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Abstract:

Thepresentpaper reviews thecontemporary stateofdefinitionand theoryof thegeoid. Key features are: quasigeoid, externalgravitational

field from satellites and its analytical downward continuation to the Earth's interior, data combination by least-squares collocation, and

a new view of gravity reduction. This is done under the modern systematic perspective provided by the possibility of a purely geometric

satellite determination of the Earth' surface by GPS combined with satellite altimetry.
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1. Introduction

Modern geoid definition and determination have developed re-

markably since about 1950, for the following main reasons:

1. Molodensky's theory from 1945 of doing physical geodesy

without using the geoid, working directly with the topo-

graphical Earth surface;

2. The launch of the first Sputnik and Explorer satellites

(1957/58);

3. The firstpracticallyusefulgravimetricgeoiddeterminations

at about the same time;

4. The use of statistical theories of gravity at about the same

time;

5. The first satellite-determined and combined gravitational

field solutions, a few years later;

6. The theory of least-squares collocation for an exact combi-

nation of heterogeneous data (1968); and
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7. The determination of points on the Earths' surface by GPS

since about 1980.

Mostwork inphysicalgeodesy is concernedwith thedetermination

of the geoid, but there is no unique workable − and uniquely

accepted−definitionof thegeoid. Wehave threemaindefinitions

of the geoid:

– The classical definition,

– The quasigeoid,

– The harmonic geoid.

All three definitions have their merits and their drawbacks, which

can befound in the textbooks of physical geodesy. The aim

of the present article is to describe the basic ideas of this rather

difficultproblemfromadifferentperspective, focusingonprincipal

features rather than computational methods and details, which

can be found in the literature. For details, formulas and references

we shall, for simplicity, frequently refer to the references in the

book (Hofmann-Wellenhof and Moritz, 2005), denoted briefly by

HWM. However, we shall frequently discuss the matters from a

''fresh'' perspective. Extensive references are given in this book;

see also the Journal of Geodesy and the Internet.
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We shall disregard small temporal variations such as waves, tides

and other small effects, which are the subject of special investiga-

tions. The Earth model, used here as usual, is a rigid Earth rotating

uniformly about a rigid axis.

A basic progress, achieved since a few decades, has been the

possibility to determine the topographic Earth surface S geomet-

rically. This has fundamentally changed the character of physical

geodesy, which has been relieved its classical task of determining

S . It makes the basic problem of physical geodesy an overde-

termined boundary-value problem, which is a definite advantage

over Stokes and Molodensky. The present paper takes this feature

into account systematically, which may be new in this consistent

form.

2. The classical definition of the geoid

The geoid has been first proposed by C.F. Gauss as the ''mathe-

matical Earth surface''. On the oceans, it is the sea surface; on the

continents it is the surface above which the ''heights above sea

level'' or ''orthometric'' heights are counted. Introducing the grav-

ity potential or geopotential W, the geoid is a surface of constant

geopotentialW = Wo = const.
Gravity is the resultant of gravitational attraction and centrifugal

force of Earth rotation. The latter can be computed by a simple

formula and can be taken for granted. The difficulty rests with

the gravitational attraction of the ''topographic masses'' above

sea level. The big problem is the principal impossibility of the

determination of the density of the topographicmasses below the

Earth surface. We shall call it the density problem.

(The second problem is practical: the gravity field has to be given

at every point of the Earth surface; it is alwaysmeasured at discrete

problems only and interpolated in between. We shall call this

the interpolation problem. It is not a theoretical problem since,

in principle, we can make the net of gravity stations as dense as

required). The geoid's companion is the reference ellipsoid, above

which the ellipsoidal height or ''GPS height''. It is directlymeasured

by GPS and poses no problem in the sense of this paper. It is purely

geometric and thus perfectly simple and unique.

Figure 1 provides a simple view of the situation. The geoid height

N is the differencebetween the orthometric heightH and theGPS

heighth. They are counted along the same normal to the ellipsoid,

which, for the present purpose, is considered to be normal to the

geoid as well. This is a permissible simplification, so that the basic

equation

h = H +N or H = h − N (1)

holds: if we measure h by GPS and know the geoid heightN , we

can determine the orthometric height H . Or, again knowing the

geoid heightN , we get the ellipsoidal heighth by levelling, which

is appropriate for purposes of engineering surveying, for instance

in a tunnel, where GPS does not work.

(Inertial surveying (INS) does work in tunnels but depends on the

gravity field. Among other problems, engineering surveying keeps

Figure 1. The basic geometry.

alive the consideration of the gravity field inside the earth in spite

of the density problemmentioned above.)

If there were no masses above the geoid, then gravity g could be

measured at sea level, since in this case the Earth surface coincides

with the geoid.

Let us first consider this case. Considering the reference ellipsoid

E as an approximation to the geoid linearizes the problem. A

suitable reference gravity field of normal gravity γ and normal

potential U is defined. The gravity potential, or geopotential, has

introduced above, and the ellipsoidal normal potential U is also

called spheropotential (spheroid is an obsolete name of ellipsoid).

The corresponding linear quantities are the disturbing potential

T = W −U and the gravity disturbance δg = g−γ . These two

linear quantities are all referred to the same geoidal pointP0 . (This
is in contrast to the old concept of gravity anomaly ∆g, where

gravity referred to the geoid but normal gravity to the ellipsoid.

This is now obsolete if the heights of the gravity stations have

beenmeasured by GPS. Therefore, the gravity anomaly∆gwill no

longer be used in this paper.)

The geoid height N is related to the gravity disturbance δg by

the integral formula by Neumann, Hotine and Koch, briefly called

Koch's formula, which is themodern equivalent of Stokes' formula.

We have

T = R4π
∫∫
σ

K (ψ) δg dσ (2)

with

K (ψ) = 1sin(ψ/2) − ln( 1 + 1sin(ψ/2) ) (3)

and get by Bruns' formula

N = T /γ. (4)

All this is quite analogous to the familiar Stokes method; see HWM

pp. 299-303 for details.

3. The quasigeoid

The density problem was first clearly recognized by the Russian

geodesist and geophysicist M.S. Molodensky in 1945. He solved it
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by the following idea, which is certainly one of the greatest ideas

of all time in geodesy.

Molodensky proposed to glve up the geoid and the internal grav-

ity field altogether and to work at the Earth surface only. Stokes'

formula involves an integral extended over the sea surface repre-

sented, for thispurpose, byanellipsoid (which is first approximated

by a sphere but the extension to the reference ellipsoid poses no

problem as Molodensky himself recognized). Molodensky (1945)

found an integral equation extended over the Earth solved by a

series whose first term is Stokes' formula and the higher terms

represent the topography (HWM p. 304, 308).

In the place of Figure 1 we shall now consider Figure 2. Instead of

the geoid heightN at sea level we now have the height anomaly

ζ at the Earth surface:

N = Q0P0 (5)

and

ζ = QP. (6)

Let us repeat from Sec. 2: The geoid is

W = W0 = constant, (7)

and the normal potential U is defined such that the reference

ellipsoid is a surface of constant spheropotential

U = U0 = const. = U(Q0). (8)

Figure 2. The classical and the modern view.

The constantU0 is chosen to be equal toWo so that also

U(Q0) = W (P0). (9)

This is for the geoid at sea level, and is quite simple indeed

(Figure 1). Around 1945, Molodensky had the brilliant idea to

transfer this relation to the Earth surface, defining

U(Q) = W (P). (10)

To each pointP on the Earth surface, there corresponds a pointQ
along the vertical. All pointsQ define a surface, which Hirvonen in

1962 called the telluroid.

Of course, neither the Earth surface nor the telluroid are level

surfaces, and the ''height anomaly'' ζ is a function of the variable

pointQ. It is the result of Molodensky's solution, but it is just the

opposite of N : ζ is ''above'' at the Earth surface, whereas N is

''below'' at sea level. However, their values are pretty similar. Also

Bruns' Equation (4) holds and gives for the height anomaly

ζ = T /γ. (11)

Of course, T and γ now refer to the Earth surfaceS rather than to

the geoid; cf. Eqs. (5) and (6).

Now we work on S , which is not an equipotential surface. Thus

the height hmust be taken into account. So for T , the disturbing

potential at the Earth surface, we get Molodensky-Koch' series

T = R4π
∫∫
σ

K (ψ) δg dσ + κ1 + κ2 + κ3 . . . , (12)

where the ''Molodensky corrections'' κi are decreasing functions

of height h; cf. HWM Eq.8-87.

The height anomalies ζ are similar in magnitude to the geoid

height N, but have quite a different geometric interpretation. Still,

surveyors like to have ''heights above sea level'', above some

geoid-like surface. To satisfy them, Molodensky introduced an

artificial ''quasigeoid'' by plotting the height anomaly ζ above

the ellipsoid (if it is positive and below if it is negative). The

quasigeoid is pretty close to the geoid but has no direct physical

interpretation whatsoever. On the hand, it can be computed

theoretically rigorously without needing any hypotheses about

the density of the topographic masses. Thus we have the ''geoid

dilemma'':

– geoid: direct physical interpretation but theoretically not com-

putable;

– quasigeoid: directly computable but no physical interpretation.

4. The satellite geoid and analytical continuation

The geoid has the basic definition as a surface of constant geopo-

tential (Eq. (7) above). The geopotential W at satellite heights

can be developed into a convergent infinite series of spherical

(or ellipsoidal) harmonics. (As usual, we disregard the centrifugal

force, which is elementary.)

If we wish to use this series for the definition (7) of the geoid, we

have to continue the spherical harmonic series down the sea level,

more precisely to the reference ellipsoid. However, if we regard

the series as infinite, it will in general not converge anymore and,

thus, cannot be used to describe the geoidW = constant.
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A trivial matter is the centrifugal force: it can easily be added

wherever appropriate and we shall thus disregard it. The real

difficulty, and it is tremendous, is the following fact. Outside the

Earth surface, the geopotential is harmonic: it satisfies Laplace's

equation ∆W = 0 (13)

where ∆ = ∂2
∂x2 + ∂2

∂y2 + ∂2
∂z2 (14)

is the Laplace operator (we take the centrifugal potential for

granted).

Inside the Earth, however, we have Poisson's equation (setting the

gravitational constant = 1)

∆W = −4πρ, (15)

where ρ denotes the density of the ''topographic masses'' above

the reference ellipsoid (ad generally of all masses inside the Earth

surfaceS). OutsideS we have ρ = 0, inside the Earth we naturally

have ρ >0. Thus, by Eqs. (14) and (15), second derivatives have

a jump discontinuity across S , which shows that W outside S
andW inside S are really two different analytical functions. We

can, however, analytically continueW from the outside into the

Earth's interior, so that∆W = 0 holds throughout space. Inside the

Earth, of course, wemust replaceW byWc , which is the analytical

continuation of the geopotential into the Earth' interior.

In HWM p. 313, we have tried to explain analytical continuation

by a simple example from daily life. Imagine you drive a road

that at first is completely straight. (The straight line is the simplest

analytical curve.) At some point the road goes into a circular curve,

which also is an analytical curve, but a different one. Thus the

straight line is analytical, but the road ''straight line + curve'' as a

whole is not analytical. In the curve, the straight line becomes a

circle, and the driver is well advised to turn the steering wheel! As

a good mathematician but bad driver, he would continue in the

original straight direction and get off the road. He would have

mistaken the straight line, which is the analytical continuaton of

the road, for the curved road, causing an accident.

Returning to geodesy, ∆W = 0 outside the Earth, but inside the

Earth we have∆Wc = 0 only for the analytical continuationWc .

Any function satisfying ∆f = 0 is called harmonic, so instead of

analytical continuation we also speak of harmonic continuation,

soWc is the harmonic continuation ofW into the Earth's interior.

Unfortunately, most external potentials cannot be continued an-

alytically into the Earth's interior. This is directly related with the

fact that most spherical-harmonic series of the geopotential are

divergent (as far as they are infinite). Thus, the harmonic geoid,

that is the surface of constant harmonic downward continuation

of the geopotential,

Wc = W0, (16)

does not in general exist ! (Please carefully distinguish the quasi-

geoid, asdeterminedbyanalytical continuation topoint level, from

the harmonic geoid, which corresponds to analytical continuation

to sea level, cf. HWM p.304.)

Thisbitter truth is somewhat sweetenedby the fact that empirically

fromsatellitesdetermined spherical (or ellipsoidal) harmonic series

must anyway be truncated and then it is continuable. Also in the

terrestrial case, any not-continuable potentialW can, outside the

Earth, be approximated by a continuable potential as closely as

we wish. This Runge theorem, called so by Krarup in 1969, is

theoretically very important. It is an existence theorem but does

not give us a means to compute it for a given accuracy.

The problem is theoretically very difficult. We can, and in fact we

must, disregard it but we must know that a Runge theorem exists.

The most recent review of this topic is H. Moritz' article ''Classical

Physical Geodesy'' in Freeden et al. (2010 pp. 127-158). (Other

references are in HWM as we have already remarked.)

5. The new geodetic boundary value problem

A very general formulation of Molodensky's problem is in terms of

a boundary-value problem.

If the Earth surfaceS and the potentialW onS are given, thenW
in space outsideS can be determined by a solution of theDirichlet

boundary problem for harmonic functions (W is harmonic outside

S if the centrifugal force is disregarded; see Sec. 4).

The gravity vector g is the gradient of the geopotentialW :

g = gradW = (Wx ,Wy,Wz) = (∂W∂x , ∂W∂y , ∂W∂z
)
.
(17)

Thus, onS , the following symbolic relation holds (g is the norm of

g):

g = f1(S,W ). (18)

Note that (18) isnotanordinaryequation, buta functional equation

in the sense of nonlinear functional analysis. This is a difficult

mathematical subject, but gives a simple symbolic expression. Its

difficulty is also seen from the fact that the boundary problem in

themodern sense is overdetermined aswehave remarked in Sec. 1

and will better understand in Sec. 6.

If we solve symbolically Eq. (18) forW , then we get

W = f2(g, S). (19)

Whatdoes thismean? It is really a very difficult functional equation.

We try to solve it by linearization. Actually, the Earth surface S is

known. The linearized version ofW is the disturbing potential T ,

and for the linearization of g we take the gravity disturbance δg ;

see Sec. 2.

Then Eq. (19) may be written

T = Koch (δ) + Molodensky corrections κι, (20)

which is nothing else than the Molodensky-Koch series (3) !
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6. Solution by least-squares collocation

So far, we have assumed, that the measured function δg is known

continuously at every point of the Earth surface. This, of course,

is only an idealization because gravity can be measured at a set

of discrete points only. This is shown in Figure 3, which may

picturesquely be called the ''geodetic porcupine'' (in German, ''der

geodätische Igel''). It shows the body of the porcupine, which is

the reference ellipsoid, and a finite, though very great, number of

''spines'' or ''quills'', orthogonal to the ellipsoid, whose ends are

the points Pi of measurements on the Earth surface situated at

height hi above the ellipsoid.

Figure 3. The basic structure of collocation.

The model consists only of the surface of the ellipsoid and its

spines; initially there is nothing else, especially no Earth surface.

The latter will be computed later.

Since the data are given at a finite set of points only, any exact

linearizedsolutionmustbeamatrix rather thanan integral formula.

The method is called ''least-squares collocation''. Since this has

become a geodetic household word, we shall not derive it here

(see again HWM chapter 10), but immediately give the solution:

f (P) = [CP1 CP2 ....CPq]

C11 C12....C1q
C21 C22....C2q
...................
Cq1 Cq2....Cqq


−1 

`1
`2
....
`q

 .

(21)
Here ` i denotes the measurements at points Pi , which may be

gravity disturbances δg or any other ''linear functionals'', that is,

linearizedmeasurements suchasdeflectionsof thevertical, or even

linearized satellite data such as spherical harmonic coefficients or

the data obtained by satellite gradiometry.

The analytical and geometric structure of the (linearized) gravity

field enters through the ''kernel function''K (P,Q). This is a given
spatial function of points P and Q. It is harmonic at any point

outside the ellipsoid, that is, it satisfies Laplace's equation both as

a function ofP and ofQ. It is a positive definite function. (Positive-

definiteness of functions is defined exactly like with matrices.)

Thematrix coefficientsCPi andCik are computed exactly from the

structure of the model as linear functions of the kernel function

K (P,Q) independent of the data but embodying their mathe-

matical structure.

The computed function f (P) may be the disturbing potential T
at any point P on, outside or inside the Earth surface. Because

of the harmonic character of the kernel function K (P,Q), it will

represent the disturbing potential outside and on S . Inside S it

will represent the harmonic downward continuation of T , which

is now a regular analytic function by the definition of the kernel

function K (P,Q). Through collocation we automatically get a

regular harmonic geoid in the sense of Eq. (16)! In other terms,

collocation allows and implies analytical continuation in the sense

of Runge (Sec. 5).

The computed function may, however, also be T /γ, γ being

normal gravity. Then, by Eqs (5) and (6), the same formula (21)

gives the height anomaly ζ if we set the height parameter equal to

h, and it gives the harmonic geoid heightNc if we put the height

parameter equal to zero. In the first case, we get, point by point,

the Earth surfaceS .

Now we also understand that our problem is overdetermined,

as we have remarked in Sections 1 and 5. We can determine

differences of the geopotential between two arbitrary points of

the Earth surface in two ways:

1. By applying the basic formula (21) to determineW at the

two prescribed points and form the difference; or

2. To determine the potential difference (''geopotential num-

ber'' by classical spirit levelling.

We shall here use these two methods, and the small differences

they give, only as a check. We shall not continue here; it will

probably not need a Gauss to turn this idea into an adjustment

procedure; this may, however, be the subject of a nice research

paper.

Another simple application is the case that in Eq. (21) both the

function f and themeasurements ` i are gravity disturbancesδg at

the same level. This reduces collocation to least-squares prediction

ofgravitywithwhichall thisbegan in1963 (cf. HWMSec. 9.4)before

Krarup in 1969 turned it into full-fledged least-squares collocation

for arbitrary geodetic data.

The term ''least-squares'' indicates some possible relation to statis-

tics. The kernel function K (P,Q) is an analytic function and as

such independent of statistics. It has, however, been shown that

frequently is advantageous to interpret the kernel function statis-

tically, identifying it with a statistical covariance function of the

linearized gravity potential. The ''covariances'' C in Eq. (21) must
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be exactly and carefully derived from the kernel function because

they carry the burden of the precise analytical and geometrical

structure.

The collocation model may be extended to include random errors

and systematic parameters in order to obtain a general synthesis

of least-squares collocation-adjustment. The matrix structure is

very suitable for the application of computers; depending in the

number of observations the matrices to be inverted may be very

large.

Least-squares collocation is theoretically able to extract all infor-

mation from the data in an optimal way. It as also realistic in

the sense that it takes into account the fact that the data given

are finite number and not as continuous functions on the Earth

surface as presupposed in the integral formulas discussed above.

(Interpolation between discrete data is automatically included in

collocation.)

7. Interpolation and gravity reduction

The implementation the classical geoid definition is theoretically

impossible because the density of the topographic masses, the

masses above sea level, cannot be empirically determined, so it we

have a principal error, the density error (Section 2).

The classical method was to remove a hypothetical model of

the topographic masses by gravity reduction. The intention

was to computationally remove the topographic masses either

completely (Bouguer reduction) or to move it into the interior

of the ellipsoid according some model of isostasy (topographic-

isostatic reduction). This procedure is theoretically inadequate

because of the density error, but it works practically to, say,

decimeter accuracy.

The primary effect of classical gravity reduction is that (hopefully)

there are no more masses outside the reference ellipsoid, so that

the Koch integral and similar formulas for harmonic gravity can be

applied.

Topographic-isostatically gravity evenhas an advantage: it ismuch

smoother than original gravity and therefore can be interpolated

much more easily and accurately. This advantage may even to a

certain extent compensate the basic density uncertainty.

In Molodensky's theory and in collocation, gravity reduction may

(and in highmountainsmust) be applied also to get smoother data

thatmaybebetter interpolated. This is the remove-restoreprocess:

the topographic model (together with its isostatic compensation)

is removed, an integral formula or collocation is performed, and

the topographic model is restored again at the same point.

In contrast to classical geoid computation (where the ''remove

point'' is different from the ''restore'' point), errors in the

topographic-isostatic density model do not matter here if the

same density model is used for removal and restoration: removing

a wrong density model is no worse than not removing it at all. So,

the density error will not play a role here.

The remove-restore model is not limited to gravity reduction or

deflections of the vertical: we may also remove (and restore) a

global satellite model to get a smaller and smoother field for

interpolation.

The present paper only outlines the basic structures, which should

be taken into account for actual computations. Also, least-squares

collocation is theoretically optimal, but in some practical compu-

tations, integral formulas may be preferable in some cases, e.g.

with gravity measurements only.

Acknowledgment

The author expresses his thanks to his colleagues in the Institute of

Navigation and Satellite Geodesy at TU Graz for constant support

and help, especially to Norbert Kuehtreiber for critically reading

the paper and to Bernadette Wasle for drawing the pictures.

References

Freeden W., Nashed M.Z., Sonar T. (Eds.), (2010), Handbook of

Geomathematics, Springer.

Hofmann-Wellenhof B., Moritz M., (2005), Physical Geodesy.

Springer, Vienna and New York.


	Introduction
	The classical definition of the geoid
	The quasigeoid
	The satellite geoid and analytical continuation
	The new geodetic boundary value problem
	Solution by least-squares collocation
	Interpolation and gravity reduction
	Acknowledgment
	References

