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Abstract:

Various Stokes kernel modification methods have been developed over the years. The goal of this paper is to test the most commonly

used Stokes kernel modifications numerically by using Alaska as a test area and EGM08 as a reference model. The tests show that some

methods are more sensitive than others to the integration cap sizes. For instance, using the methods of Vaníček and Kleusberg or

Featherstone et al. with kernel modification at degree 60, the geoid decreases by 30 cm (on average) when the cap size increases from

1◦ to 25◦ . The corresponding changes in the methods of Wong and Gore and Heck and Grüninger are only at the 1 cm level. At high

modification degrees, above 360, the methods of Vaníček and Kleusberg and Featherstone et al become unstable because of numerical

problems in the modification coefficients; similar conclusions have been reported by Featherstone (2003). In contrast, the methods of

Wong and Gore, Heck and Grüninger and the least-squares spectral combination are stable at any modification degree, though they

do not provide as good fit as the best case of the Molodenskii-type methods at the GPS/Leveling benchmarks. However, certain tests

for choosing the cap size and modification degree have to be performed in advance to avoid abrupt mean geoid changes if the latter

methods are applied.
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1. Introduction

Since a local geoid is computed in a local area, the truncation

error, that is the effect of the gravity data from the rest of the

Earth, has to be taken into account (e.g., Molodenskii et al., 1962;

Sjöberg, 1980, 1981, 1984, 2003a, 2003b; Jekeli 1981; Vaníček and
Kleusberg, 1987; Vaníček and Featherstone 1998; Featherstone

et al., 1998; Ellmann 2001, 2005 among others). This is usually

done by using a global geopotential model, the reference model,

which accounts for the contribution of the rest of the Earth but

naturally also has a contribution inside the local computation

area. The proper modification, or truncation, of Stokes's kernel is

a critical step to optimally combine the long wavelength content

of the global geopotential model with the medium and short

wavelength portion of the surface gravity data. The simplest

kernel modification methods, such as that of Wong and Gore

(1969), truncate the spherical harmonic representation of Stokes's

function at a degree up towhich the globalmodel ismore accurate

than the gravity counterpart. More advanced methods have been

developed, which take into consideration the errors of the surface

gravity data and the reference model (Sjöberg 1980, 1981, 1991,

2003a, 2003b; Wenzel 1982; Wang, 1993). But these stochastic

methods rely on accurate error models of the surface data and

the referencemodel, whichmay not be easily obtained sometime;

see Vaníček and Featherstone (1998), Featherstone (2003), and

Ellmann(2005) forvariousdiscussionsofandcomparisonsbetween

the deterministic methods and the stochastic methods.
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Unlikemanyprevious studies thatweredone in relatively flat areas,

this paper investigates the effects of different kernel modification

methods on geoid computation in Alaska, which has complex ge-

ological rheology. Section 2 gives a brief review of all the available

kernel modification methods. The details of the computation of

the kernel modification are given in Section 3, followed by a brief

discussion of characteristics of the modified kernels. Section 4 de-

scribes the gravity data, the elevation data, as well as the specific

GPS/Leveling benchmarks (GPSBMs) that are used in the valida-

tion of different geoid models. The final geoid difference analysis

is included in Section 5. Finally, some conclusions are given in

Section 6.

2. Methods of kernel modification

In a remove-compute-restore scheme, the geoid is computed from

the surface gravity data and a global reference model by:

N = R4πγ
∫∫

σ0 [dg − (h − hA)∂(dg)
∂h ]S (ψ)dσ+

ζ1(2,M) + ζ2(M + 1,M ′) + C (1)

whereR is the radius of themean Earth, γ is the normal gravity,hA
is the height of the point level (see Moritz, 1980, p. 377), S (ψ)
is the Stokes function and ψ is the spherical distance between

the computation and integration points (Heiskanen and Moritz,

1967, p.94), σ0 is the integration area on the surface of a unit

sphere σ ; dg is the residual gravity anomaly computed from

the surface gravity anomaly ∆gobs , the global reference gravity

anomaly ∆g1(2,M) up-to degree M, and the residual terrain

effect on gravity∆g2(M + 1,M ′) from degreeM + 1 to degree

M ′ (e.g.M ′ = 216, 000, if a 3 arc-secondsDEM is used), as shown

in the following equation:

dg = ∆gobs − ∆g1(2,M)− ∆g2(M + 1,M ′) (2)

If the EGM2008 (Pavlis et al., 2008) reference model is used to

degree 2160, the residual gravity anomalydg becomes very small

and the downward continuation term in the integral of equation

(1) can be safely neglected everywhere except in highmountains.

The reference height anomaly ζ1(2,M) is also computed from

a global reference model on the Earth's surface, ζ2(M + 1,M ′) is
the contribution of the residual terrain to the height anomaly, and

C is the correction to convert the height anomaly to the geoid

height (Flury and Rummel, 2009):

C = ∆gBOHγ + H
γ
(
V TOP
P0 − V TOP

P
)

(3)

where ∆gBO is the refined Bouguer gravity anomaly, H is the

orthometric height,γ is themeannormal gravity from the ellipsoid

to the telluroid along the ellipsoid normal, V TOP
P0 and V TOP

P
are the topographical potential at a geoid point (P0) and the

corresponding surface point (P), respectively.

To minimize the truncation error and optimally combine the

surface gravity data with the global reference model, Stokes's

kernel, S (ψ), in the integral of equation (1) is replaced by

a modified kernel, S̃ (ψ) in local geoid computations. Various

kinds of kernel modification were developed over the years. In this

paper, we consider and compare the performance of some of the

most commonly used ones, listed in the following:

1. Wong and Gore (1969) method:

S̃WG (p, ψ) = S (ψ)− p∑
n=2

2n+ 1
n − 1 Pn(cosψ) (4)

By completely removing the spectrum up to degree p, this
modification eliminates the low degree contributions from

the local surface data, replacing it by that of the reference

model.

2. Heck and Grüninger (1987) method

S̃HG (p, ψ) = S̃WG (p, ψ)− S̃WG (p, ψ0) (5)

where ψ0 is the cap size. The extra correction term in-

troduced by this method makes the error kernel function

continuous through the boundaries, for a faster conver-

gence.

3. Vaníček and Kleusberg (1987) method

S̃VK (L, p, ψ) = S̃WG (p, ψ)−
L∑

n=2
2n+ 12 tn (cosψ0)Pn(cosψ) (6)

where tn (cosψ0) is the modification coefficient deter-

mined by minimizing the L2 norm of the error kernel for

the selected ψ0 and L (L ≤ M and L ≤ p). In most

practical cases, L is set equal top. Thismodification applies

Molodensky's modification of the spherical Stokes's kernel

to the spheroidal Stokes's kernel. Detailed derivations can

be found in Vaníček and Kleusberg (1987), and Vaníček
and Sjöberg (1991).

4. Featherstone et al. (1998) method

S̃F (L, p, ψ) = S̃VK (L, p, ψ)− S̃VK (L, p, ψ0) (7)

Again the correction term is for a faster converging error

kernel.
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5. Method of the least squares spectral combination

One of other methods is the method of spectral combi-

nation (e.g., Wenzel, 1982, Wang 1993). Sjöberg's general

kernel modification (2003a, b) is reduced to the same

method, if the truncation error is ignored.

S̃SC
{ S (ψ)−∑Ln=2 2n+12 S ′nPn (cosψ) if 0 < ψ ≤ ψ00 otherwise

(8)
where:

S ′n = 2
n − 1 Cn

Cn + dn
(9)

cn = n∑
m=0
(
c2
nm + s2

nm
)

(10)

dn = n∑
m=0
(
δc2

nm + δs2
nm
)

(11)

and cnm , snm , δcnm , and δsnm are the spherical harmonic

coefficients and their corresponding standard deviations

from the global reference model.

Methods (1) through (4) are deterministic since they do not con-

sider data or reference model errors while (5) is still considered

to be stochastic (Ellmann 2005). All the methods are applied to

compute corresponding geoid models for Alaska. The following

section describes the data used in the computations.

3. Kernel function computation

To save time, the kernel functions should be prepared before

the geoid computations start. Typically, they are evaluated at

0.1" resolution, and stored in a numerical table, called a ``kernel

table''. Then, a linear interpolation is employed to obtain the value

of S̃(ψ) at a given spherical distance, ψ . In the deterministic

methods, the values of the modification degree, L or p, and cap

size,ψ0 , need to be selected prior to computing the kernel tables.

We used L=p={60, 360, and 2160} and ψ0={1◦ , 2◦ , 3◦ , 5◦ , 6◦ ,
25◦}. The combinations of these variables will give a clear picture

of the behavior of the modified kernels without presenting too

much redundant information.

It is relatively straightforward to prepare the tables formethods (1),

(2), and (5) of Section 2. For methods (3) and (4), the modification

coefficients tn (cosψ0) have to be computed first. Featherstone

(2003) has published software to compute these coefficients up-to

degree 360. We extended this routine to compute up to degree

2160 in the case of high degree modifications. All the resulting

kernel functions at modification degree 60 and their differences

with the original Stokes kernel are shown in Figure 1. The kernels

ofWong andGore , Heck andGrüninger, and spectral combination

behave in almost the same way: they all decrease sharply from

spherical distance zero to 0.2 degrees, then slowly fall to zero at 1

degree. The characteristics of the kernels indicate that the largest

contribution to the geoid comes from the area insider 0.2 degree

radius. The contribution is marginal from the data outside of 1

degree spherical cap. The numerical tests in Section 5 verify this

assertion. It can be seen in Figure 1 that the Vaníček and Kleusberg

and Featherstone kernels are almost the same, except a constant

shift, as expected. The direct effect of this similarity is that the

remote zone may still have noticeable contribution. If geoid

computations are done by using spherical caps, the computation

results are directly dependent of the cap size. If the cap size is

small, the truncation error will be significant. This property of the

kernels is shown in Section 5.

Figure 1. The kernel functions modified up-to degree 60 with 1◦ cap
size (Other tables with different modification degree show
similar behavior. To save space, they are not all shown
here).

4. Data used

The computation area covers a geographic region from 49◦N to

72◦N in latitude and from 168◦E to 237◦E in longitude. There are

about 532,000 surface gravity observations, archived by the Na-

tional Geodetic Survey (NGS), the National Geospatial-Intelligence

Agency (NGA), and Natural Resources Canada (NRCan). The Arctic

Gravity Project (ArcGP) airborne gravity data in the area (Forsberg

and Kenyon, 2004) is also used. The altimetric gravity anomalies

over ocean areas were extracted from the DNSC08GRA database

(Andersen et al., 2010). The digital elevation model used cor-

responds with the Alaska DEM (Li et al., 2008) that is based on

the 3'' SRTM (Farr et al.,2007) below 64◦N and the USGS National

Elevation Data (NED) (Gesch et al., 2009) and the Canadian Digital

Elevation Data (NRCan 2007) at higher latitudes. The ASTER data

fromNASA's Land Processes DistributedActive Archive Centerwas

also used separately, but did not show any advantages over our

Alaska DEM (Li et al., 2010).

Table 1 shows that the above data sets refer to different coordinate

systems. Thus, initially all data sets were converted into a common
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Table 1. The amount of available data-points in the target area.

Data Base NGS NRCan NGAa DNSCb

Horizontal Datum NAD27 NAD83 WGS84 WGS84
Vertical Datum NAVD29 CVGD28 EGM96Geoid EGM96Geoid

Accuracy (mGal) ±3 ±3 3.6±4.6 ±3˜±14
# of points 457,477 74,933 12,547 3,265,926

aArcGP data from Forsberg and Kenyon (2004)
bAltimeter data from Andersen et al. (2010)

coordinatesystem-the ITRF2000byusingtheNGSGeodeticToolkit

(Mulcare 2004a,b). Another related problem is that the gravity

data come from different agencies which use different hardware

and software. Systematic errors may exist among them, which

obviouslywill distort the computedgeoidmodels. Furthermore, to

remove gravity data of suspicious quality, the K-nearest-neighbor

collocation algorithm is employed, which removes about 6% of

the total gravity points. The final cleaned gravity data are shown in

Figure 2. It is worth mentioning that the ArcGP data (5'x5' mean)

is only used in the Chukchi Peninsula area where no point data is

available in the NGS archives.

A gravity anomaly grid with a 1'x1' spatial resolution is generated

based on these cleaned data by least square collocation. Various

methods are available to estimate the quality of interpolated

gravity along data grid points (Li, 2010). For this investigation,

a spline interpolation method was used to estimate the quality

of the Alaskan grid from the available scattered points. Figure 3

shows the differences between the interpolated values and the

original ``true'' gravity anomalies, resulting in better than 1 mGal

standard deviation (STD) with almost zero mean bias. As such, we

may conclude that the gravity grid has at least 1 mGal accuracy

when compared to the cleaned observed point data.

Figure 2. The edited gravity anomalies.

Figure 3. Error estimates of the gravity anomaly grid for Alaska Geoid
computation.

5. Results and discussions

The cleaned observed gravity data discussed in Section 4, and the

modified kernel tables of all the kernel modification methods de-

scribed in Section 2 are inserted in the Stokes integral to compute

the residual height anomalies , ζresidual . Then, at the same mod-

ification degree, all of these residual values are converted into

geoid undulations by using the same additive terms in equation

(1). Thus, the differences in the various geoid models are purely

due to the effects of the differences in the modified kernels. To

validate the performances of the kernel modification methods,

their corresponding geoid undulations are compared with the

geoid heights computed at the local GPS leveling benchmarks.

The 89 GPSBMs re-adjusted in 2007 by NGS in Alaska and the

original 90 points on the adjacent the Canadian area (all shown in

Figure 4) are used in the following analysis. Except a systematic

bias between NAVD88 and EGM96 geoid, these benchmarks have

a few cmprecision, which are currently sufficient for evaluating the

Alaska geoid changes, which have about 20 m amplitude changes

from Canadian side to the U.S. side. The mean differences and the

standard deviations of the geoid difference for different methods

at different modification degrees, i.e., L=60, 360, and 2160, are

shown in Table 2, Table 3, and Table 4, respectively.

From Table 2 (L=60), we see that all the methods show different

standard deviations of the differences with the change of the cap

sizes. The Wong and Gore (1969) method provides almost the

same geoid models as the spectral combination method does,

that is because at low degrees the ratio, Cn
Cn+dn , in equation (9)

is close to 1. The Heck and Grüninger (1987) method does not

show much more improvement than the Wong and Gore (1969)

method, especially in higher degrees (i.e., L=360, and L=2160; see

Tables 3-4, respectively). The Featherstone et al. (1998) method

is very similar to the Vaníček and Kleusberg (1987) method. The

best fitted geoid model generated by the two methods is at cap

size of 60 , with the biases change 3.3 cm. At cap size 25◦ , the

methods of Vaníček and Kleusberg (1987) and Featherstone et

al. (1998) become unstable; the bias changes almost 30 cm. The
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Table 2. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 60. Parenthesis values are standard
deviations. Outside values are mean.

Unit (m) Wong& LS Spectral Heck& Vaníček& Featherstone
Cap Size Gore(69) Comb. Grüninger(87) Kleusberg(87) et al.(98)

1◦ 1.752(0.278) 1.752(0.278) 1.752(0.278) 1.747(0.277) 1.752(0.278)
2◦ 1.758(0.282) 1.758(0.282) 1.747(0.276) 1.739(0.273) 1.742(0.274)
3◦ 1.769(0.287) 1.769(0.287) 1.756(0.281) 1.732(0.270) 1.733(0.271)
5◦ 1.766(0.287) 1.766(0.287) 1.783(0.293) 1.723(0.267) 1.723(0.267)
6◦ 1.762(0.288) 1.762(0.288) 1.774(0.291) 1.719(0.266) 1.719(0.266)
25◦ 1.762(0.289) 1.762(0.289) 1.763(0.289) 1.453(0.275) 1.454(0.275)

Table 3. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 360. Parenthesis values are standard
deviations. Outside values are mean.

Unit (m) Wong& LS Spectral Heck& Vaníček& Featherstone
Cap Size Gore(69) Comb. Grüninger(87) Kleusberg(87) et al.(98)

1◦ 1.763(0.286) 1.763(0.286) 1.766(0.287) 1.757(0.280) 1.757(0.280)
2◦ 1.762(0.286) 1.762(0.286) 1.766(0.289) 1.753(0.279) 1.753(0.279)
3◦ 1.762(0.287) 1.762(0.287) 1.767(0.289) 1.710(0.271) 1.710(0.271)
5◦ 1.762(0.287) 1.762(0.287) 1.767(0.289) 1.720(0.265) 1.720(0.265)
6◦ 1.762(0.287) 1.762(0.287) 1.767(0.288) 2.619(0.967) 2.627(0.970)
25◦ 1.762(0.287) 1.762(0.287) 1.762(0.287) 1.343(0.361) 1.347(0.361)

Figure 4. The available GPS leveling benchmarks in the target area.

corresponding change in the Wong and Gore (1969) method is

only about 1 cm.

When modifying the kernel up to degree 360 (Table 3), the Wong

and Gore (1969) method and the spectral combination method

still generate very close results, and the geoid models are almost

independentof the selected cap size. Nevertheless, at cap sizeof 5◦

the best results in the relative sense (minimum standard deviation)

are still delivered by themethods of Vaníček and Kleusberg (1987)

and Featherstone et al. (1998). However, the geoidmodel changes

for these two methods due to the differences in cap sizes become

more significant than the modification up-to degree 60. As such,

numerical tests have to be done at the GPSBMs for determination

the optimal cap size when these two methods are desired. At the

case of limited ground control data, the methods of Wong and

Gore and the spectral combination should be applied to avoid

large changes in the mean geoid models.

If we push the modification degree into the limit (L=2160), the

methodsofWongandGore (1969), spectral combination, andHeck

and Grüninger (1987) still work normally, and the results do not

have significant changes. The spectral combinationmethod shows

amarginal accuracy improvement than themethods of Wong and

Gore (1969) and Heck and Grüninger (1987). However, the best

fitted geoid models are still obtained by using the methods of

Vaníček and Kleusberg (1987), and Featherstone et al. (1998) at

cap size 5◦ . However, they have large disagreements with the

rest of the methods at other integration cap sizes, because of the

numerical instability of the modification coefficient, tn(cosψ0).
This problem does occur not only in small caps but also in large

ones, when the modification degree (L) is high; see Featherstone

2003.

6. Conclusions

Based on the numerical results of the computation tests, we

reached the following conclusions:

The kernel modification methods at low to medium modification

degrees (L≤360) provide similar geoid estimators. The methods
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Table 4. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 2160. Parenthesis values are standard
deviations. Outside values are mean).

Unit (m) Wong& LS Spectral Heck& Vaníček& Featherstone
Cap Size Gore(69) Comb. Grüninger(87) Kleusberg(87) et al.(98)

1◦ 1.764(0.286) 1.763(0.285) 1.765(0.286) 1.608(0.469) 1.608(0.469)
2◦ 1.764(0.287) 1.763(0.285) 1.765(0.287) 0.730(1.556) 0.729(1.557)
3◦ 1.764(0.287) 1.763(0.285) 1.765(0.287) 1.523(0.388) 1.522(0.388)
5◦ 1.764(0.286) 1.763(0.285) 1.766(0.286) 1.711(0.266) 1.710(0.266)
6◦ 1.764(0.286) 1.763(0.285) 1.766(0.286) 2.806(1.706) 2.813(1.708)
25◦ 1.764(0.286) 1.763(0.285) 1.764(0.286) 1.160(0.610) 1.170(0.612)

of Vaníček and Kleusberg (1987), and Featherstone et al. (1998)

are more versatile and fit the GPS/leveling data the best in the

relative sense at various cap sizes. The drawback is the instabil-

ity of the two methods. The differences in mean and standard

deviation change from 1.720(0.265) m to 2.619(0.967) m just by

increasing the computation cap from5 to 6 degree by Vaníček and
Kleusberg's method (Table 3). Featherstone et al.'s method shows

similar differences. This unpleasant numerical feature comes from

the numerical instability of the modification coefficients in these

twoMolodenskii-type kernelmodificationmethods (Featherstone,

2003). This problem does not occur only in small caps but also

in large ones, when the modification degree is high (Table 4).

As a result, to avoid such problems, certain ground control data

(GPSBMs) are needed in order to find the optimal cap sizes when

these two methods are applied in regional geoid modeling. In

the case when only limited amount of GPSBMs are available to

evaluate the geoidmodels, themethods ofWong andGore (1969),

the spectral combination and Heck and Grüninger (1987) should

beused, considering that their correspondinggeoid estimators are

almost independent of themodification degree and the computa-

tion cap size. There areno risks of inducing large errors by choosing

different integration cap, though the fitting at GPS/Leveling data

may not be the best one.
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Vaníček P. and Sjöberg L.E. (1991): Reformulation of Stokes's

Theory for Higher than Second-Degree Reference Field and

Modification of Integration Kernels. JGR, 96(B4): 6529-6539.
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