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Abstract:

The aim of ESA’s satellite mission GOCE is to determine the Earth’s gravity field with high accuracy and resolution. To achieve this aim,
GOCE carries a gravitational gradiometer that needs calibration. Existing global gravity field models in combination with GOCE star sensor
data may be used to synthesize reference differential accelerations with which the common and differential accelerations, as derived
from the gradiometer measurements, can be calibrated. We present a new method in which the data are transformed from the time to
the frequency domain, which allows accounting for the coloured noise on the measurements. The weight matrix is iteratively adjusted
and we apply our method to real GOCE data. With our method, the gravitational gradient trace significantly reduces as compared with

the currently available in-flight calibrated measurements.

Keywords:

GOCE - gradiometer « accelerations  calibration « star sensor ¢ gravitational gradients

© Versita Warsaw and Springer-Verlag Berlin Heidelberg.

Received 8 December 2010; accepted 11 February 2011

1. Introduction

The Gravity field and steady state Ocean Circulation Explorer
(GOCE) mission from the European Space Agency (ESA) was suc-
cessfully launched 17 March 2009. After almost seven months of
commissioning and calibration, the satellite is performing science
operations since October 2009. The goal of the GOCE mission is
to determine the Earth’s mean gravity field with unprecedented
accuracy of 1-2 ¢cm in terms of geoid undulations at spatial res-
olutions down to 100 km (ESA 1999). Based on the analysis of
the actual GOCE data, this goal seems to be achievable (Pail et
al. 2010). The key instrument on board the GOCE satellite is the
electrostatic gravity gradiometer (EGG). The EGG consists of six
three-axis accelerometers that allow deriving common mode (CM)
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and differential mode (DM) accelerations. The GOCE drag-free
control system uses the CM measurements to counteract the non-
gravitational forces on the satellite, whereas the DM accelerations
are combined with star sensor (STR) measurements to compute
gravitational gradients (GGs). The GGs, together with GPS tracking
data, allow computing models of the Earth’s gravity field.

In order to be able to derive accurate models of the Earth’s mean
gravity field an accurate and reliable gradiometer calibration is
indispensible. The calibration consists of an extensive on-ground
test campaign, in-flight calibration and external calibration and
validation, see e.g. (Bouman et al. 2004, Visser 2007, Cesare and
Catastini 2008, Bouman et al. 2009). Because the gradiometer is
a novel, complex instrument a great number of calibration and
validation methods exist, see (Arabelos et al. 2007, Bouman et
al. 2008, Haagmans et al. 2002, Jarecki and Mdller 2007, 2008,
Kern and Haagmans 2005, Lamarre 2006, Mayrhofer and Pail 2010,
Visser 2009).



Rispens and Bouman (2009) developed a method to calibrate

the CM and DM accelerations using existing global gravity field
information and STR data, and in this paper, we improve upon this
method and apply our method to real GOCE data in contrast to
simulated data as in (ibid.). In addition, we do not only present our
results in terms of accelerations and calibration parameters but
also compute externally calibrated GGs and compare these with
the original GOCE GGs. The improvement of the method consists
of setting up our system of observation equations in the frequency
domain instead of the time domain. This allows accounting for the
coloured noise on the accelerations with an iterative adjustment
of the weight matrix of the observations. We will see that this leads
to a more accurate estimation of the calibration parameters and
a reduction of the GG errors.

The outline of the paper is as follows. First, we describe the calibra-
tion parameters and their relation with measured and modelled
data (Section 2). Next, we will explain how we estimate the calibra-
tion parameters (Section 3) and how to apply corrections based
on these parameters (Section 4). The GOCE measurements that we
used are described in Section 5. Section 6 shows the results and
discusses to what extent the method can help to improve GOCE
GGs, and how to combine the results of this method with those of
other calibration methods (Section 7).

2. Calibration model

2.1. Gradiometer imperfections

Along each of the three axes of the GOCE gradiometer (the
gradiometer reference frame, GRF), a pair of accelerometers forms
a one-axis gradiometer denoted as 14, 25 and 36 along the X, Y
and Z-axis respectively. Taking half the sum (i.e. the average)
of two accelerations on one axis yields the CM accelerations, half
the difference of two accelerations on one axis yields the DM
accelerations (Cesare 2008).

Ideally, the DM accelerations are related to the GG and the cen-
trifugal accelerations on the gradiometer as (Cesare 2008}

Aﬁ:—%L‘(UI—le—QI) 1)

where A‘Ii is a 3-by-3 matrix with the DM accelerations, L are the
baseline lengths of the gradiometer, U is the GG tensor, Q? arethe
squared satellite angular velocities, and Q) are the satellite angular
accelerations. The superscripts I indicate that we refer to the ideal
case quantities.

A number of errors affect the accelerometer measurements (Ce-
sare 2008): (A) mis-pointing of the accelerometer in the GRF; (B)
non-orthogonality of the accelerometer axes (coupling); (C) ac-
celerometer mis-positioning; (D) scale factor errors; (E} non-linear
response of feedback loop (quadratic factor); (F) accelerometer
bias and noise. We neglect the quadratic term because it is phys-
ically reduced to zero to a sufficient level as part of the in-flight
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calibration (Cesare and Catastini 2008). The measured CM and DM
accelerations, a. ;; and aq,;, are related to the true CM and DM

accelerations, ai,ij and a} ijr s
1
ac,ij a, b. ;: n.;:
c,ly — MU ;I,l/ + c,y + C,if (2)
ad,ij ag,ij bd,ij Ng,ij

with b the CM and DM biases, n the CM and DM noises and Mj; the
calibration matrices that contain the scale factors, misalignments
and coupling errors of accelerometer pair ij =14, 25, and 36.
With inverse calibration matrices (ICMs) the gradiometer imper-
fections mis-pointing (A), coupling (B) and scale factor errors (D)
are to be corrected (Cesare and Catastini 2008):

Qeii | M| Bed 3)

- i
aq,ij ad,ij

where Mi_j1 are the ICMs. They are determined by in-flight
calibration in which the satellite is randomly shaken using the ion
thrusters and cold-gas thrusters. The ICMs are block-symmetric
and we may write

éc,i/ _ Ci/' D,'I' ac,,-,- (4)

a4,ij D; C; adij

where the matrices C en D represent the common and differential
scalefactorson the diagonal, as well as the common and differential
misalignments and couplings. Thus, the in-flight calibrated DM
accelerations are computed as:

a4 = ( D; C; ) ZZZ (5)

D; C; ) is the lower half of the ICM, and a4 ;; are the
in-flight calibrated DM accelerations for arm ij.

where (

2.2. Adjustment of the inverse calibration matrix

In our external calibration method, we want to estimate adjust-
ments to the ICMs determined by in-flight calibration, as well as
rotations of the gradiometer arms (discussed below). (1) and (5)
are the basic equations for the calibration of the gradiometer with
external data. (1) shows that the DM accelerations can be synthe-
sized from first and second derivatives of star tracker data (Q2 and
Q) and from a global gravity field model (U). Equation (5) can then
be used to estimate the ICMs or corrections to the ICMs: &g ;; are
the DM accelerations computed with external data using (1), and
a.,;j and aq,;; are either the measured CM and DM accelerations
or the in-flight calibrated CM and DM accelerations (Rispens and
Bouman 2009). In this paper, we will use the latter.
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We thus estimate adjustments to the block-symmetric ICMs, which
are defined as

AC; AD;

— MT1 _ M_—1

= ij,apriori

©)

where M;; is the calibration matrix. The a priori ICM can be the
internal calibration ICM that has been applied to the measured
data before the method at hand is used, or, if no ICM has been
applied, the a priori ICM is the identity matrix.

2.3. Rotation of the gradiometer arms

In addition to the adjustment of the ICMs, we also estimate rota-
tions of the gradiometer arms. These rotations are combinations of
the accelerometer mis-pointing and mis-positioning, and account
for the misalignment between the gradiometer and STR reference
frames. The rotation matrix ra that represents the misalignment
between the gradiometer DM accelerations and the reference DM
accelerations, acts on the gradiometer DM accelerations as

dg14x

agiax 0 —vie B —vu
Ga4y aan4y viu 0 —ay O
Gaaz G414z —Bia oy 0 0
G425 a4,25,x ys 0 0 0
aasy | = aasy |+ 0 ys 0 Y25
G452 04257 0 0 v =B
G436x 0436 —Bx O 0 o3
a6y 0436,y 0 —Bx O 0
44362 04362 0 0 —B% O
or in compact form
Aq = Ad + RAAG. &)

2.4. Combination of ICM and rotation

Since the ICM adjustments AC;; and AD;; operate on the mea-
surements of each arm separately, and the rotation Ry of the
individual gradiometer arms needs terms from the other arms as
well, we define

dg14x 044y 04147

dgq4x ddaay ddnaz

= = - |
425X 0d25Y 04257 |=fa| Qd25x 0425y 04257

Ga36x 0d36y 04367 d436X 0436 04,362

where the a4 terms are the gradiometer DM accelerations aligned
with the external accelerations

When we wantto useanry ;; foreacharm ij separately, we assume
that the misalignments are small enough to define

1 —Vij Bij 1 Yij _Bij
vi 1 —Qjj =y 1 Qij
—Bij ay 1 B —a 1

— L
rA,U = 5 rA,l-j =

3)
and to drop second order terms of aj;, B;; and y;;. We then rewrite
(7) as

0 0 B O 0 Ag14x
—via 0 0 B O agqiay
0 —vn 0 0 Bia 4,14z
—v»s Bxs —ax 0 0 a425,x
0 —os 0 —as O 0425y
as 0 0 0 —oxs ay4257
0 0 0 —vi% B3k a436X
36 0 Y36 0 —o3 04,36,y
0 as  —Bw a3 0 04,362

ACy 0 O ADy 0 0
AC= 0 AC25 0 ,ADE 0 AD25 0
0 0 ACy 0 0 ADg
and write
As = A+ (Ry + AC) A + ADA, (10)
—~
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to provide a simultaneous correction for the ICM and for misalign-
ments between the external accelerations and the gradiometer
accelerations and misalignments between the gradiometer arms.

The differential accelerations Ad are a linear combination of the
gradiometer DM and CM accelerations corrected for the ICM and
for the misalignments between gradiometer arms and STRs.
When we want to compare the gradiometer accelerations with the
reference DM accelerations to estimate the calibration parameters
of Ry, AC and AD, we need to consider the noise of the
accelerations as well. If there would be no noise and bias in
the accelerations and if the external data (global gravity field
model and STR data) would be without error, the external DM
accelerations would be equal to the DM gradiometer accelerations
with corrections for the ICM and misalignments applied. We then
would have

Ay = A (11)

where Ay are the external DM accelerations. Including the noise

ra(7)



or error components Ny for the external DM accelerations and Ny

and N, for the gradiometer DM and CM accelerations, we get

Ai—Ny = A;—=Ng+(Ry + AC) (Ag — Ng)+AD (A, — N).

(12)
Since the noise of the gradiometer accelerations is coloured noise,
we consider the bias to be the zero frequency component of this
coloured noise and it does not explicitly show up in the equation.
Equation (12) is the basis for the model of our calibration method.

3. Estimation of the calibration parameters

3.1. Model of observation equations

The estimation of the calibration parameters in Ry, AC and AD
can be done by a least squares fit. Since each arm has its own
set of calibration parameters, this fit can be done for each arm
separately. A few definitions we need are

ay14 . Va4 . Vd, 14

das | =Ada, | Va5 | =Na | vazs | = Ng and
Q4,36 V36 V36

Ve, 14

Ve, 25 = Nc

Ve,36

and we define Ra 14, Ra2s and Ra 36 as the top, middle and
bottom three rows of Ry respectively. We can then split (12) in
three and write for each arm i

8aj — Vi = aay — vaiy + ADy (ac — Vej
j j j j j j j

+ ACy (agij — vaij) + Rag (Aa — Na) (13)
or

(8a — aay) = (Yay — Vi) = ADy (acj — vey)
+AC;; (ad,ij — Vd,i/') + Raij (Ad —Ng). (14)

Because the elements of AC and AD are 1072 or smaller we
assume that the noise terms on the right hand side of (14) are
negligibly small compared with the corresponding terms on the
left hand side. This leads to

(éd,ij - ad,ij)_(od,ij - Vd,ij) = ADjja. j+ACjaq,;;+Rn,ijAq.

(15)
We can write the right hand side of (15) as the product of a design
matrix P,j and a 21 elements parameter vector X;;

E{(80j — auij) = (0aij — vaij) } = 8aij — a0 = Pijxiz.
(16)
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This equation can be solved by least squares for the parameter
vector x;; defined as

Xij = ( Adijar---Adijis Acijan - Acijaz Adigar -+
T
"'ACi,‘,33 Qjj Bij Yij ) (17)

where the elements of the ICM adjustments are denoted as Acim 1
Ad;j11, etc, and

P; = ( Pi1 Pi2 )

with
T T
ac; ag 0 0 0 0
— T T
P[j,1 = 0 0 acv[j ad,[j 0 0
T T
0 0 0 0 ac; Ay
0 Q4147 + 0da36x —0diay — 0d2s5X
Py = —dag,147 436,y dg,14x — 0425y
g4y —0quax + 036z —04257
—0436x Ugps5z 044X — 0d25Y
P, = —04257 — Ad36,Y 0 Q414y + Aapsx
Qgpsy — 0436z —0d25X Q4,147
425X —0a414x T dd36z —0d36Y
P32 = dapsy — d436,2 —dq,14Y 436X
Q457 + 0asey —0di4z — 0d367 0

See also Appendix A in (Rispens and Bouman 2009).

A rotation of a one-arm gradiometer around the direction of the
arm itself can be obtained in two different ways: 1) by the ICM as
two rotations of individual accelerometers around the in-line axis,
or 2) by the rotation matrix as one rotation of the whole arm around
the in-line axis. This means there is a redundancy in the calibration
parameters, and the design matrix will be singular if these rotations
are simultaneously estimated. This problem can be solved by not
estimating the rotation angle of the arm, or by estimating the two
ICM elements related to this angle as one. The two options will
lead to identical physical representations, except when we study
individual calibration parameters, or when we decide to apply only
part of the estimated calibration parameters (section 4). To choose
between the two options, we need to realize that the misalignment
of the arm in this case represents the misalignment with respect
to the external data, i.e. with respect to the STR attitudes. Since
the individual accelerometer misalignments have already been
estimated by the in-flight calibration, and the misalignment with
respectto the STR has not, we choose the latter option, to represent
this misalignment as much as possible in the 'new’ parameters.
The effect on the parameter vector and the design matrix is that
Acig32 = Acia3, Acs31 = Acosi3 and Acsg o1 = Acsg 12,
and that the related columns of the design matrix are summed into
one column. We then estimate 20 independent parameters for
each gradiometer arm, and the design matrix for each gradiometer
arm counts 20 columns.
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3.2. Weighting matrix

The equations given above can be viewed in the time domain,
meaning that the equations hold for each individual epoch. They
can however be viewed just as well in the frequency domain,
meaning that they hold for each frequency of the Fourier trans-
form of the gradiometer and external accelerations. In fact, the
equations hold for any linear transformation of the signals as long
as the same linear transformation is applied to all signals.

Both representations can be used to model the correlations that
exist. In the time domain, the coloured noise in both the gradiome-
terandinthe external accelerations is described in terms of an error
covariance function, whereas in the frequency domain, the power
spectral density is used, see e.g. (Schuh 2002). To account correctly
for these correlations in the time domain requires the handling
of large matrices, which may exhaust computer resources when
trying to solve a least squares problem. In the frequency domain,
the same is achieved by element wise multiplication (Strang 1986),
and this simplifies the solution of the least squares problem, We
can apply a weighting matrix that depends on the noise level for
a certain frequency, which leads to a more accurate estimation of
the calibration parameters. We will try to fit an empirical function
to the estimated errors, which is then used to weigh the data, see
Section 5.2. This is similar to decorrelation by filtering for which
alternatively ARMA (auto-regressive moving average) filters may
be used, e.g. (Schuh et al. 2010).

In our study, the data were pre-processed before the fast Fourier
transform (FFT), in order to avoid spectral leakage mainly caused
by boundary effects. Each window to be processed by the FFT was
first de-trended and then multiplied by a Blackman window (e.g.
Oppenheim and Schafer 1999).

The noise distributionsin (16) for Uy ;; and vy ij, or for Uy ;;— va,ij, are
not necessarily known in advance. Therefore, we have estimated
the distribution of the difference éd,,-,- —aq,;j instead, which should
be equal up to the corrections that we intend to find with this
calibration method, according to (16). By iterating the estimation
of the distribution after applying the corrections, the agreement
of the distributions of Od,i/ — vg,ij and 4 ;; — a4, should become
better.

The weights are calculated as the inverse square of the standard
deviation, where the standard deviation is estimated by fitting
a frequency dependent function to the absolute values of the
difference éd,,-,- — aq,ij. For estimation of the calibration param-
eters, the weighting functions can be used as they are described
above. However, when we estimate the accuracy of the calibration
parameters we apply a scaling, because for a normal distribution
the expected mean absolute deviation, e.g. | |x|e= ™2\ 27dx
for the standard normal, can be calculated to be \/2/ or approx-
imately 0.8 times the expected standard deviation.
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4. Applying corrections

Once the calibration parameters have been estimated, we want
to apply them in order to improve the measured accelerations.
However, Rispens and Bouman (2009) showed in a simulation study
thatthe application of only aselection of the calibration parameters
may yield better results in terms of differential acceleration errors,
that is, it appeared to be better to correct only for common scale
factors and misalignments, and not to correct for the rest of the
estimated ICM. This may be related to the fact that with the external
data in our setup the estimation of accelerometer mis-pointing and
non-orthogonality is not well possible. Through the correlation
between the calibration parameters, an unreliable mis-pointing or
non-orthogonality estimated may then affect the scale factors. In
addition, it was found that the estimation of the ICM elements that
are related to the CM X accelerations {i.e. dj11, dij21 and djj31)
poses a serious problem for the method described there. Because
of the drag compensation the CM X accelerations are close to zero
for the dominant frequency range in our least squares estimation,
which means that the determination of the related unknowns is
poor.

In an attempt to be able to recommend which parameters to apply
and which parameters to keep fixed to their a priori value, which
may be zero, we divide the calibration parameters in three groups.
The first group are the calibration parameters not estimated in
the in-flight calibration, that is, the misalignment between STR
and gradiometer reference frames. The second group are the
calibration parameters that have been estimated in the in-flight
calibration, but the required knowledge accuracy (RKA) may be
relatively large. The RKA is the upper bound with which the calibra-
tion parameters must be known in order to fulfil the requirements
onthe GGtrace. The RKAisupto 0.6 X 1073 forthe differential scale
factors, whereas it is 2 or 10X 1073 for the common scale factors.
The third group are the calibration parameters with a smaller RKA.
For all other ICM elements, the RKA is 0.2x 107> or smaller. We
therefore consider three different case studies:

1. Apply only the mounting matrix correction.

2. Apply the mounting matrix correction and the (common
and differential) scale factors (i.e. ¢;j11, Cij.22, Cij,33, dij11,
dij 22, dij33 and ay, Bij, Vij)-

3. Apply all estimated calibration parameters.

There is arbitrariness in this division and by selecting only a group
of parameters, the estimation could be affected by the correlation
between the parameters. Nevertheless, we have an unambiguous
criterion for how well our estimation and application of the pa-
rameters is: this is the GG trace, the sum of the XX, YY and ZZ GGs.
The trace should be zero and if the application of the calibration
parameters reduces the trace, we can be quite certain that we have
reduced the errors in the GGs. Furthermore, the application of just
the mounting matrix correction and scale factors -- case study 2 --



is justified by the small RKA of the remaining ICM elements, which

are expected to be very close to zero after in-flight calibration.

The reference frame in which the DM accelerations are delivered is
the GRF, which is by definition the one-arm-gradiometer reference
frame (OAGRF) for accelerometers 3 and 6, OAGRF3. This implies
that the corrections for misalignments for this OAGRF3 are not
to be applied (i.e. 036, B36, V36), and that we need to correct
the other two gradiometer arms in such a way that they coincide
with OAGRF3. This can be achieved by subtracting the estimated
rotation for OAGRF3 from the estimated rotations for OAGRF1

and OAGRF2. The rotations o’

i+ Bij and y;; to be applied can be

calculated as
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GGs. The effects of the choice of global gravity field model
on the results of external calibration of DM accelerations
have been examined in (Rispens and Bouman 2009), and
this showed that the impact of choosing a different global
gravity field model was not significant.

- the baseline lengths Ly = 0.5140135m,Lly =
0.49989 m, L; = 0.500201 m, as measured on ground

- STR 1 mounting matrix as measured on ground, and STR
2 mounting matrix aligned with STR 1 using in flight data.
The matrices used are

GRF to STR 1
O(‘-'/- = ay — a5 ; B,’, = Bj— B V{/‘ =vi—vs (18 0.999991953964 - 0.002875276132 - 0.002797283507
-0.003855453068 - 0.496285685373 - 0.868150709252
0.001107921251  0.868154508875 - 0.496292777733
The estimated misalignment of OAGRF3 will be used to correct the
mounting matrices of the star trackers. GRF to STR 2
Once we have applied the calibration parameters and we have
calibrated DM accelerations and a calibrated mounting matrix, we 0.999868439135  0.016149312081 0.001517939829
want to assess the quality of the calibrated data. To do this, we 0.015726793513 -0.942268716879 - 0.334488165946
will calculate GGs, by combining DM accelerations and STR data. -0.003971446565 0.334468032720 - 0.942398728087

The GGs can be assessed by analyzing the GG trace behaviour, and
by comparison with GGs predicted with an existing gravity field
model. The GGs U are calculated using the equivalent of (1), and
using the symmetry of U and ?, and the anti-symmetry of Q:

U=0’—L" (At +A]). (19)

The angular rates are in this case calculated by combining the

DM accelerations with STR measurements, which is explained in
Appendix A.

5. Input data

The data used for this study are taken from November 2009 and
December 2009. The time-series data used are

- CM and DM accelerations, internally calibrated. Data set
EGG_CCD_DS from EGG_NOM_1b (SERCO 2006)

- Star tracker quaternions. Data set STR_VC2_DS from
STR_VC2_1b and STR_VC3_DS from STR_VC3_1b (SERCO
2006)

- Reduced dynamic orbits and Earth frame matrices from
the rapid science orbit product (Visser et al. 2009) for
calculation of modelled GGs

Except for the STR data, the time series are available from the ESA
archive. In addition to these time-series data, we used

- the EIGEN_GLO5C global gravity field model (Foerste et al.
2008) up to degree and order 360 to synthesize modelled

5.1. Data periods selection

To avoid contamination of our calibration parameters by the
presence of outliers and suspicious values, we selected only part
of the time dependent data. Only those epochs were used for
which at least two STRs with a validity flag equal to one were
available, since we combine the attitudes from two star trackers
to circumvent the loss of accuracy in the estimation of rotation
around the STR bore sight. In addition, a visual inspection of the
STR, EGG and residual data was done to remove suspected bad
data. The remaining data were only selected if they were in time
spans of at least 40,000 seconds for the same two STRs, allowing
data gaps lasting at most 10 seconds. All of the data selected in
this way were for the combination of STR 1 and STR 2. The data
were split into two almost equal periods, one from 1 November
to 29 November, the other from 30 November to 29 December,
which we call the November and December periods respectively.
Altogether, this led to the selection of the time series shown in
Table 1.

5.2. Frequency dependent weights

One important characteristic of the input data is the noise distribu-
tion. The method presented here uses the difference between the
gradiometer DM accelerations and the reference DM accelerations
to estimate weighting factors. The left panel of Figure 1 shows the
absolute values of this difference in the frequency spectrum, and
a curve fitted to estimate the standard deviation of the difference,
for ag414x in November. The inverses of the fitted values are
used as weighting values for the least squares estimation of the

v
VERSITA



120

Journal of Geodetic Science

Table 1. Data periods selected for November and December data.

Period start(UTC time) | Period end (UTC time) | Number of epochs

November
2009-11-02 18:41:41 | 2009-11-03 19:03:32 87712
2009-11-05 22:06:11 | 2009-11-07 01:52:57 100007
2009-11-07 03:22:43 | 2009-11-08 00:58:22 77740
2009-11-08 20:26:58 | 2009-11-09 21:10:44 89027
2009-11-10 09:29:52 | 2009-11-13 01:26:50 230219
2009-11-13 02:56:36 | 2009-11-17 05:38:34 355319
2009-11-17 08:38:03 | 2009-11-24 11:07:03 613741
2009-11-24 12:36:49 | 2009-11-26 16:56:00 188352
2009-11-28 01:51:20 | 2009-11-29 16:48:10 140211

December
2009-12-05 23:46:44 | 2009-12-07 04:54:20 104857
2009-12-08 04:52:00 | 2009-12-09 17:30:20 131901
2009-12-11 02:24:22 | 2009-12-13 21:42:07 242266
2009-12-13 23:11:53 | 2009-12-14 17:08:36 64604
2009-12-14 18:38:21 | 2009-12-17 12:26:23 236883
2009-12-17 13:56:09 | 2009-12-21 03:10:36 306868
2009-12-21 04:40:22 | 2009-12-23 19:28:54 226113
2009-12-23 20:58:39 | 2009-12-26 01:58:17 190779

calibration parameters. After applying the calibration corrections,
the weighting factors are re-calculated, and the calibration is re-
peated. The differences for a4 14 x in November after applying the
calibration corrections are shown in the right panel of Figure 1.
After calibration, the difference becomes smaller particularly for
the once per revolution frequency, and the fit matches better with
the data points. The plots for the other DM accelerations show
a similar improvement after applying the calibration, meaning
a decrease of the once per revolution peak with approximately
a factor of ten for the sensitive axes of the EGG, and a factor of two
for the less sensitive axes.

Difference before calibrating, a, |, ., . Difference after calibrating, a, ,

S,

3
b

S,

S,

S,

Absolute difference (ms‘z)
Absolute difference (ms'z)

4

10° 10° 10°
Frequency (Hz)

10° 10* 10° 10
Frequency (Hz)

Figure 1. Absolute difference between Fourier coefficients from mea-
sured and Fourier coefficients from modelled DM acceler-
ations, determined before and after calibration for a4,14 x,
November data. Red dots are the individual differences,
the black lines are fitted to the red dots.

The function used for the fit was initially a linear combination of
aconstant, f > and f for the in-line axes, and for the other axes a 2
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term is added, with f frequency. The £~ term reflects the noise

behaviour of the gradiometer for low frequencies, and the f and
2 terms reflect the noise behaviour of w and w, which are the first
and second derivatives of the star sensor attitude. The constant
reflects the levelling of w? noise terms for low frequencies.
However, we learned from the differences as plotted in Figure 1
and from direct comparison of attitudes from STR 1 and STR 2
that the STR attitudes show periodic errors and the initial function
used for the fit didn't suffice. These periodic errors are probably
caused by imperfections in the image of the star camera and
depend on the field of view (FOV) of the STR, in other words on
where in the image the stars are seen. Each FOV is almost exactly
revisited after one revolution of the GOCE spacecraft, leading to
almost identical errors that re-occur each orbit (Bouman et al.
2010). This shows up as the harmonics in Figure 1. Depending
on whether we have only angular rate terms included (in-line axis
DM accelerations) or angular acceleration terms as well (transverse
axis DM accelerations), the amplitude of the propagated STR FOV
error harmonics increase linearly or quadratically with frequency,
respectively. We have tried to define a function that describes
as good as possible, in an empirical way, the behaviour of these
periodic errors, relative to the high-frequency noise of the attitude
errors, i.e. the noise that does not depend on the FOV, and thus
does not appear as harmonics. This was not only based on the
differences seen in Figure 1, but on comparison of attitudes from
STR 1 and STR 2 as well. The function that we have used is

1
* (tan (7'1'7(/fharm))2 + 1/pmax )

(f/flveak)o4 !~k 1 4+ e fpeak/feo 0)
0.6 + 0.4x% (f/fpeak) 1+ e‘]*//fco e1*fpeak/fco
where

1 + (pmin -

Pmin = 2, the minimum relative amplitude increase in between
the harmonic peaks

Pmax = 100, the maximum relative amplitude increase at the
highest harmonic peak

frarm = 0.18575 mHz, the orbital frequency (1/5383.5 5~}

fpeak = 1.3 mHz, the frequency where the harmonics have their
highest peaks

f.o =20 mHz, the cut-off frequency where the harmonics disap-
pear.

As explained above, this function intends to describe the harmonic
errors relative to the high-frequency noise, therefore we multiply
the initial functions that describe the STR error (f and £2) with this
function. The resulting fits are shown in Figure 1.

6. Results

The results of the calibration method are on the one hand the
estimated calibration parameters, which will be examined in terms



of accuracy, stability over time and agreement with other methods.

Onthe otherhand, we can use the calibration parameters to correct
the DM accelerations, and generate GGs from the corrected data.
These GGs will be evaluated by examining the GG trace and the
GG residuals with respect to predictions from a state-of-the-art
existing global gravity field model.

6.1. Calibration parameters

Because the basic numbers of the calibration parameters may be
hard to interpret as such, we have plotted the ICM elements for
arm 14 together with their estimated accuracies and the required
knowledge accuracies (RKA) in Figure 2. Each subplot represents
one of the ICM elements. Two values are marked with blue
dots, one for the November estimate and one for the December
estimate, each one shown with its three-sigma error bar. The
value for the combination of November and December estimates
is shown as a striped blue line, again with error bars. The calibration
presented here was performed on the level 1b data, which have
been internally calibrated. In that sense, the estimated parameters
can directly be compared with the internal calibration. This holds
especially for the ICMs, since they are estimated by the internal
calibration as well, and the internal calibration is expected to
provide corrections within the RKA.

When comparing the November and December estimates, we see
that they are compatible in the sense that the blue error bars
are always overlapping, except for the scale factors di1, ds3, ¢4
in arm 14 and d>;, ¢11, €33 in arm 25, and in addition element
d>y in arm 25. In addition, one would expect the estimates, or
at least their error bars, to fall within the RKA, i.e. within the
grey lines, because the calibration was done on already internally
calibrated accelerations. For 44 of the 54 parameters (81%) this
is indeed the case, all estimates or their error bars fall within the
RKA. Only d11, d33, ¢21 in arm 14, d2q, d22, d23 in arm 25 and
d3, d23, €31, €37 inarm 36 contain one or more error bars that do
not fall within the RKA. One possible cause for these discrepancies
is that calibration parameters vary with time. This is addressed
below.

The estimates of the alignment of the individual arms with respect
to the STR’s and the alignment among gradiometer arms are given
in Table 2 and Table 3 respectively. The estimates show good
agreement between the November and December estimates.
The alignment of GRF with the STR (i.e. alignment of arm 3-6, or
36, B3s, V36) shows a combined estimate of (-487, 387, 791) micro-
radians. The estimates forthe misalignments between gradiometer
arms (Table 3) are much smaller; the combined estimates are all
within 200 micro-radians.

To assess the stability over time of the calibration parameters,
we extended the data period from 1 November 2009 until 9
January 2010, which has been split into seven periods of each
approximately 10 days. For these seven data periods, calibration
parameters have been estimated and plotted as a function of
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Figure 2. Estimated parameters for ICM 14. The plots show the (D
C) matrices, with the top left plot for d;; and the bottom
right plot for c33. The grey lines (constants) show the RKA
limit of the parameter as explained in section 6.1. The first
blue dot in each plot is the November estimate, the second
the December estimate. The striped line is the combined
estimate based on the error values (the blue error bars in
the plots show three times sigma).

Table 2. Alignment between individual arms and STR combination
(10~° rad), accuracies give one sigma.

’ ‘ a4 ‘ s ‘ a6 ‘314‘325‘336‘YI4‘V25‘Y36‘
November |-683 |-476 [-482 1352|419 384 852|790 (922
accuracy | 70 | 5 3 (21 (11(20] 2 |12]51
December |-685|-496 [-491 (4321439390 | 847|839 601
accuracy | 72 | 5 2 |26|11(22]2 |13]|74
Combined |-684 -486 |-487|387|429|387|849 (813|791
accuracy | 50 | 4 2 (177 |15] 2|9 |42

time. In general, the parameters are consistent from one period
to the next, similar to the results with two periods (November and
December), although the estimated accuracies are smaller for the
seven data periods because the data windows that were used in
the estimation are shorter. A special case is the behaviour of the
differential scale factors (DSF), which show some time dependency.
The DSF are the diagonal elements in the D matrices. The DSF for
the seven periods have been plotted in Figure 3. The red lines
indicate the linear interpolation of the DSF values obtained after
the in-flight calibrations of October 2009 and January 2010. In

Table 3. Alignment of arms 1-4 and 2-5 with respect to the GRF, i.e.
arm 3-6 (10~° rad), accuracies give one sigma.

’ ‘ Ay ‘055‘314‘355‘)’14‘ Vas ‘
November |-201| 6 |-32|35|-70|-133
accuracy | 70 | 6 |29 (23|51 | 53
December|-194| -6 | 42 | 49 |246| 238
accuracy | 72 | 6 |34 25|74 | 75
Combined [-198]| 0 | 2 [42 |59 | 20
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the plots for aq14y, 04,147z and aq2sy a trend is clearly visible.
The same trend can be seen in these plots for the blue values,
the estimates of our method. This indicates that the differences
in internal calibration estimates for the DSF are in fact caused by
a slow variation in (differential) scale factors.

5x10'3 ad,14,x 20x10'5 ad,14,Y x10* a-1,14,2
3
o % : n
| } } 1)yt
5 } ot
-10
84.26,x 5x1o'5 84,25,y x10° 2a252
0.02 l
0
o4 e O%’H”}’H*
0.02 -10 e
A5 -
0.01 xig* "oz
’ 1 ‘
01 F**J(**L 11
-0.01 0 Ti I
-0.02
-0.03 -1

Figure 3. DSF and error bars of 3 times sigma (blue dots and bars),
combined estimate (striped blue line), the RKA limit of the
parameter as explained in section 6.1 (grey lines), inter-
polated internal calibration (red). The (grey) RKA for the
agna,y and ag 36,y DSF is not visible because it is outside
the plot limits. For the left three plots the grey and red lines
are somewhat hidden behind the striped blue line.

6.2. Calibrated measurements

The calibration method described in the sections above has been
applied to the November and December data sets. The three case
studies that are described in Section 4 have been used. In all cases,
we do not select the calibration parameters related to the CM X
accelerations (i.e. dij11, dij21 and djj31). Because the satellite is
in drag free the CM signal in the flight direction is very small and
the corresponding calibration parameters are difficult to estimate
(Rispens and Bouman 2009). This can be seen in Figure 2 where
the error bars are much larger than the RKA for these parameters.
From both the original data and the calibrated data, GGs have
been calculated as described in Section 4. For both the November
and December data sets their own calibration parameters have
been applied, thus no combination of parameters has been used.
In Figure 4 the spectral densities of the GG trace are shown for the
input data and for the three case studies. Correcting the estimated
misalignment between gradiometerand star trackers (i.e. adjusting
the mounting matrix),improves the GG trace (green lines). The next
step is to apply the scale factors, both common and differential,
which improves the trace condition even further (red lines). The
last step, applying the internal gradiometer alignment corrections
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as well and thus applying all calibration parameters (cyan lines),

yields the smallest GG trace for frequencies between 10~* and
1073 Hz, but for frequencies between 1073 and 1072 Hz applying
only the mounting matrix adjustment and the scale factors yields
the smallest GG trace. In any case, the plots show that our external
calibration improves the measurements by reducing the trace
condition. In some cases for specific frequencies, there is a slight
increase of the trace, but this is too small to be visible in Figure 4.

Spectral densities of GG trace, November Spectral densities of GG frace, December

Spectral density {mE)
Spectral denshy {mME)

10° 10°
Frequency (Hz) Frequency (Hz)

Figure 4. Spectral density of GG trace. The different lines are for
different strategies of which corrections have been applied.
The left panel shows the data of November 2009, the right
panel those of December 2009.

We also compared our calibrated GGs with GGs from an existing
global gravity field model. The latter GGs are those we used when
calculating reference DM accelerations, except that a rotation
correction is added, based on the estimated mounting matrix
adjustment if applied, and on the combination of STR and EGG
data in the angular rate reconstruction as described in Appendix
A.Figure 5 and Figure 6 show the residuals of the GGs for the input
data of November 2009 and December 2009 respectively, for the
original data and for the three case studies described in Section 4.
Improvements of the residuals from calibrated data compared
with those from the original data are clear in frequencies between
0.1 and 1 mHz for all three components, both in November and
December. For the somewhat higher frequencies between 1 and
10 mHz the improvement is still very clear for the YY component,
that is if the scale factor corrections are applied (red and cyan
lines). For the other components, there is some improvement
as well, although it is far less than for the YY component. In
particular, the YY component may suffer from the trend in the
0425,y DSF, and this suggests that the significant improvement of
the YY component for frequencies above 5 mHz is for a large part
caused by a correction for the trend in the DSF.

In the plots, going from the blue to green to red to cyan, we add
application of the estimated mounting matrix corrections, com-
mon and differential scale factors, and the internal gradiometer
alignment parameters respectively. It varies for which case study
the various components (XX, YY and ZZ) have the lowest residuals.
For the YY component, the residuals decrease each time that more
of the estimated parameters are applied, except for frequencies
around 0.2 mHzin Decemberwhen adding the scale factors. Forthe
ZZ component however, applying the estimated mounting matrix
corrections does decrease the residual, but adding application of
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Figure 5. Spectral density of GG residuals for November 2009. The different lines represent the different case studies being to apply no corrections
(blue), apply mounting matrix corrections (green), apply mounting matrix corrections and scale factor corrections (red) and apply all

corrections (cyan).
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Figure 6. Spectral density of GG residuals for December 2009. The different lines represent the different case studies being to apply no corrections
(blue), apply mounting matrix corrections (green), apply mounting matrix corrections and scale factor corrections (red) and apply all

corrections (cyan).

the estimated scale factors and internal gradiometer alignment
parameters both increase the residual for the higher frequencies
between 0.5 and 5 mHz for the November data and between 1and
5 mHz for the December data. For the XX component, the differ-
ences between the three case studies are smaller in these higher
frequencies. For the lower frequencies around 0.2 mHz, both the
XX and the ZZ residuals decrease to some extent when adding
each of the estimated parameter sets. In summary, applying more
of the estimated parameters in generally decreases the residuals,
but there are a few exceptions where for certain frequencies for
certain components it increases the residuals.

7. Discussion and conclusions

The results of a method for the external calibration of GOCE
accelerations and its results for two months of data have been
presented. Based on the results we can assess the quality of the
estimated calibration parameters, the effect of the calibration on
GGs calculated from the GOCE measurements, and different cases
for application of the calibration parameters.

The estimated parameters show good consistency, considering the

reported formal errors, when comparing the November against
the December estimates. There are a few exceptions, one element
related to the CM-X accelerations, element d>; in arm 25, for
which it has been shown (Rispens and Bouman 2009) that these
elements are problematic to estimate with a similar method. The
other elements that are not consistent between November and
December are all scale factors. It was shown that at least some
of the DSF slowly change in time. Such a change in time can
occur similarly for the common scale factors, and may explain the
inconsistencies between the November and December estimates
of the common and differential scale factors.

When comparing our estimates for the ICM's against the RKA,
assuming that the RKA represents the accuracy of the internal
calibration, we see compatibility between our estimates and the
internal calibration for 80% of the ICM parameters. For several of
the non-compatible parameters this can be explained by the time
variation of the DSF, or by the difficulty of the estimation of CM-X
related parameters. The disagreements in parameters d>3 in arm
25 and d43, d23, €31, €37 in arm 36 remain unexplained. The mis-
alignments between the individual gradiometer arms have been
estimated to be all within 200 micro-radians. The misalignment
between gradiometer and STR's is estimated to be larger, with
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corrections of -487, 387 and 791 micro-radians around the X, Y and
Z axes of the gradiometer.

The results of the calibration show a reduction of the GG trace
and GG residuals in the frequency range from 10 mHz down to
0.1 mHz. The size of the reduction depends on which corrections
are applied. The largest improvement in the GG trace is seen when
applying the adjusted mounting matrix and both the common
and differential scale factors. This suggests that the mounting
matrix adjustment is a good addition to the parameters used by
the internal calibration. Part of the improvement of applying
our scale factors is likely caused because we estimate the drifting
DSF by using the measurements from the same period where we
apply them, while the internal calibration estimates the DSF using
shaking data from October, but applies them in November and
December. This is supported by the fact that our improvements
for December data are bigger than for November data (e.g. trace,
YY residual), considering that the effect of the drifting scale factors
will be bigger in December as well.

When applying the corrections of the internal gradiometer mis-
alignments as well, the GG trace improves less. When examining
the individual components, we see that the residual of the YY
component is in fact reduced further. Especially the residual of
the ZZ component is however increasing due to the application
of the internal gradiometer misalignments. This suggests a mixed
picture; we can estimate some of these parameters for the internal
gradiometer misalignments very well and improve the resulting
GG, but for others we seem to worsen the estimations done by the
internal calibration.

The results shown in this paper do not indicate a single ‘best case’
for applying parameters, out of the three that were used in this
study. Depending on what we are looking at, the GG trace or one
of the GG residuals, and on the frequency range that we consider,
a different ‘best case’ comes out. This suggests that it might be
better to look at individual calibration parameters rather than at
the groups of calibration parameters as we defined them or to take
correlations between parameters into account. The selection of
calibration parameters could also be based on the analysis of the
design matrix using singular value decomposition.

Furthermore, it might be interesting to consider a feedback of
calibration parameters to the internal calibration. The mounting
matrix correction and misalignments of individual gradiometer
arms are not corrected for in the internal calibration. It would be
interesting to see the results of internal calibration if it used this
information as input. Certainly, further investigations would be
required for optimal exploitation of the advantages of both the
internal and external calibrations.
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Appendix A: ANGULAR RATES FROM STR AND EGG
DATA COMBINATION

In order to derive GGs from the DM accelerations, we need to know
angular rates and angular accelerations, which one can estimate
best by combining angular rates and angular accelerations from
STR data with angular accelerations from EGG data. The angular
rates and angular accelerations from the STR data have been
calculated as the first and second derivatives of the STR attitudes,
rotated to the GRF, and let us call these

wx.s wx.s
T o .
ws = wys and Wws = Wy,

wzs wzs

The angular accelerations from EGG data, let us call these
WX
N .
Wg = wy,G ,
WzG
are calculated as
’ ’
ad,ZS,Z/LY - ad,36,Y/LZ
’ ’
ad,36,X/LZ - ad,14,Z/LX
! 7
ad,14,Y/LX - Ud,25,x/LY

W =

To combine the data, we use a 2" order low pass Butterworth
filter, applied in forward and backward direction, with a cut-off
frequency of 0.4 mHz. The choice of cut-off frequency was based
on an inspection of the differences between gradiometer and STR
angular accelerations (AA) in the frequency domain. Assuming
that the noise of the AA from the gradiometer is always decreasing
with frequency, and the noise of the AA of the STR is increasing
with frequency, we should choose the cut-off frequency where
the difference is smallest. This frequency was for the three
angular accelerations estimated to be on average approximately
0.4 mHz. The combined angular accelerations are calculated as
@C = QG — QG,F + 651: where the subscript F denotes the low-
pass filtered values. The first step to calculate combined angular
rates is to take the integral of the combined angular accelerations
by &c(t,) = E @e () + %@C(t,,). Finally the combined
angular rates aréiaogain synchronized with the STR angular rates
by calculating the BC = Wc — @cr + @s k. This synchronization
makes sure that the angular rates do not erroneously start with
a value of zero at t.

Apart from the angular rates, we derive a correction to the STR
attitudes, by integrating the difference between the synchronized
combined angular rates and the STR angular rates, and keeping its



high-frequency content. The integral can be written as

n—1

(1) = Y (de(t) = astt)) + 5 (et~ a0

i=0

The correction to be applied as rotations in radians around the X,
Y and Z axes are the high-frequency part, calculated as
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