of solutions. The algorithm is discussed in the

appendix.

The CUSUM chart displayed in Fig. 5 created by using ranks of the

residuals of the tide gauge series shows the presence of 6 CPs with

probabilities larger than 99 %. The probabilities were calculated

by bootstrapping the relevant portion of the series with 1,000

replications. As discussed earlier, these transient changes can be

eliminated if their origins are known, by preprocessing the tide

gaugedatausing auxiliary information in the analysis. For instance,

MSL changes induced by the pressure variations can be eliminated

by incorporating barometric information into the model (Iz and

Shum 2000). Alternatively, these changes can be solved using

other model parameters regardless of their origins and without

requiring any additional information about their sources.

We introduce binary variables into the model (1) for this purpose.

The new independent variables are linked to the unknown coef-

ficients which represent the magnitude of the linear changes in

the MSL (mean shifts). Binary variables, also known as dummy or
indicator variables in statistical applications (Neter et al. 1996),

take the value 0 if there are no changes in the mean of tide gauge

data or 1 when there is a change in the MSL for a period of time

until the next change occurs.

Taking into consideration the statistically significant MSL changes

and their epochs that are determined from the CUSUM analysis of

residuals of the previous solution, we formulate a new model for

the tide gauge observations at the Port Jefferson station as,

rclyt = a0 + n∑
i=1 ∆aitδ + b(t − t̄)

+ 3∑
h=1
[
αh cos(2π

Ph

) (t − t̄) + γh sin(2π
Ph

) (t − t̄)]
+ εt (3)

In the above expression, δis the binary variable which is 0 for a tide

gauge record if there is no change in the residuals of observations,

and 1 if there is a change in the mean value of the residuals of

observations as determined by an earlier solution using equation

(1), and CUSUM analysis. If the total number of CPs (mean shifts)

is denoted by n, then i = 1, . . . , n, and ∆ait is the amount of

MSL change to be estimated with respect to the previous change

in the MSL for the ith station data at an epoch t. Note that this

estimate can also be made to refer to a change with respect to a

datum defined by the intercept with an appropriate arrangement

of the elements in the design matrix of the observation equations.

This model is used again to estimate the unknown parameters,

including the mean shift parameters from the Port Jefferson tide

gauge station data. The new model for the Port Jefferson data

has now 6 additional parameters. In this solution, modeling the

mean shifts resulted in a substantial 58 % decrease in the trend

estimate from 1.9 mm/year down to 0.8 mm/year, despite the

modest 5% improvement in the R2 and the RMS values of the

residuals (Table 1). This is partly because the new models, a more

realistic representative of the data, enabled a better separation of

the trend parameter from the othermodel parameters, andmostly

because two of the 6 CPs are located at both ends of the series

which are influential in estimating the MSL trend (Iz and Shum

2000, Iz 2006).

The residuals displayed in Fig. 6 are now free frommarked system-

atic variations that were present in the earlier solution's residuals.

This sample solution demonstrates that transient MLS variations, if

not included in the solutions, can significantly influence the trend

estimates as also shown theoretically by Iz (2006) for series as long

as 40 to 50 years.

Notwithstanding themarked changes in the estimates and the im-

provement in the coefficient of variations, there is a slight increase
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Figure 6. Residuals from the least square solution using the model
that includes the transient changes.

in the standard error of the newly estimated trend parameter

(0.3 vs 0.4 mm/year in Table 1), a phenomenon which also exists

in other solutions to be reported in subsequent sections. The

introduction of the change points as new parameters in the new

models increased the standard errors of the trend estimates and

seems counterintuitive at a first glance since one will expect im-

provements in the standards error to decrease rather than increase

inmagnitude. Yet, as it was shown by Potluri (1971) that, we quote

his Theorem 2: In the classical regression model, omission
of a variable specified by the truth decreases the variance of
all the least square estimates. Hence, if our equation 3, which

is a trigonometric regression model, is the true model, then the

omission of the CPs will decrease the standard errors of the esti-

mates. Moreover, it is also well known that even the introduction

of spurious parameters do not bias the estimates in a least squares

solution as long as the new parameters do not create harmful

collinearity. In any case, we analyzed another nearby tide gauge

station data to validate the new model solution which is the topic

of the next section.

4. Model Validation

TheNewYork City USA tide gauge station is located approximately

100 km away from the Port Jefferson station. Its time series data

shown in Fig. 7 were analyzed to validate the newmodel solution.

Both series are in close agreement over the common 33 year

period and exhibit a strong correlation, 0.93, (Fig. 8) because of

their proximity.

Table 1 shows the trend estimates for theNewYork City tide gauge

series using models with and without CPs parameterization data

for theoverlapping1958-1991period. As it turnedout, there areno

statistically significant CPs in the New York City time series during

the 33 years period, which also suggest that the mean shifts in the

Port Jefferson data are station specific changes rather that caused

by major unmodeled climatic disturbances.

Figure 7. Port Jefferson (top) and New York City tide gauge time
series are displayed. The tide gauge stations are approxi-
mately 100 km apart from each other. There are no statis-
tically significant change points in the New York tide gauge
data during the same period.

Figure 8. Tide gauge data from the New York City and Port Jefferson
stations are highly correlated (the PearsonŠs correlation
coefficient is 0.93). The plot is generated using the monthly
averaged data from both stations during 1958-1991.

Table 1. Solution statistics with and without transient changes for
modeled (CP) for the Port Jefferson and New York City TG
time series data. The bootstrapped probabilities for all the
CPs are larger than 99 %. Note that there are no statistically
significant CPs detected in the New York City time series
during the 33 years period.

Station Name
Series Length

Port Jefferson, USA
33 Years

New York City,
USA 33 Years

No CP 6 CPs No CPs
RMS residuals
(mm)

53.2 48.5 58.3

R2 0.50 0.55 0.33
Trend (mm/year) 1.9±0.3 0.8±0.4 1.0±0.3
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The 0.9 mm/year difference in the estimated Port Jefferson and

NewYork City tide gauge solutions (1.9±0.3 and 1.0±0.3mm/year

respectively) without modeling CPs is statistically different as

revealed by a two-tailed t-test at 95 % confidence level. For the

new model solution however, the trend estimate for the Port

Jefferson station is 0.8±0.4 mm/year is in better agreement with

the 1.0±0.3mm/year New York City trend and the null-hypothesis

for the 0.2 mm/year difference in the trends cannot be rejected at

95 % confidence level using a two-tailed t-test.

These results support unequivocally the appropriateness of the

new model parameterization using transient effects. In the next

section, we extend the new modeling and analysis approach in

detecting the transient changes in the MSL in the series, and in

estimating the local MSL trends for all of the globally distributed

tide gauge stations in the PSMSL repository.

5. Global Tide Gauge Data used in the Analysis of MSL Trend Esti-
mates with Empirically Modeled Transient Effects

Permanent Mean Sea Level, PSMSL, repository maintains a tide

gauge database from over 1800 stations since 1933. About 200

national authorities around theworld provide data to PSMSL in the

monthly and yearly formats. Until February 2001, PSMSL contained

more than 47,000 station-years of sea level data and received

approximately 2,000 station-years of data each year (Woodworth

& Player 2003).

PSMSL offers Metric and Revised Local Reference (RLR) data
(Permanent Service for MSL 2001). Metric data is the raw data

directly received from the authorities. The RLR data contains

monthly and annual MSL data referenced to a common datum.

The datum is defined 7 m below the global MSL to avoid negative

monthly and annual MSL values. Only two thirds of the stations in

the PSMSL database, however, have been adjusted to a common

datum. The recent MSL trend analyses use the data sets extracted

from the PSMSL repository. The earlier studies utilize the Revised

Local Reference (RLR) data set, which contains those stations

that passed a consistency check. At each station, the RLR data

are reduced to a common datum according to their benchmark

histories by the PSMSL. Currently, only about two-thirds of the

stations are converted into the RLR data set.

In the following solutions, all of the monthly PSMSL Metric data

are used because the new models can accommodate most of the

problem areas in this complete data set. This is the entire data

in the repository in 2001, which span records up to 181 years for

various stations for a total of 1,862 tide gauge stations.

6. Estimated Mean Shift Parameters

Two sets of solutionswere calculated for comparison usingmodels

based on (1) and (3) for all the globally distributed tide gauge

stations as we did in the previous sections for the Port Jefferson

tide gauge station data. The first solution is a special case of the

second one in which all of the binary variables are set to zero,

i.e., it is assumed that there are no transient changes in the series

and the second solution includes all of the statistically significant

CPs (at 95% confidence level) calculated from the residuals of

the first solution. As before, the random tide gauge data errors

were assumed to be homogeneous with zero expected values as

described by (2).

The solutions show that 1,264 stations were affected by transient

changes out of 1,862 tide gauge stations in the repository (68

%). Overall, 8,072 statistically significant CPs are detected at 95 %

confidence level for the 1,264 stations with an average of 2 CPs per

station per decade. Fig. 9, the histogram of the estimated magni-

tudes of the transient changes in the MSL, exhibits a nearly zero

mean bell shaped distribution and contaminated with a number

of very large variations on both tails, which can be attributed to

datumchanges due to instrument relocations, subsidence, etc. be-

cause of their unusually larger magnitudes (remember that we are

using the large pool of metric data rather than the reduced level
data from the PSMSL repository). The 67% of the estimated mean

shifts at statistically significant CPs falls within a [-15, +15] cm inter-

val. This result is in agreement with the transient changes induced

by eddies, temperature, and pressure variations to nearby tide

gauge stations and shows an overall equilibrium for the globally

distributed tide gauge stations (Pugh 2004).

Fig. 10 is a snapshot of the distribution of the cumulative sum of

estimated mean shift parameters at each station calculated for all

1,264 stations. Over 86 % of the stations' cumulative mean shift

estimates are within a [-15, +15] cm interval. The large number of

mean shifts at the tail values is again likely to be due to the same

station location-specific events, such as instrument relocation, that

are more persistent, rather than transient in nature. The observed

symmetry in the histogram of the cumulative mean shifts at each

station (Fig. 10) is indicative of a global equilibrium in the transient

MSL changes that are experienced by the tide gauge stations all

over the world.

As far as the standarderrorsof theestimatedmeanshiftparameters

areconcerned, over75%themarebelow±3cmasshowninFig.11.

Only 14% of the standardized mean shift estimates, which are

calculated by dividing the estimates by their standard deviations,

fall within the interval of a ±1 signal-to-noise ratio (Fig. 12)

evidencing the widespread statistically significant presence of

transient changes in the MSL globally.

6.1. Estimated MSL Trend Parameters

The histogram in Fig. 13 displays the magnitudes of the local

MSL trend estimates calculated from two different solutions for

all of the global 1862 stations using equation (1) and (3), with

and without CPs included. Although only 1,264 stations are

affected by the CPs, the histogram is created including all sta-

tions to give a better overview for the effect of the modeling

transient changes in the MSL.
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Figure 9. The frequency and magnitude of the estimated mean shifts
with respect to the y-intercept of each tide gauge station
solution.

Figure 10. The distribution of the cumulative sum of the estimated
mean shift parameters at each station for a total 1264
stations.

The impact of modeling transient changes in the MSL is an overall

change in themagnitudes ofMSL trend estimateswhich fall within

the interval [-1, +3]mm/year as illustrated in Fig. 13, which refers to

the estimates as obtained directly from the least squares solutions.

The number of trend estimates within this interval was decreased

with the inclusion of the transient changes in the models. The

effect of post glacial rebound, PGR calculated from the ICE-4G

(VM2) model (Peltier 1994, 1996, 1998, 2001), is included in Fig. 14.

Almost all of the changes in the MSL trends occur for shorter

tide gauge series as shown Fig. 15, which is produced using the

difference of the trend estimates calculated with model solutions

with and without parameterization for transient effects. This is

not a surprising result considering the theoretically demonstrated

dependency of the unmodeled MSL level variations on the series

length (Iz 2006). If we assume that the model solutions with

Figure 11. The distribution of the standard errors (deviations) of the
estimated mean shifts (based on the a posteriori variance
of unit weight).

Figure 12. Standardized mean shift estimates (calculated by dividing
the mean shift estimates by their standard deviations).
Note that the bin intervals are not equal.

transient effects are better, then the difference between them

and the model solutions that use the transient change as models

parameters is the model bias due to the omission of the effect of

the transient changes in the MSL. Given the fact that almost all

of the differences in Fig. 15 follow the same trend defined by the

theoretically expected bias in the estimates (scaled solid line) as a

result of unmodeled systematic effects displayed in Fig. 1, support

this assumption.

Table 2 shows 21 tide gauge stations' estimated trends sampled

from nine oceanic regions together with their estimates from

previous studies. The trend columns in Table 2 are the estimated

MSL trends in mm/year with and without CPs. All of the trend

values are corrected for the effect of PGR calculated from the

ICE-4G (VM2) model (Peltier 1994, 1996, 1998, 2001). Some of the
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Figure 13. Local MSL trend estimates calculated using models with
and without CPs for all of the stations in the PSMSL
repository. No PGR corrections were applied.

Figure 14. Local MSL trend estimates calculated using models with
and without CPs for all of the stations in the PSMSL
repository. The MSL trend estimates are corrected for
the PGR effect.

station trends change significantly with the application of the ICE-

4G model for PGR. There are also significant differences between

with CP and without CP solutions. Nevertheless, those solutions

with CPs that are in better agreement with the previous estimates

may have included data such as atmospheric pressure to account

for the effect of transient changes. The differences between earlier

solutionsand the solutionsgenerated in this study,where transient

MSL variations are not modeled in both cases, are mostly due to

the additional data (over a decade) in the current solutions which

are influential on the estimates (see Iz & Shum1998, and Iz 2006 for

further discussions on the end effects of data in tide gauge series).

Figure 15. Changes in the local trend estimates as a result of mod-
eling transient effects. The differences follow the theoret-
ical bias pattern (Iz 2006), shown as a solid line (scaled),
due to the amalgamated unmodeled systematic effects
(theoretical) displayed in Fig. 1.

7. Coefficient of Determination and Model Performance

The R2 values using both models were also calculated for all of

the tide gauge stations data in the PSMSL repository to assess how

well themodels explain theMSL variability in the tide gauge series

-- the closer is theR2 to unity, the better the fit (Neter et al. 1996).

In this application however, larger R2 values also ensure that the

estimates are biased less and their uncertainties are more reliable

because unmodeled systematic effects have considerable impact

on the solution (Iz 2006).

Fig. 16 shows the R2 values of 1862 station solutions using both

models. Among all 1,862 stations, 1,264 stations solutions are

improved as a result of modeling transient variations that are

significant at a 95% confidence level. The improvements over half

of the 1,264 stations are below 20% change in theR2 values, while

the remaining improvements reach over 90%.

8. Conclusion

We have used CUSUM charts to detect transient changes in the

MSL as indicated by CPs. We have developed statistical models

that incorporate these effects and validated the trend estimates by

comparing them to the estimates from a nearby tide gauge series

free from transient effects. We subsequently showed that MSL for

1,264 out of 1,862 tide gauge stations in the PSML repository are

contaminated with transient effects.

We have modeled, estimated, and demonstrated, as evidenced in

Fig. 1 that unmodeled transient changes affect local MSL trends

depending on the magnitude, location of the effects, and length

of the tide gauge series as also explained theoretically in Iz (2006).

Modeling of transient changes in the MSL also improved the R2
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Table 2. Sampled Sea Level Trends from PSMSL Metric Data with and without CP. PGR values are calculated using ICE-4G (VM2) (Peltier, 2001).
This table presents 21 tide gauge sites in nine oceanic regions that show the sea level trends estimated with and without CP, and also
the previous estimation from [Douglas, 1991].

Region Series
Length
(Year)

Latitude Longitude PGR
Correction
mm/year

Trend* without
CP
mm/year

Trend with
CP at 95%
mm/year
(No. of CPs)

PE**

North Sea
Aberdeen
II

104 57o09’N 2o05’W -0.7 0.9±0.0 1.1±0.3 (5) 1.7

North
Shields

99 55o00’N 1o26’W -0.5 1.3±0.1 1.9±0.2 (6) 2.4

English Channel
Newlyn 86 50o06’N 5o33’W 0.5 0.2±0.1 0.2±0.3 (5) 1.2
Brest 171 48o23’N 4o30’W 0.5 0.4±0.0 - 0.1±0.1 (6) 0.8
Atlantic
Cascais 104 38o41’N 9o25’W 0.0 1.3±0.0 1.4±0.2 (9) 1.2
Tenerife 57 28o29’N 16o14’W 0.0 1.1±0.1 0.4±0.4 (3) 1.8
Mediterranean
Marseille 112 43o18’N 5o21’E 0.0 1.4±0.1 1.1±0.1 (5) 1.7
Genova 89 44o24’N 8o54’E -0.0 0.3±0.0 0.2±0.2 (3) 1.3
Trieste 90 45o39’N 13o45’W 0.0 0.3±0.1 0.2±0.3 (4) 1.3
Pacific
Honolulu 96 21o19’N 157o52’W -0.1 1.5±0.0 2.1±0.8 (59) 1.7
North American West
Coast
San Fran-
cisco

147 37o48’N 122o28’W 0.3 1.3±0.0 3.7±0.8
(76)***

1.6

Central America
Balboa 88 08o58’N 79o34’W 0.0 1.4±0.1 1.3±0.9 (36) 1.6
Cristobal 72 09o21’N 79o55’W -0.0 1.4±0.1 1.7±0.5 (20) 1.4
SE North America
Key West 87 24o33’N 81o48’W 0.5 1.8±0.1 2.1±0.3 (10) 2.8
Charleston I 80 32o47’N 79o56’W 0.5 2.8±0.1 4.3±0.7 (13) 2.9
Hamption Rds 74 36o57’N 76o20’W 0.8 3.5±0.1 4.0±0.6 (11) 3.5
Baltimore 99 39o16’N 76o35’W 1.0 2.1±0.1 4.5±0.5 (20) 2.4
Atlantic City 87 39o21’N 74o25’W 1.4 2.6±0.1 2.9±0.5 (15) 2.6
New York 145 40o42’N 74o01’W 1.2 1.6±0.0 1.3±0.3 (7) 2.1
NE North America
Portland 89 43o40’N 70o15’W 0.2 1.6±0.1 2.2±0.4 (19) 2.0
East port 66 44o54’N 66o59’W 0.5 1.7±0.1 2.0±0.4 (15) 2.7

* Trend estimates are corrected fro PGR
** PE: Previous estimates reported in [Douglas, 1991] and were corrected by ICE-4G (VM2).

*** Reported estimates vary for this station: 1.3 mm/year (solution with no CP), 1.6 mm/year (Douglas 1991), 2.1 mm/year (NOA, 2005),
3.7 mm/year with CP (solution with CP) which is likely to be an aberration since it includes a large number of CP compared to the other

solutions. Note also that this station is subject to potential vertical movements by frequent earthquakes in this area.

values, which ensure that the estimates are less biased and their

uncertainties are more reliable. Modeling transient changes in

the MSL had also an overall impact on the magnitudes of MSL

trend estimates that fall within the interval [-1, +3] mm/year. The

number of trend estimates within this interval, which also overlaps

with the interval reported by Bindoff et al (2007) for the global

MSL, decreased with the inclusion of the transient changes in the

models.

The presence of large number of statistically significant transient

MSL changes in the tide gauge data (8,072 CPs) and their impact
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Figure 16. R2 (coefficient of determination) of model solutions with
and without transient effects.

on the local solutions give a more precise meaning to the local

trend estimates calculated using models that account for them.

In other words, the fact that significant numbers of transient MSL

changes are attributable to variations in the local and regional

air pressure, wind, currents, river discharges etc., modeling their

influences in analyzing the tide gauge data, enables the resulting

trend estimates to be more representative of the influence of the

time-varying MSL gradients due to the total steric and long-term

eustatic effects. Better yet, if the transient changes include also

the impact of the total steric effects (thermo and halosteric) on the

MSL because the ocean surfaces respond faster to temperature

changes and density variations, then the estimated long term

trends are more representative of the eustatic changes in the MSL

rather than the lump-sum effects of MSL trends of total steric

and eustatic origins. This separation explains also for the reduced

number of stations having MSL trend estimates within the [0 to 3]

mm/year interval as compared to the earlier solutions which do

model transient changes in the MSL.

Under this scenario, the magnitudes and spatial and temporal

distribution of the transient MSL level changes can also reveal

clues about the peculiarities of the recent changes in the global

MSL, which deserve further investigation.

9. Appendix: Change Point Detection

Control charts and change point (CP) analysis are used to deter-

mine whether the mean of a stochastic process has shifted. The

Cumulative Sum Chart (CUSUM) chart, a graphical method of CP

detection, was first introduced by Page (1954). The underlying

mathematical principles involved in its construction were elabo-

rated in Ewan (1963), Johnson (1961), and Johnson and Leone

(1962). Mertikas and Rizos discussed their geodetic applications in

1997.

CP analysis complements the CUSUM charts by trying to answer

the following questions: Did a change occur? Did more than

one change occur? When did any changes occur? With what

confidence can we conclude that a change occurred?

Consider the cumulative sums,s0, s1 . . . , sn , that are calculated

fromdatax1, . . . , xn , which areassumed to be random in nature,

as follows:

si = si−1 + (xi − x̄), i = 1, 2, . . . n (4)

where,

s0 = 0 and x̄ = n∑
i=1

xi
n . (5)

Plots of CUSUMs against i generate CUSUM charts. If there are no

changes in themean, CUSUM charts display a steady straight path,

since the data is random in nature. Otherwise, a segment of
the CUSUM chart with an upward slope indicates a period
where the values tend to be above average or a segment
with a downward slope indicates a period of time where the
values tend to be below the overall average.
A sudden change sdiff in the slope of the CUSUM occurs with

a sudden shift in the average. The magnitude of the sudden

change, |sdiff | ,can be estimated from

sdiff = max
i=0,...,n si − min

i=0,...,n si (6)

A bootstrap analysis by random reordering of the elements of the

series with replacement (Efron & Tibshirani 1993) gives the confi-

dence level whether a mean shift has occurred. sdiff calculated
from a large number of bootstrapped series tends to stay at about

zero or the mean value of the series when compared with the

soriginaldiff of the original series. Hence, a total of N bootstraps, for

which p is the number of bootstraps with sdiff < soriginaldiff , gives
the confidence level as

Confidence level = 100× p
N . (7)

A high confidence level is strong evidence that a change has

indeed occurred. Once a change has been detected, the location

of the change needs to be detected. Among others, a natural and

simple approach is to use the following expression:

sm = max
i=1,...,n |Si| (8)

where sm is the point furthest from zero in the CUSUM chart. The

mth point gives the last data before the change occurred and the

m+ 1 point refers to the first data after the change.

The whole procedure can be applied to the series that are gener-

ated by replacing the original data with their ranks. This approach
is more resistant to the outliers and large variations in the data,

which was the preferred approach in this study.
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