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Abstract:

The aim of ESA's satellite mission GOCE is to determine the Earth's gravity field with high accuracy and resolution. To achieve this aim,
GOCE carries a gravitational gradiometer that needs calibration. Existing global gravity fieldmodels in combinationwith GOCE star sensor
data may be used to synthesize reference differential accelerations with which the common and differential accelerations, as derived
from the gradiometer measurements, can be calibrated. We present a new method in which the data are transformed from the time to
the frequency domain, which allows accounting for the coloured noise on the measurements. The weight matrix is iteratively adjusted
and we apply our method to real GOCE data. With our method, the gravitational gradient trace significantly reduces as compared with
the currently available in-flight calibrated measurements.
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1. Introduction

The Gravity field and steady state Ocean Circulation Explorer

(GOCE) mission from the European Space Agency (ESA) was suc-

cessfully launched 17 March 2009. After almost seven months of

commissioning and calibration, the satellite is performing science

operations since October 2009. The goal of the GOCE mission is

to determine the Earth's mean gravity field with unprecedented

accuracy of 1-2 cm in terms of geoid undulations at spatial res-

olutions down to 100 km (ESA 1999). Based on the analysis of

the actual GOCE data, this goal seems to be achievable (Pail et

al. 2010). The key instrument on board the GOCE satellite is the

electrostatic gravity gradiometer (EGG). The EGG consists of six

three-axis accelerometers that allow deriving commonmode (CM)
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and differential mode (DM) accelerations. The GOCE drag-free

control system uses the CMmeasurements to counteract the non-

gravitational forces on the satellite, whereas the DM accelerations

are combined with star sensor (STR) measurements to compute

gravitational gradients (GGs). The GGs, together with GPS tracking

data, allow computing models of the Earth's gravity field.

In order to be able to derive accurate models of the Earth's mean

gravity field an accurate and reliable gradiometer calibration is

indispensible. The calibration consists of an extensive on-ground

test campaign, in-flight calibration and external calibration and

validation, see e.g. (Bouman et al. 2004, Visser 2007, Cesare and

Catastini 2008, Bouman et al. 2009). Because the gradiometer is

a novel, complex instrument a great number of calibration and

validation methods exist, see (Arabelos et al. 2007, Bouman et

al. 2008, Haagmans et al. 2002, Jarecki and Müller 2007, 2008,

Kern and Haagmans 2005, Lamarre 2006, Mayrhofer and Pail 2010,

Visser 2009).
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Rispens and Bouman (2009) developed a method to calibrate

the CM and DM accelerations using existing global gravity field

information and STR data, and in this paper, we improve upon this

method and apply our method to real GOCE data in contrast to

simulated data as in (ibid.). In addition, we do not only present our

results in terms of accelerations and calibration parameters but

also compute externally calibrated GGs and compare these with

the original GOCE GGs. The improvement of the method consists

of setting up our systemof observation equations in the frequency

domain instead of the time domain. This allows accounting for the

coloured noise on the accelerations with an iterative adjustment

of theweightmatrix of the observations. Wewill see that this leads

to a more accurate estimation of the calibration parameters and

a reduction of the GG errors.

The outline of the paper is as follows. First, we describe the calibra-

tion parameters and their relation with measured and modelled

data (Section 2). Next, wewill explain howwe estimate the calibra-

tion parameters (Section 3) and how to apply corrections based

on these parameters (Section 4). The GOCEmeasurements that we

used are described in Section 5. Section 6 shows the results and

discusses to what extent the method can help to improve GOCE

GGs, and how to combine the results of this method with those of

other calibration methods (Section 7).

2. Calibration model

2.1. Gradiometer imperfections

Along each of the three axes of the GOCE gradiometer (the

gradiometer reference frame, GRF), a pair of accelerometers forms

a one-axis gradiometer denoted as 14, 25 and 36 along the X, Y

and Z-axis respectively. Taking half the sum (i.e. the average)

of two accelerations on one axis yields the CM accelerations, half

the difference of two accelerations on one axis yields the DM

accelerations (Cesare 2008).

Ideally, the DM accelerations are related to the GG and the cen-

trifugal accelerations on the gradiometer as (Cesare 2008)

AI
d = −12LI

(
UI −ΩI2 − Ω̇I

)
(1)

where AI
d is a 3-by-3 matrix with the DM accelerations, L are the

baseline lengths of the gradiometer,U is the GG tensor,Ω2 are the
squared satellite angular velocities, and Ω̇ are the satellite angular

accelerations. The superscripts I indicate that we refer to the ideal

case quantities.

A number of errors affect the accelerometer measurements (Ce-

sare 2008): (A) mis-pointing of the accelerometer in the GRF; (B)

non-orthogonality of the accelerometer axes (coupling); (C) ac-

celerometer mis-positioning; (D) scale factor errors; (E) non-linear

response of feedback loop (quadratic factor); (F) accelerometer

bias and noise. We neglect the quadratic term because it is phys-

ically reduced to zero to a sufficient level as part of the in-flight

calibration (Cesare and Catastini 2008). The measured CM and DM

accelerations, ac,ij and ad,ij , are related to the true CM and DM

accelerations, aI
c,ij and aI

d,ij , as(
ac,ij

ad,ij

) = Mij

(
aI

c,ij
aI

d,ij

)+( bc,ij

bd,ij

)+( nc,ij

nd,ij

)
(2)

withb the CM andDMbiases, n the CM andDMnoises andMij the

calibration matrices that contain the scale factors, misalignments

and coupling errors of accelerometer pair ij =14, 25, and 36.

With inverse calibration matrices (ICMs) the gradiometer imper-

fections mis-pointing (A), coupling (B) and scale factor errors (D)

are to be corrected (Cesare and Catastini 2008):(
ãc,ij

ãd,ij

) = M−1
ij

(
ac,ij

ad,ij

)
(3)

where M−1
ij are the ICMs. They are determined by in-flight

calibration in which the satellite is randomly shaken using the ion

thrusters and cold-gas thrusters. The ICMs are block-symmetric

and we may write(
ãc,ij

ãd,ij

) = ( Cij Dij

Dij Cij

)(
ac,ij

ad,ij

)
(4)

where thematricesC enD represent the common and differential

scale factorsonthediagonal, aswellas thecommonanddifferential

misalignments and couplings. Thus, the in-flight calibrated DM

accelerations are computed as:

ãd,ij = ( Dij Cij

)( ac,ij

ad,ij

)
(5)

where
(

Dij Cij

)
is the lower half of the ICM, and ãd,ij are the

in-flight calibrated DM accelerations for arm ij .

2.2. Adjustment of the inverse calibration matrix

In our external calibration method, we want to estimate adjust-

ments to the ICMs determined by in-flight calibration, as well as

rotations of the gradiometer arms (discussed below). (1) and (5)

are the basic equations for the calibration of the gradiometer with

external data. (1) shows that the DM accelerations can be synthe-

sized from first and second derivatives of star tracker data (Ω2 and
Ω̇) and froma global gravity fieldmodel (U). Equation (5) can then
be used to estimate the ICMs or corrections to the ICMs: ãd,ij are

the DM accelerations computed with external data using (1), and

ac,ij and ad,ij are either the measured CM and DM accelerations

or the in-flight calibrated CM and DM accelerations (Rispens and

Bouman 2009). In this paper, we will use the latter.
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We thus estimate adjustments to the block-symmetric ICMs, which

are defined as( ∆Cij ∆Dij∆Dij ∆Cij

)
≡M−1

ij −M−1
ij,apriori (6)

where Mij is the calibration matrix. The a priori ICM can be the

internal calibration ICM that has been applied to the measured

data before the method at hand is used, or, if no ICM has been

applied, the a priori ICM is the identity matrix.

2.3. Rotation of the gradiometer arms

In addition to the adjustment of the ICMs, we also estimate rota-

tions of the gradiometer arms. These rotations are combinations of

the accelerometer mis-pointing and mis-positioning, and account

for the misalignment between the gradiometer and STR reference

frames. The rotation matrix r∆ that represents the misalignment

between the gradiometer DM accelerations and the reference DM

accelerations, acts on the gradiometer DM accelerations as

 ^ad,14,X ^ad,14,Y ^ad,14,Z
^ad,25,X ^ad,25,Y ^ad,25,Z
^ad,36,X ^ad,36,Y ^ad,36,Z

=r−1∆
 ad,14,X ad,14,Y ad,14,Z
ad,25,X ad,25,Y ad,25,Z
ad,36,X ad,36,Y ad,36,Z

r∆ (7)

where the
^ad terms are the gradiometer DM accelerations aligned

with the external accelerations

Whenwewant touse an r∆,ij for each arm ij separately, we assume

that the misalignments are small enough to define

r∆,ij ≡
 1 −γij βij
γij 1 −αij
−βij αij 1

 ; r−1∆,ij =
 1 γij −βij
−γij 1 αij
βij −αij 1


(8)

and to drop second order terms ofαij ,βij and γij . We then rewrite

(7) as



^ad,14,X
^ad,14,Y
^ad,14,Z
^ad,25,X
^ad,25,Y
^ad,25,Z
^ad,36,X
^ad,36,Y
^ad,36,Z


=



ad,14,X
ad,14,Y
ad,14,Z
ad,25,X
ad,25,Y
ad,25,Z
ad,36,X
ad,36,Y
ad,36,Z


+



0 −γ14 β14 −γ14 0 0 β14 0 0
γ14 0 −α14 0 −γ14 0 0 β14 0
−β14 α14 0 0 0 −γ14 0 0 β14
γ25 0 0 0 −γ25 β25 −α25 0 00 γ25 0 γ25 0 −α25 0 −α25 00 0 γ25 −β25 α25 0 0 0 −α25
−β36 0 0 α36 0 0 0 −γ36 β360 −β36 0 0 α36 0 γ36 0 −α360 0 −β36 0 0 α36 −β36 α36 0





ad,14,X
ad,14,Y
ad,14,Z
ad,25,X
ad,25,Y
ad,25,Z
ad,36,X
ad,36,Y
ad,36,Z



or in compact form

^
Ad = Ad + R∆Ad. (9)

2.4. Combination of ICM and rotation

Since the ICM adjustments ∆Cij and ∆Dij operate on the mea-

surements of each arm separately, and the rotation R∆ of the

individual gradiometer arms needs terms from the other arms as

well, we define

∆C≡

 ∆C14 0 00 ∆C25 00 0 ∆C36

 ; ∆D≡

∆D14 0 00 ∆D25 00 0 ∆D36


and write

˜̂
Ad = Ad + (R∆ + ∆C) Ad + ∆DAc (10)

to provide a simultaneous correction for the ICM and for misalign-

ments between the external accelerations and the gradiometer

accelerations and misalignments between the gradiometer arms.

The differential accelerations
˜̂
Ad are a linear combination of the

gradiometer DM and CM accelerations corrected for the ICM and

for the misalignments between gradiometer arms and STRs.

Whenwewant to compare the gradiometer accelerations with the

reference DM accelerations to estimate the calibration parameters

of R∆ , ∆C and ∆D, we need to consider the noise of the

accelerations as well. If there would be no noise and bias in

the accelerations and if the external data (global gravity field

model and STR data) would be without error, the external DM

accelerationswould be equal to theDMgradiometer accelerations

with corrections for the ICM and misalignments applied. We then

would have

Âd = ˜̂
Ad (11)

where Âd are the external DM accelerations. Including the noise
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or error components N̂d for the external DM accelerations andNd

andNc for the gradiometer DM and CM accelerations, we get

Âd−N̂d = Ad−Nd +(R∆ + ∆C) (Ad −Nd)+∆D (Ac −Nc) .
(12)

Since the noise of the gradiometer accelerations is coloured noise,

we consider the bias to be the zero frequency component of this

coloured noise and it does not explicitly show up in the equation.

Equation (12) is the basis for the model of our calibration method.

3. Estimation of the calibration parameters

3.1. Model of observation equations

The estimation of the calibration parameters in R∆ , ∆C and ∆D
can be done by a least squares fit. Since each arm has its own

set of calibration parameters, this fit can be done for each arm

separately. A few definitions we need are âd,14
âd,25
âd,36

 = Âd,

 ν̂d,14
ν̂d,25
ν̂d,36

 = N̂d,

 νd,14
νd,25
νd,36

 = Nd and νc,14
νc,25
νc,36

 = Nc

and we define R∆,14 , R∆,25 and R∆,36 as the top, middle and

bottom three rows of R∆ respectively. We can then split (12) in

three and write for each arm ij

âd,ij − ν̂d,ij = ad,ij − νd,ij + ∆Dij
(
ac,ij − νc,ij

)
+ ∆Cij

(
ad,ij − νd,ij

) + R∆,ij (Ad −Nd) (13)

or

(
âd,ij − ad,ij

)
−
(
ν̂d,ij − νd,ij

) = ∆Dij
(
ac,ij − νc,ij

)
+∆Cij

(
ad,ij − νd,ij

) + R∆,ij (Ad −Nd) . (14)

Because the elements of ∆C and ∆D are 10−2 or smaller we

assume that the noise terms on the right hand side of (14) are

negligibly small compared with the corresponding terms on the

left hand side. This leads to

(
âd,ij − ad,ij

)
−
(
ν̂d,ij − νd,ij

) = ∆Dijac,ij+∆Cijad,ij+R∆,ijAd.
(15)

We can write the right hand side of (15) as the product of a design

matrixPij and a 21 elements parameter vector xij

E
{(

âd,ij − ad,ij
)
−
(
ν̂d,ij − νd,ij

)} = âd,ij − ad,ij = Pijxij .
(16)

This equation can be solved by least squares for the parameter

vector xij defined as

xij ≡
( ∆dij,11 · · ·∆dij,13 ∆cij,11 · · ·∆cij,13 ∆dij,21 · · ·

· · ·∆cij,33 αij βij γij
)T

(17)

where the elements of the ICMadjustments are denoted as∆cij,11 ,∆dij,11 , etc., and
Pij ≡

(
Pij,1 Pij,2 )

with

Pij,1 ≡
 aTc,ij aTd,ij 0 0 0 00 0 aTc,ij aTd,ij 0 00 0 0 0 aTc,ij aTd,ij



P14,2 ≡
 0 ad,14,Z + ad,36,X −ad,14,Y − ad,25,X

−ad,14,Z ad,36,Y ad,14,X − ad,25,Y

ad,14,Y −ad,14,X + ad,36,Z −ad,25,Z


P25,2 ≡

 −ad,36,X ad,25,Z ad,14,X − ad,25,Y

−ad,25,Z − ad,36,Y 0 ad,14,Y + ad,25,X

ad,25,Y − ad,36,Z −ad,25,X ad,14,Z


P36,2 ≡

 ad,25,X −ad,14,X + ad,36,Z −ad,36,Y

ad,25,Y − ad,36,Z −ad,14,Y ad,36,X

ad,25,Z + ad,36,Y −ad,14,Z − ad,36,Z 0
 .

See also Appendix A in (Rispens and Bouman 2009).

A rotation of a one-arm gradiometer around the direction of the

arm itself can be obtained in two different ways: 1) by the ICM as

two rotations of individual accelerometers around the in-line axis,

or 2) by the rotationmatrix asone rotationof thewhole armaround

the in-line axis. This means there is a redundancy in the calibration

parameters, and thedesignmatrixwill be singular if these rotations

are simultaneously estimated. This problem can be solved by not

estimating the rotation angle of the arm, or by estimating the two

ICM elements related to this angle as one. The two options will

lead to identical physical representations, except when we study

individual calibration parameters, orwhenwedecide to apply only

part of the estimated calibration parameters (section 4). To choose

between the twooptions,weneed to realize that themisalignment

of the arm in this case represents the misalignment with respect

to the external data, i.e. with respect to the STR attitudes. Since

the individual accelerometer misalignments have already been

estimated by the in-flight calibration, and the misalignment with

respect to theSTRhasnot,wechoose the latteroption, to represent

this misalignment as much as possible in the 'new' parameters.

The effect on the parameter vector and the design matrix is that∆c14,32 = ∆c14,23 , ∆c25,31 = ∆c25,13 and ∆c36,21 = ∆c36,12 ,
and that the related columns of the designmatrix are summed into

one column. We then estimate 20 independent parameters for

eachgradiometer arm, and thedesignmatrix for each gradiometer

arm counts 20 columns.
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3.2. Weighting matrix

The equations given above can be viewed in the time domain,

meaning that the equations hold for each individual epoch. They

can however be viewed just as well in the frequency domain,

meaning that they hold for each frequency of the Fourier trans-

form of the gradiometer and external accelerations. In fact, the

equations hold for any linear transformation of the signals as long

as the same linear transformation is applied to all signals.

Both representations can be used to model the correlations that

exist. In the timedomain, the colourednoise in both the gradiome-

ter and in theexternal accelerations isdescribed in termsof anerror

covariance function, whereas in the frequency domain, the power

spectral density is used, see e.g. (Schuh 2002). To account correctly

for these correlations in the time domain requires the handling

of large matrices, which may exhaust computer resources when

trying to solve a least squares problem. In the frequency domain,

the same is achieved by elementwisemultiplication (Strang 1986),

and this simplifies the solution of the least squares problem. We

can apply a weighting matrix that depends on the noise level for

a certain frequency, which leads to a more accurate estimation of

the calibration parameters. We will try to fit an empirical function

to the estimated errors, which is then used to weigh the data, see

Section 5.2. This is similar to decorrelation by filtering for which

alternatively ARMA (auto-regressive moving average) filters may

be used, e.g. (Schuh et al. 2010).

In our study, the data were pre-processed before the fast Fourier

transform (FFT), in order to avoid spectral leakage mainly caused

by boundary effects. Each window to be processed by the FFT was

first de-trended and then multiplied by a Blackman window (e.g.

Oppenheim and Schafer 1999).

Thenoisedistributions in (16) for ν̂d,ij andνd,ij , or for ν̂d,ij−νd,ij , are

not necessarily known in advance. Therefore, we have estimated

the distribution of the difference âd,ij−ad,ij instead, which should

be equal up to the corrections that we intend to find with this

calibration method, according to (16). By iterating the estimation

of the distribution after applying the corrections, the agreement

of the distributions of ν̂d,ij −νd,ij and âd,ij − ad,ij should become

better.

The weights are calculated as the inverse square of the standard

deviation, where the standard deviation is estimated by fitting

a frequency dependent function to the absolute values of the

difference âd,ij − ad,ij . For estimation of the calibration param-

eters, the weighting functions can be used as they are described

above. However, whenwe estimate the accuracy of the calibration

parameters we apply a scaling, because for a normal distribution

the expected mean absolute deviation, e.g.
∫
|x|e−(x)2/2/√2πdx

for the standard normal, can be calculated to be
√2/π or approx-

imately 0.8 times the expected standard deviation.

4. Applying corrections

Once the calibration parameters have been estimated, we want

to apply them in order to improve the measured accelerations.

However, RispensandBouman(2009) showed inasimulationstudy

that theapplicationofonlyaselectionof thecalibrationparameters

may yield better results in terms of differential acceleration errors,

that is, it appeared to be better to correct only for common scale

factors and misalignments, and not to correct for the rest of the

estimated ICM. Thismaybe related to the fact thatwith theexternal

data inour setup theestimationof accelerometermis-pointingand

non-orthogonality is not well possible. Through the correlation

between the calibration parameters, an unreliable mis-pointing or

non-orthogonality estimated may then affect the scale factors. In

addition, it was found that the estimation of the ICM elements that

are related to the CM X accelerations (i.e. dij,11 , dij,21 and dij,31)
poses a serious problem for the method described there. Because

of the drag compensation the CM X accelerations are close to zero

for the dominant frequency range in our least squares estimation,

which means that the determination of the related unknowns is

poor.

In an attempt to be able to recommendwhich parameters to apply

and which parameters to keep fixed to their a priori value, which

may be zero, we divide the calibration parameters in three groups.

The first group are the calibration parameters not estimated in

the in-flight calibration, that is, the misalignment between STR

and gradiometer reference frames. The second group are the

calibration parameters that have been estimated in the in-flight

calibration, but the required knowledge accuracy (RKA) may be

relatively large. The RKA is the upper boundwithwhich the calibra-

tion parameters must be known in order to fulfil the requirements

on theGG trace. TheRKA is up to 0.6×10−3 for thedifferential scale
factors, whereas it is 2 or 10×10−3 for the common scale factors.

The third group are the calibration parameters with a smaller RKA.

For all other ICM elements, the RKA is 0.2×10−3 or smaller. We

therefore consider three different case studies:

1. Apply only the mounting matrix correction.

2. Apply the mounting matrix correction and the (common

and differential) scale factors (i.e. cij,11 , cij,22 , cij,33 , dij,11 ,
dij,22 , dij,33 and αij , βij , γij ).

3. Apply all estimated calibration parameters.

There is arbitrariness in this division and by selecting only a group

of parameters, the estimation could be affected by the correlation

between the parameters. Nevertheless, we have an unambiguous

criterion for how well our estimation and application of the pa-

rameters is: this is the GG trace, the sum of the XX, YY and ZZ GGs.

The trace should be zero and if the application of the calibration

parameters reduces the trace, we canbequite certain thatwehave

reduced the errors in the GGs. Furthermore, the application of just

the mounting matrix correction and scale factors -- case study 2 --
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is justified by the small RKA of the remaining ICM elements, which

are expected to be very close to zero after in-flight calibration.

The reference frame in which the DM accelerations are delivered is

the GRF, which is by definition the one-arm-gradiometer reference

frame (OAGRF) for accelerometers 3 and 6, OAGRF3. This implies

that the corrections for misalignments for this OAGRF3 are not

to be applied (i.e. α36 , β36 , γ36), and that we need to correct

the other two gradiometer arms in such a way that they coincide

with OAGRF3. This can be achieved by subtracting the estimated

rotation for OAGRF3 from the estimated rotations for OAGRF1

and OAGRF2. The rotations α ′ij , β ′ij and γ ′ij to be applied can be

calculated as

α ′ij = αij − α36 ; β ′ij = βij − β36 ; γ ′ij = γij − γ36. (18)

The estimatedmisalignment of OAGRF3will be used to correct the

mounting matrices of the star trackers.

Once we have applied the calibration parameters and we have

calibrated DM accelerations and a calibrated mounting matrix, we

want to assess the quality of the calibrated data. To do this, we

will calculate GGs, by combining DM accelerations and STR data.

The GGs can be assessed by analyzing the GG trace behaviour, and

by comparison with GGs predicted with an existing gravity field

model. The GGs U are calculated using the equivalent of (1), and

using the symmetry ofU andΩ2 , and the anti-symmetry of Ω̇:

U = Ω2 − L−1 (Ad + AT
d
)
. (19)

The angular rates are in this case calculated by combining the

DM accelerations with STR measurements, which is explained in

Appendix A.

5. Input data

The data used for this study are taken from November 2009 and

December 2009. The time-series data used are

· CM and DM accelerations, internally calibrated. Data set

EGG_CCD_DS from EGG_NOM_1b (SERCO 2006)

· Star tracker quaternions. Data set STR_VC2_DS from

STR_VC2_1b and STR_VC3_DS from STR_VC3_1b (SERCO

2006)

· Reduced dynamic orbits and Earth frame matrices from

the rapid science orbit product (Visser et al. 2009) for

calculation of modelled GGs

Except for the STR data, the time series are available from the ESA

archive. In addition to these time-series data, we used

· the EIGEN_GL05C global gravity field model (Foerste et al.

2008) up to degree and order 360 to synthesize modelled

GGs. The effects of the choice of global gravity field model

on the results of external calibration of DM accelerations

have been examined in (Rispens and Bouman 2009), and

this showed that the impact of choosing a different global

gravity field model was not significant.

· the baseline lengths LX = 0.5140135 m, LY =
0.49989 m, LZ = 0.500201 m, as measured on ground

· STR 1 mounting matrix as measured on ground, and STR

2 mounting matrix aligned with STR 1 using in flight data.

The matrices used are

GRF to STR 1 0.999991953964 - 0.002875276132 - 0.002797283507
- 0.003855453068 - 0.496285685373 - 0.868150709252
0.001107921251 0.868154508875 - 0.496292777733


GRF to STR 2 0.999868439135 0.016149312081 0.001517939829

0.015726793513 - 0.942268716879 - 0.334488165946
- 0.003971446565 0.334468032720 - 0.942398728087


5.1. Data periods selection

To avoid contamination of our calibration parameters by the

presence of outliers and suspicious values, we selected only part

of the time dependent data. Only those epochs were used for

which at least two STRs with a validity flag equal to one were

available, since we combine the attitudes from two star trackers

to circumvent the loss of accuracy in the estimation of rotation

around the STR bore sight. In addition, a visual inspection of the

STR, EGG and residual data was done to remove suspected bad

data. The remaining data were only selected if they were in time

spans of at least 40,000 seconds for the same two STRs, allowing

data gaps lasting at most 10 seconds. All of the data selected in

this way were for the combination of STR 1 and STR 2. The data

were split into two almost equal periods, one from 1 November

to 29 November, the other from 30 November to 29 December,

which we call the November and December periods respectively.

Altogether, this led to the selection of the time series shown in

Table 1.

5.2. Frequency dependent weights

One important characteristic of the input data is the noise distribu-

tion. The method presented here uses the difference between the

gradiometer DM accelerations and the reference DM accelerations

to estimate weighting factors. The left panel of Figure 1 shows the

absolute values of this difference in the frequency spectrum, and

a curve fitted to estimate the standard deviation of the difference,

for ad,14,X in November. The inverses of the fitted values are

used as weighting values for the least squares estimation of the
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Table 1. Data periods selected for November and December data.

Period start(UTC time) Period end (UTC time) Number of epochs

November
2009-11-02 18:41:41 2009-11-03 19:03:32 87712
2009-11-05 22:06:11 2009-11-07 01:52:57 100007
2009-11-07 03:22:43 2009-11-08 00:58:22 77740
2009-11-08 20:26:58 2009-11-09 21:10:44 89027
2009-11-10 09:29:52 2009-11-13 01:26:50 230219
2009-11-13 02:56:36 2009-11-17 05:38:34 355319
2009-11-17 08:38:03 2009-11-24 11:07:03 613741
2009-11-24 12:36:49 2009-11-26 16:56:00 188352
2009-11-28 01:51:20 2009-11-29 16:48:10 140211

December
2009-12-05 23:46:44 2009-12-07 04:54:20 104857
2009-12-08 04:52:00 2009-12-09 17:30:20 131901
2009-12-11 02:24:22 2009-12-13 21:42:07 242266
2009-12-13 23:11:53 2009-12-14 17:08:36 64604
2009-12-14 18:38:21 2009-12-17 12:26:23 236883
2009-12-17 13:56:09 2009-12-21 03:10:36 306868
2009-12-21 04:40:22 2009-12-23 19:28:54 226113
2009-12-23 20:58:39 2009-12-26 01:58:17 190779

calibration parameters. After applying the calibration corrections,

the weighting factors are re-calculated, and the calibration is re-

peated. The differences forad,14,X in November after applying the

calibration corrections are shown in the right panel of Figure 1.

After calibration, the difference becomes smaller particularly for

the once per revolution frequency, and the fit matches better with

the data points. The plots for the other DM accelerations show

a similar improvement after applying the calibration, meaning

a decrease of the once per revolution peak with approximately

a factor of ten for the sensitive axes of the EGG, and a factor of two

for the less sensitive axes.

Figure 1. Absolute difference between Fourier coefficients from mea-
sured and Fourier coefficients from modelled DM acceler-
ations, determined before and after calibration for ad,14,X ,
November data. Red dots are the individual differences,
the black lines are fitted to the red dots.

The function used for the fit was initially a linear combination of

a constant, f−3 and f for the in-line axes, and for the other axes a f2

term is added, with f frequency. The f−3 term reflects the noise

behaviour of the gradiometer for low frequencies, and the f and
f2 terms reflect the noise behaviour ofω and ω̇, which are the first

and second derivatives of the star sensor attitude. The constant

reflects the levelling ofω2 noise terms for low frequencies.

However, we learned from the differences as plotted in Figure 1

and from direct comparison of attitudes from STR 1 and STR 2

that the STR attitudes show periodic errors and the initial function

used for the fit didn't suffice. These periodic errors are probably

caused by imperfections in the image of the star camera and

depend on the field of view (FOV) of the STR, in other words on

where in the image the stars are seen. Each FOV is almost exactly

revisited after one revolution of the GOCE spacecraft, leading to

almost identical errors that re-occur each orbit (Bouman et al.

2010). This shows up as the harmonics in Figure 1. Depending

on whether we have only angular rate terms included (in-line axis

DMaccelerations) or angular acceleration terms aswell (transverse

axis DM accelerations), the amplitude of the propagated STR FOV

error harmonics increase linearly or quadratically with frequency,

respectively. We have tried to define a function that describes

as good as possible, in an empirical way, the behaviour of these

periodic errors, relative to the high-frequency noise of the attitude

errors, i.e. the noise that does not depend on the FOV, and thus

does not appear as harmonics. This was not only based on the

differences seen in Figure 1, but on comparison of attitudes from

STR 1 and STR 2 as well. The function that we have used is

1 + (pmin − 1 + 1(tan (πf/fharm))2 + 1/pmax

)
( (

f/fpeak
)0.4

0.6 + 0.4∗ (f/fpeak
))( e1−f/fco1 + e1−f/fco

)(1 + e1−fpeak/fco

e1−fpeak/fco

)
(20)

where

pmin = 2, the minimum relative amplitude increase in between

the harmonic peaks

pmax = 100, the maximum relative amplitude increase at the

highest harmonic peak

fharm = 0.18575 mHz, the orbital frequency (1/5383.5 s−1)
fpeak = 1.3 mHz, the frequency where the harmonics have their

highest peaks

fco =20 mHz, the cut-off frequency where the harmonics disap-

pear.

As explained above, this function intends to describe the harmonic

errors relative to the high-frequency noise, therefore we multiply

the initial functions that describe the STR error (f and f2) with this

function. The resulting fits are shown in Figure 1.

6. Results

The results of the calibration method are on the one hand the

estimated calibration parameters, whichwill be examined in terms
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of accuracy, stability over timeandagreementwithothermethods.

On theotherhand,wecanuse thecalibrationparameters tocorrect

the DM accelerations, and generate GGs from the corrected data.

These GGs will be evaluated by examining the GG trace and the

GG residuals with respect to predictions from a state-of-the-art

existing global gravity field model.

6.1. Calibration parameters

Because the basic numbers of the calibration parameters may be

hard to interpret as such, we have plotted the ICM elements for

arm 14 together with their estimated accuracies and the required

knowledge accuracies (RKA) in Figure 2. Each subplot represents

one of the ICM elements. Two values are marked with blue

dots, one for the November estimate and one for the December

estimate, each one shown with its three-sigma error bar. The

value for the combination of November and December estimates

is shownas a stripedblue line, againwith error bars. The calibration

presented here was performed on the level 1b data, which have

been internally calibrated. In that sense, the estimated parameters

can directly be compared with the internal calibration. This holds

especially for the ICMs, since they are estimated by the internal

calibration as well, and the internal calibration is expected to

provide corrections within the RKA.

When comparing the November and December estimates, we see

that they are compatible in the sense that the blue error bars

are always overlapping, except for the scale factors d11, d33, c11
in arm 14 and d22, c11, c33 in arm 25, and in addition element

d21 in arm 25. In addition, one would expect the estimates, or

at least their error bars, to fall within the RKA, i.e. within the

grey lines, because the calibration was done on already internally

calibrated accelerations. For 44 of the 54 parameters (81%) this

is indeed the case, all estimates or their error bars fall within the

RKA. Only d11, d33, c21 in arm 14, d21, d22, d23 in arm 25 and

d13, d23, c31, c32 in arm 36 contain one ormore error bars that do

not fall within the RKA. One possible cause for these discrepancies

is that calibration parameters vary with time. This is addressed

below.

The estimates of the alignment of the individual arms with respect

to the STR's and the alignment among gradiometer arms are given

in Table 2 and Table 3 respectively. The estimates show good

agreement between the November and December estimates.

The alignment of GRF with the STR (i.e. alignment of arm 3-6, or

α36, β36, γ36) showsa combinedestimateof (-487, 387, 791)micro-

radians. Theestimates for themisalignmentsbetweengradiometer

arms (Table 3) are much smaller; the combined estimates are all

within 200 micro-radians.

To assess the stability over time of the calibration parameters,

we extended the data period from 1 November 2009 until 9

January 2010, which has been split into seven periods of each

approximately 10 days. For these seven data periods, calibration

parameters have been estimated and plotted as a function of

Figure 2. Estimated parameters for ICM 14. The plots show the (D
C) matrices, with the top left plot for d11 and the bottom
right plot for c33. The grey lines (constants) show the RKA
limit of the parameter as explained in section 6.1. The first
blue dot in each plot is the November estimate, the second
the December estimate. The striped line is the combined
estimate based on the error values (the blue error bars in
the plots show three times sigma).

Table 2. Alignment between individual arms and STR combination
(10−6 rad), accuracies give one sigma.

α14 α25 α36 β14 β25 β36 γ14 γ25 γ36

November -683 -476 -482 352 419 384 852 790 922
accuracy 70 5 3 21 11 20 2 12 51

December -685 -496 -491 432 439 390 847 839 601
accuracy 72 5 2 26 11 22 2 13 74

Combined -684 -486 -487 387 429 387 849 813 791
accuracy 50 4 2 17 7 15 2 9 42

time. In general, the parameters are consistent from one period

to the next, similar to the results with two periods (November and

December), although the estimated accuracies are smaller for the

seven data periods because the data windows that were used in

the estimation are shorter. A special case is the behaviour of the

differential scale factors (DSF),which showsometimedependency.

The DSF are the diagonal elements in the D matrices. The DSF for

the seven periods have been plotted in Figure 3. The red lines

indicate the linear interpolation of the DSF values obtained after

the in-flight calibrations of October 2009 and January 2010. In

Table 3. Alignment of arms 1-4 and 2-5 with respect to the GRF, i.e.
arm 3-6 (10−6 rad), accuracies give one sigma.

α ′14 α ′25 β′14 β′25 γ′14 γ′25

November -201 6 -32 35 -70 -133
accuracy 70 6 29 23 51 53

December -194 -6 42 49 246 238
accuracy 72 6 34 25 74 75

Combined -198 0 2 42 59 20
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the plots for ad,14,Y , ad,14,Z and ad,25,Y a trend is clearly visible.

The same trend can be seen in these plots for the blue values,

the estimates of our method. This indicates that the differences

in internal calibration estimates for the DSF are in fact caused by

a slow variation in (differential) scale factors.

Figure 3. DSF and error bars of 3 times sigma (blue dots and bars),
combined estimate (striped blue line), the RKA limit of the
parameter as explained in section 6.1 (grey lines), inter-
polated internal calibration (red). The (grey) RKA for the
ad,14,Y and ad,36,Y DSF is not visible because it is outside
the plot limits. For the left three plots the grey and red lines
are somewhat hidden behind the striped blue line.

6.2. Calibrated measurements

The calibration method described in the sections above has been

applied to the November and December data sets. The three case

studies that are described in Section 4 have been used. In all cases,

we do not select the calibration parameters related to the CM X

accelerations (i.e. dij,11 , dij,21 and dij,31). Because the satellite is

in drag free the CM signal in the flight direction is very small and

the corresponding calibration parameters are difficult to estimate

(Rispens and Bouman 2009). This can be seen in Figure 2 where

the error bars are much larger than the RKA for these parameters.

From both the original data and the calibrated data, GGs have

been calculated as described in Section 4. For both the November

and December data sets their own calibration parameters have

been applied, thus no combination of parameters has been used.

In Figure 4 the spectral densities of the GG trace are shown for the

input data and for the three case studies. Correcting the estimated

misalignmentbetweengradiometerandstar trackers (i.e. adjusting

themountingmatrix), improves theGGtrace (green lines). Thenext

step is to apply the scale factors, both common and differential,

which improves the trace condition even further (red lines). The

last step, applying the internal gradiometer alignment corrections

as well and thus applying all calibration parameters (cyan lines),

yields the smallest GG trace for frequencies between 10−4 and

10−3 Hz, but for frequencies between 10−3 and 10−2 Hz applying

only the mounting matrix adjustment and the scale factors yields

the smallest GG trace. In any case, the plots show that our external

calibration improves the measurements by reducing the trace

condition. In some cases for specific frequencies, there is a slight

increase of the trace, but this is too small to be visible in Figure 4.

Figure 4. Spectral density of GG trace. The different lines are for
different strategies of which corrections have been applied.
The left panel shows the data of November 2009, the right
panel those of December 2009.

We also compared our calibrated GGs with GGs from an existing

global gravity field model. The latter GGs are those we used when

calculating reference DM accelerations, except that a rotation

correction is added, based on the estimated mounting matrix

adjustment if applied, and on the combination of STR and EGG

data in the angular rate reconstruction as described in Appendix

A. Figure 5 and Figure 6 show the residuals of the GGs for the input

data of November 2009 and December 2009 respectively, for the

original data and for the three case studies described in Section 4.

Improvements of the residuals from calibrated data compared

with those from the original data are clear in frequencies between

0.1 and 1 mHz for all three components, both in November and

December. For the somewhat higher frequencies between 1 and

10 mHz the improvement is still very clear for the YY component,

that is if the scale factor corrections are applied (red and cyan

lines). For the other components, there is some improvement

as well, although it is far less than for the YY component. In

particular, the YY component may suffer from the trend in the

ad,25,Y DSF, and this suggests that the significant improvement of

the YY component for frequencies above 5 mHz is for a large part

caused by a correction for the trend in the DSF.

In the plots, going from the blue to green to red to cyan, we add

application of the estimated mounting matrix corrections, com-

mon and differential scale factors, and the internal gradiometer

alignment parameters respectively. It varies for which case study

the various components (XX, YY and ZZ) have the lowest residuals.

For the YY component, the residuals decrease each time thatmore

of the estimated parameters are applied, except for frequencies

around0.2mHz inDecemberwhenadding thescale factors. For the

ZZ component however, applying the estimatedmountingmatrix

corrections does decrease the residual, but adding application of
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Figure 5. Spectral density of GG residuals for November 2009. The different lines represent the different case studies being to apply no corrections
(blue), apply mounting matrix corrections (green), apply mounting matrix corrections and scale factor corrections (red) and apply all
corrections (cyan).

Figure 6. Spectral density of GG residuals for December 2009. The different lines represent the different case studies being to apply no corrections
(blue), apply mounting matrix corrections (green), apply mounting matrix corrections and scale factor corrections (red) and apply all
corrections (cyan).

the estimated scale factors and internal gradiometer alignment

parameters both increase the residual for the higher frequencies

between 0.5 and 5mHz for the November data and between 1 and

5 mHz for the December data. For the XX component, the differ-

ences between the three case studies are smaller in these higher

frequencies. For the lower frequencies around 0.2 mHz, both the

XX and the ZZ residuals decrease to some extent when adding

each of the estimated parameter sets. In summary, applying more

of the estimated parameters in generally decreases the residuals,

but there are a few exceptions where for certain frequencies for

certain components it increases the residuals.

7. Discussion and conclusions

The results of a method for the external calibration of GOCE

accelerations and its results for two months of data have been

presented. Based on the results we can assess the quality of the

estimated calibration parameters, the effect of the calibration on

GGs calculated from the GOCE measurements, and different cases

for application of the calibration parameters.

Theestimatedparameters showgoodconsistency, considering the

reported formal errors, when comparing the November against

the December estimates. There are a few exceptions, one element

related to the CM-X accelerations, element d21 in arm 25, for

which it has been shown (Rispens and Bouman 2009) that these

elements are problematic to estimate with a similar method. The

other elements that are not consistent between November and

December are all scale factors. It was shown that at least some

of the DSF slowly change in time. Such a change in time can

occur similarly for the common scale factors, and may explain the

inconsistencies between the November and December estimates

of the common and differential scale factors.

When comparing our estimates for the ICM's against the RKA,

assuming that the RKA represents the accuracy of the internal

calibration, we see compatibility between our estimates and the

internal calibration for 80% of the ICM parameters. For several of

the non-compatible parameters this can be explained by the time

variation of the DSF, or by the difficulty of the estimation of CM-X

related parameters. The disagreements in parameters d23 in arm

25 and d13, d23, c31, c32 in arm 36 remain unexplained. The mis-

alignments between the individual gradiometer arms have been

estimated to be all within 200 micro-radians. The misalignment

between gradiometer and STR's is estimated to be larger, with
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corrections of -487, 387 and 791micro-radians around the X, Y and

Z axes of the gradiometer.

The results of the calibration show a reduction of the GG trace

and GG residuals in the frequency range from 10 mHz down to

0.1 mHz. The size of the reduction depends on which corrections

are applied. The largest improvement in the GG trace is seenwhen

applying the adjusted mounting matrix and both the common

and differential scale factors. This suggests that the mounting

matrix adjustment is a good addition to the parameters used by

the internal calibration. Part of the improvement of applying

our scale factors is likely caused because we estimate the drifting

DSF by using the measurements from the same period where we

apply them, while the internal calibration estimates the DSF using

shaking data from October, but applies them in November and

December. This is supported by the fact that our improvements

for December data are bigger than for November data (e.g. trace,

YY residual), considering that the effect of the drifting scale factors

will be bigger in December as well.

When applying the corrections of the internal gradiometer mis-

alignments as well, the GG trace improves less. When examining

the individual components, we see that the residual of the YY

component is in fact reduced further. Especially the residual of

the ZZ component is however increasing due to the application

of the internal gradiometer misalignments. This suggests a mixed

picture; we can estimate some of these parameters for the internal

gradiometer misalignments very well and improve the resulting

GG, but for others we seem to worsen the estimations done by the

internal calibration.

The results shown in this paper do not indicate a single `best case'

for applying parameters, out of the three that were used in this

study. Depending on what we are looking at, the GG trace or one

of the GG residuals, and on the frequency range that we consider,

a different `best case' comes out. This suggests that it might be

better to look at individual calibration parameters rather than at

the groups of calibration parameters aswe defined themor to take

correlations between parameters into account. The selection of

calibration parameters could also be based on the analysis of the

design matrix using singular value decomposition.

Furthermore, it might be interesting to consider a feedback of

calibration parameters to the internal calibration. The mounting

matrix correction and misalignments of individual gradiometer

arms are not corrected for in the internal calibration. It would be

interesting to see the results of internal calibration if it used this

information as input. Certainly, further investigations would be

required for optimal exploitation of the advantages of both the

internal and external calibrations.
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Appendix A: ANGULAR RATES FROM STR AND EGG
DATA COMBINATION

In order to deriveGGs from theDMaccelerations, we need to know

angular rates and angular accelerations, which one can estimate

best by combining angular rates and angular accelerations from

STR data with angular accelerations from EGG data. The angular

rates and angular accelerations from the STR data have been

calculated as the first and second derivatives of the STR attitudes,

rotated to the GRF, and let us call these

~ωS ≡

 ωX,S

ωY,S

ωZ,S

 and ~̇ωS ≡

 ω̇X,S

ω̇Y,S

ω̇Z,S

.

The angular accelerations from EGG data, let us call these

~̇ωG ≡

 ω̇X,G

ω̇Y,G

ω̇Z,G

 ,

are calculated as

~̇ωG =
 a′d,25,Z/LY − a′d,36,Y/LZ

a′d,36,X/LZ − a′d,14,Z/LX

a′d,14,Y/LX − a′d,25,X/LY

.

To combine the data, we use a 2nd order low pass Butterworth

filter, applied in forward and backward direction, with a cut-off

frequency of 0.4 mHz. The choice of cut-off frequency was based

on an inspection of the differences between gradiometer and STR

angular accelerations (AA) in the frequency domain. Assuming

that the noise of the AA from the gradiometer is always decreasing

with frequency, and the noise of the AA of the STR is increasing

with frequency, we should choose the cut-off frequency where

the difference is smallest. This frequency was for the three

angular accelerations estimated to be on average approximately

0.4 mHz. The combined angular accelerations are calculated as

~̇ωC = ~̇ωG − ~̇ωG,F + ~̇ωS,F , where the subscript F denotes the low-

pass filtered values. The first step to calculate combined angular

rates is to take the integral of the combined angular accelerations

by ~ωC (tn) = n−1∑
i=0 ~̇ωC (ti) + 12 ~̇ωC (tn). Finally the combined

angular rates are again synchronized with the STR angular rates

by calculating the
^
~ωC = ~ωC − ~ωC,F + ~ωS,F . This synchronization

makes sure that the angular rates do not erroneously start with

a value of zero at t0 .
Apart from the angular rates, we derive a correction to the STR

attitudes, by integrating the difference between the synchronized

combined angular rates and the STR angular rates, and keeping its
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high-frequency content. The integral can be written as

~θ (tn) = n−1∑
i=0
(

^
~ωC (ti)− ~ωS (ti)) + 12

(
^
~ωC (tn)− ~ωS (tn))

The correction to be applied as rotations in radians around the X,

Y and Z axes are the high-frequency part, calculated as

 dα
dβ
dγ

 = ~θ − ~θF
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