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Abstract:

Various Stokes kernel modification methods have been developed over the years. The goal of this paper is to test the most commonly
used Stokes kernel modifications numerically by using Alaska as a test area and EGMO08 as a reference model. The tests show that some
methods are more sensitive than others to the integration cap sizes. For instance, using the methods of Vani¢ek and Kleusberg or
Featherstone et al. with kernel modification at degree 60, the geoid decreases by 30 cm (on average) when the cap size increases from
1° to 25°. The corresponding changes in the methods of Wong and Gore and Heck and Griininger are only at the 1 cm level. At high
modification degrees, above 360, the methods of Vanitek and Kleusberg and Featherstone et al become unstable because of numerical
problems in the modification coefficients; similar conclusions have been reported by Featherstone (2003). In contrast, the methods of
Wong and Gore, Heck and Griininger and the least-squares spectral combination are stable at any modification degree, though they
do not provide as good fit as the best case of the Molodenskii-type methods at the GPS/Leveling benchmarks. However, certain tests
for choosing the cap size and modification degree have to be performed in advance to avoid abrupt mean geoid changes if the latter
methods are applied.
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1. Introduction wavelength portion of the surface gravity data. The simplest
kernel modification methods, such as that of Wong and Gore

Since a local geoid is computed in a local area, the truncation (1969), truncate the spherical harmonic representation of Stokes’s

error, that is the effect of the gravity data from the rest of the function at a degree up to which the global model is more accurate

Earth, has to be taken into account (e.g., Molodenskii et al., 1962; than the gravity counterpart. More advanced methods have been
Sjoberg, 1980, 1981, 1984, 2003a, 2003b; Jekeli 1981; Vanicek and developed, which take into consideration the errors of the surface
gravity data and the reference model (Sjoberg 1980, 1981, 1991,
2003a, 2003b; Wenzel 1982; Wang, 1993). But these stochastic

methods rely on accurate error models of the surface data and

Kleusberg, 1987; VaniCek and Featherstone 1998; Featherstone
et al, 1998; Ellmann 2001, 2005 among others). This is usually

done by using a global geopotential model, the reference model,
the reference model, which may not be easily obtained sometime;

see VaniCek and Featherstone (1998), Featherstone (2003), and
Ellmann (2005) for various discussions of and comparisons between

which accounts for the contribution of the rest of the Earth but
naturally also has a contribution inside the local computation
area. The proper modification, or truncation, of Stokes'’s kernel is
a critical step to optimally combine the long wavelength content the deterministic methods and the stochastic methods.
of the global geopotential model with the medium and short
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Unlike many previous studies that were done in relatively flat areas,

this paper investigates the effects of different kernel modification
methods on geoid computation in Alaska, which has complex ge-
ological rheology. Section 2 gives a brief review of all the available
kernel modification methods. The details of the computation of
the kernel modification are given in Section 3, followed by a brief
discussion of characteristics of the modified kernels. Section 4 de-
scribes the gravity data, the elevation data, as well as the specific
GPS/Leveling benchmarks (GPSBMs) that are used in the valida-
tion of different geoid models. The final geoid difference analysis
is included in Section 5. Finally, some conclusions are given in
Section 6.

2. Methods of kernel modification

In aremove-compute-restore scheme, the geoid is computed from
the surface gravity data and a global reference model by:

__R d(dg)
N_m//%[dg—(h—m) o 1S () do+

GRM+ M+ 1, MY+ C (1)

where R is the radius of the mean Earth, y is the normal gravity, h 4
is the height of the point level (see Moritz, 1980, p. 377), S (¢)
is the Stokes function and s is the spherical distance between
the computation and integration points (Heiskanen and Moritz,
1967, p.94), 0y is the integration area on the surface of a unit
sphere 0; dg is the residual gravity anomaly computed from

°b% the global reference gravity

the surface gravity anomaly Ag
anomaly Ag,(2, M) up-to degree M, and the residual terrain
effect on gravity Ag,(M + 1, M) from degree M + 1 to degree
M’ (eg. M’ = 216, 000, ifa 3 arc-seconds DEM is used), as shown

in the following equation:
dg = Ag°” — Ng,(2, M) — Ag,(M+1,M) ()

If the EGM2008 (Pavlis et al., 2008) reference model is used to
degree 2160, the residual gravity anomaly d g becomes very small
and the downward continuation term in the integral of equation
(1) can be safely neglected everywhere except in high mountains.
The reference height anomaly ;(2, M) is also computed from
a global reference model on the Earth's surface, (M + 1, M') is
the contribution of the residual terrain to the height anomaly, and
C is the correction to convert the height anomaly to the geoid
height (Flury and Rummel, 2009):

+

~ T

(V/:Z;)OP _ VFZ'OP) (3)

where AgBO is the refined Bouguer gravity anomaly, H is the
orthometric height, y is the mean normal gravity from the ellipsoid
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to the telluroid along the ellipsoid normal, VPTOOP and VPTOP
are the topographical potential at a geoid point (Py) and the
corresponding surface point (P), respectively.

To minimize the truncation error and optimally combine the
surface gravity data with the global reference model, Stokes's
kernel, S (i), in the integral of equation (1) is replaced by
a modified kernel, S (¢) in local geoid computations. Various
kinds of kernel modification were developed over the years. In this
paper, we consider and compare the performance of some of the
most commonly used ones, listed in the following:

1. Wong and Gore (1969) method:

p
Suclp i) =SW =Y TP cosy) @

n=2

By completely removing the spectrum up to degree p, this
modification eliminates the low degree contributions from
the local surface data, replacing it by that of the reference
model.

2. Heck and Griininger (1987) method

Suc (p. ) = Swa (p. ) — Swa (p. tho) (5)

where (Jp is the cap size. The extra correction term in-
troduced by this method makes the error kernel function
continuous through the boundaries, for a faster conver-
gence.

3. VaniCek and Kleusberg (1987) method

Svk (L, p. ) = Swe (p, &) —
L

2 1
Z n2+ t, (cosuy) P,(cosi) (6)
n=2

where t, (cosyyp) is the modification coefficient deter-
mined by minimizing the L, norm of the error kernel for
the selected ¢y and L (L < M and L < p). In most
practical cases, L is set equal to p. This modification applies
Molodensky’s modification of the spherical Stokes’s kernel
to the spheroidal Stokes’s kernel. Detailed derivations can
be found in Vani€ek and Kleusberg (1987), and Vanitek
and Sjoberg (1991).

4, Featherstone et al. (1998) method

Se (L p, )= Svk (L, p.¢p) — Suk (L, p. tho) @)

Again the correction term is for a faster converging error
kernel.
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5. Method of the least squares spectral combination
One of other methods is the method of spectral combi-
nation (e.g., Wenzel, 1982, Wang 1993). Sjéberg’s general
kernel modification (2003a, b} is reduced to the same
method, if the truncation error is ignored.

5. | SW L #SPulcosy) i 0< ¢ <y
> 0 otherwise
(®
where:

! 2 CI7
" n=1C,+d, ©)
=2 (Con+5in) (10)

m=0

n

d, = Z (6Cgm + 65%:7:)

m=0

an

and Chm, Spm, 0 Com, and 0, are the spherical harmonic
coefficients and their corresponding standard deviations
from the global reference model.

Methods (1) through (4) are deterministic since they do not con-
sider data or reference model errors while (5) is still considered
to be stochastic (Ellmann 2005). All the methods are applied to
compute corresponding geoid models for Alaska. The following
section describes the data used in the computations.

3. Kernel function computation

To save time, the kernel functions should be prepared before
the geoid computations start. Typically, they are evaluated at
0.1" resolution, and stored in a numerical table, called a “kernel
table”. Then, a linear interpolation is employed to obtain the value
of S(if) at a given spherical distance, (. In the deterministic
methods, the values of the modification degree, L or p, and cap
size, Y1, need to be selected prior to computing the kernel tables,
We used L=p={60, 360, and 2160} and p={1°, 2°, 3°, 5°, 6°,
25°}. The combinations of these variables will give a clear picture
of the behavior of the modified kernels without presenting too
much redundant information.

Itis relatively straightforward to prepare the tables for methods (1),
(2), and (5) of Section 2. For methods (3) and (4), the modification
coefficients t, (cosyy) have to be computed first. Featherstone
(2003} has published software to compute these coefficients up-to
degree 360. We extended this routine to compute up to degree
2160 in the case of high degree modifications. All the resulting
kernel functions at modification degree 60 and their differences
with the original Stokes kernel are shown in Figure 1. The kernels
of Wong and Gore, Heck and Griininger, and spectral combination
behave in almost the same way: they all decrease sharply from
spherical distance zero to 0.2 degrees, then slowly fall to zero at 1

v
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degree. The characteristics of the kernels indicate that the largest

contribution to the geoid comes from the area insider 0.2 degree
radius. The contribution is marginal from the data outside of 1
degree spherical cap. The numerical tests in Section 5 verify this
assertion. It can be seen in Figure 1 that the Vani¢ek and Kleusberg
and Featherstone kernels are almost the same, except a constant
shift, as expected. The direct effect of this similarity is that the
remote zone may still have noticeable contribution. If geoid
computations are done by using spherical caps, the computation
results are directly dependent of the cap size. If the cap size is
small, the truncation error will be significant. This property of the
kernels is shown in Section 5.
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Figure 1. The kernel functions modified up-to degree 60 with 1° cap

size (Other tables with different modification degree show
similar behavior. To save space, they are not all shown
here).

4. Dataused

The computation area covers a geographic region from 49°N to
72°N in latitude and from 168°E to 237°E in longitude. There are
about 532,000 surface gravity observations, archived by the Na-
tional Geodetic Survey (NGS), the National Geospatial-Intelligence
Agency (NGA), and Natural Resources Canada (NRCan). The Arctic
Gravity Project (ArcGP) airborne gravity data in the area (Forsberg
and Kenyon, 2004) is also used. The altimetric gravity anomalies
over ocean areas were extracted from the DNSCO8GRA database
(Andersen et al,, 2010). The digital elevation model used cor-
responds with the Alaska DEM (Li et al., 2008) that is based on
the 3" SRTM (Farr et al.,2007) below 64°N and the USGS National
Elevation Data (NED) (Gesch et al., 2009) and the Canadian Digital
Elevation Data (NRCan 2007) at higher latitudes. The ASTER data
from NASA’s Land Processes Distributed Active Archive Center was
also used separately, but did not show any advantages over our
Alaska DEM (Li et al., 2010).

Table 1 shows that the above data sets refer to different coordinate
systems. Thus, initially all data sets were converted into a common



Table 1. The amount of available data-points in the target area.

Data Base NGS  NRCan NGA? DNSCP

Horizontal Datum NAD27 NADS3 WGS84 WGS84

Vertical Datum NAVD29 CVGD28 EGM96Geoid EGM96Geoid

Accuracy (mGal) +3 +3
457477 74,933

3.6+4.6
12,547

+3°+14

# of points 3,265,926

2 ArcGP data from Forsberg and Kenyon (2004)
b Altimeter data from Andersen et al. (2010)

coordinate system-the ITRF2000 by using the NGS Geodetic Toolkit
(Mulcare 2004a,b). Another related problem is that the gravity
data come from different agencies which use different hardware
and software. Systematic errors may exist among them, which
obviously will distort the computed geoid models. Furthermore, to
remove gravity data of suspicious quality, the K-nearest-neighbor
collocation algorithm is employed, which removes about 6% of
the total gravity points. The final cleaned gravity data are shown in
Figure 2. It is worth mentioning that the ArcGP data (5'x5' mean)
is only used in the Chukchi Peninsula area where no point data is
available in the NGS archives.

A gravity anomaly grid with a 1'x1" spatial resolution is generated
based on these cleaned data by least square collocation. Various
methods are available to estimate the quality of interpolated
gravity along data grid points (Li, 2010). For this investigation,
a spline interpolation method was used to estimate the quality
of the Alaskan grid from the available scattered points. Figure 3
shows the differences between the interpolated values and the
original “true” gravity anomalies, resulting in better than 1 mGal
standard deviation (STD) with almost zero mean bias. As such, we
may conclude that the gravity grid has at least 1 mGal accuracy
when compared to the cleaned observed point data.
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Figure 2. The edited gravity anomalies.
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Figure 3. Error estimates of the gravity anomaly grid for Alaska Geoid
computation.

5. Results and discussions

The cleaned observed gravity data discussed in Section 4, and the
modified kernel tables of all the kernel modification methods de-
scribed in Section 2 are inserted in the Stokes integral to compute
the residual height anomalies , gresidual Thep, at the same mod-
ification degree, all of these residual values are converted into
geoid undulations by using the same additive terms in equation
(1). Thus, the differences in the various geoid models are purely
due to the effects of the differences in the modified kernels. To
validate the performances of the kernel modification methods,
their corresponding geoid undulations are compared with the
geoid heights computed at the local GPS leveling benchmarks.
The 89 GPSBMs re-adjusted in 2007 by NGS in Alaska and the
original 90 points on the adjacent the Canadian area (all shown in
Figure 4) are used in the following analysis. Except a systematic
bias between NAVD88 and EGM96 geoid, these benchmarks have
afew cm precision, which are currently sufficient for evaluating the
Alaska geoid changes, which have about 20 m amplitude changes
from Canadian side to the U.S. side. The mean differences and the
standard deviations of the geoid difference for different methods
at different modification degrees, i.e., L=60, 360, and 2160, are
shown in Table 2, Table 3, and Table 4, respectively.

From Table 2 (L=60), we see that all the methods show different
standard deviations of the differences with the change of the cap
sizes. The Wong and Gore (1969) method provides almost the
same geoid models as the spectral combination method does,
that is because at low degrees the ratio, ﬁ, in equation (9)
is close to 1. The Heck and Griininger (1987) method does not
show much more improvement than the Wong and Gore (1969)
method, especially in higher degrees (i.e., L=360, and L=2160; see
Tables 3-4, respectively). The Featherstone et al. (1998) method
is very similar to the Vani¢ek and Kleusberg (1987) method. The
best fitted geoid model generated by the two methods is at cap
size of 6°, with the biases change 3.3 cm. At cap size 25°, the
methods of VaniCek and Kleusberg (1987) and Featherstone et
al. (1998) become unstable; the bias changes almost 30 cm. The

™~
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Table 2. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 60. Parenthesis values are standard
deviations. Outside values are mean.

Unit (m)  Wong& LS Spectral Heck& Vani¢ek&  Featherstone
Cap Size  Gore(69) Comb. Griininger(87) Kleusberg(87) et al.(98)

1° 1.752(0.278) 1.752(0.278) 1.752(0.278) 1.747(0.277) 1.752(0.278)
2° 1.758(0.282) 1.758(0.282) 1.747(0.276) 1.739(0.273) 1.742(0.274)
3° 1.769(0.287) 1.769(0.287) 1.756(0.281) 1.732(0.270) 1.733(0.271)
5° 1.766(0.287) 1.766(0.287) 1.783(0.293) 1.723(0.267) 1.723(0.267)
6°  1.762(0.288) 1.762(0.288) 1.774(0.291) 1.719(0.266) 1.719(0.266)
25°  1.762(0.289) 1.762(0.289) 1.763(0.289) 1.453(0.275) 1.454(0.275)

Table 3. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 360. Parenthesis values are standard
deviations. Outside values are mean.

Unit (m)  Wong& LS Spectral Heck& Vani¢ek&  Featherstone
Cap Size  Gore(69) Comb. Griininger(87) Kleusberg(87) et al.(98)

1° 1.763(0.286) 1.763(0.286) 1.766(0.287) 1.757(0.280) 1.757(0.280)
2° 1.762(0.286) 1.762(0.286) 1.766(0.289) 1.753(0.279) 1.753(0.279)
3° 1.762(0.287) 1.762(0.287) 1.767(0.289) 1.710(0.271) 1.710(0.271)
50 1.762(0.287) 1.762(0.287) 1.767(0.289) 1.720(0.265) 1.720(0.265)
6°  1.762(0.287) 1.762(0.287) 1.767(0.288) 2.619(0.967) 2.627(0.970)
25°  1.762(0.287) 1.762(0.287) 1.762(0.287) 1.343(0.361) 1.347(0.361)

more significant than the modification up-to degree 60. As such,
70"
numerical tests have to be done at the GPSBMs for determination

the optimal cap size when these two methods are desired. At the

65" case of limited ground control data, the methods of Wong and
Gore and the spectral combination should be applied to avoid
large changes in the mean geoid models.

i If we push the modification degree into the limit (L=2160), the
methods of Wong and Gore (1969), spectral combination, and Heck
- and Griininger (1987) still work normally, and the results do not
have significant changes. The spectral combination method shows
a marginal accuracy improvement than the methods of Wong and
Gore (1969) and Heck and Griininger (1987). However, the best
fitted geoid models are still obtained by using the methods of
VaniCek and Kleusberg (1987), and Featherstone et al. (1998) at
Figure 4. The available GPS leveling benchmarks in the target area. cap size 5°. However, they have large disagreements with the

rest of the methods at other integration cap sizes, because of the

50"

180" 1957 200" 205"

numerical instability of the modification coefficient, t,(costy).

corresponding change in the Wong and Gore (1969) method is This problem does occur not only in small caps but also in large
only about 1 cm. ones, when the modification degree (L) is high; see Featherstone
2003.

When modifying the kernel up to degree 360 (Table 3), the Wong
and Gore (1969) method and the spectral combination method

still generate very close results, and the geoid models are almost 6. Conclusions

independent of the selected cap size. Nevertheless, at cap size of 5°

the best results in the relative sense (minimum standard deviation) Based on the numerical results of the computation tests, we

are still delivered by the methods of Vanicek and Kleusberg (1987) reached the following conclusions:

and Featherstone et al. (1998). However, the geoid model changes The kernel modification methods at low to medium modjification

for these two methods due to the differences in cap sizes become degrees (L<360) provide similar geoid estimators. The methods
7
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Table 4. The statistics of the geoid differences at the local GPSBMs (Kernel modification up to degree 2160. Parenthesis values are standard

deviations. Outside values are mean).

Unit (m) Wong&
Cap Size  Gore(69)

LS Spectral
Comb.

Griininger(87) Kleusberg(87)

Heck& Vanitek&  Featherstone

et al.(98)

1°  1.764(0.286)
2° 1.764(0.287)
3 1.764(0.287)
5° 1.764(0.286)
6 1.764(0.286)
25°  1.764(0.286)

1.763(0.285)
1.763(0.285)
1.763(0.285)
1.763(0.285)
1.763(0.285)
1.763(0.285)

1.765(0.286)
1.765(0.287)
1.765(0.287)
1.766(0.286)
1.766(0.286)
1.764(0.286)

1.608(0.469)
0.730(1.556)
1.523(0.388)
1.711(0.266)
2.806(1.706)
1.160(0.610)

1.608(0.469)
0.729(1.557)
1.522(0.388)
1.710(0.266)
2.813(1.708)
1.170(0.612)

of VaniCek and Kleusberg (1987), and Featherstone et al. (1998)
are more versatile and fit the GPS/leveling data the best in the
relative sense at various cap sizes. The drawback is the instabil-
ity of the two methods. The differences in mean and standard
deviation change from 1.720(0.265) m to 2.619(0.967) m just by
increasing the computation cap from 5 to 6 degree by Vani¢ek and
Kleusberg's method (Table 3). Featherstone et al.'s method shows
similar differences. This unpleasant numerical feature comes from
the numerical instability of the modification coefficients in these
two Molodenskii-type kernel modification methods (Featherstone,
2003). This problem does not occur only in small caps but also
in large ones, when the modification degree is high (Table 4).
As a result, to avoid such problems, certain ground control data
(GPSBMs) are needed in order to find the optimal cap sizes when
these two methods are applied in regional geoid modeling. In
the case when only limited amount of GPSBMs are available to
evaluate the geoid models, the methods of Wong and Gore (1969),
the spectral combination and Heck and Griininger (1987) should
be used, considering that their corresponding geoid estimators are
almost independent of the modification degree and the computa-
tion cap size. There are norisks of inducing large errors by choosing
different integration cap, though the fitting at GPS/Leveling data
may not be the best one.
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