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A contemporary perspective of geoid structure
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Abstract:

The present paper reviews the contemporary state of definition and theory of the geoid. Key features are: quasigeoid, external gravitational
field from satellites and its analytical downward continuation to the Earth’s interior, data combination by least-squares collocation, and
a new view of gravity reduction. This is done under the modern systematic perspective provided by the possibility of a purely geometric

satellite determination of the Earth’ surface by GPS combined with satellite altimetry.
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1. Introduction

Modern geoid definition and determination have developed re-
markably since about 1950, for the following main reasons:

1. Molodensky’s theory from 1945 of doing physical geodesy
without using the geoid, working directly with the topo-
graphical Earth surface;

2. The launch of the first Sputnik and Explorer satellites
(1957/58);

3. Thefirst practically useful gravimetric geoid determinations
at about the same time;

4. The use of statistical theories of gravity at about the same
time;

5. The first satellite-determined and combined gravitational
field solutions, a few years later;

6. The theory of least-squares collocation for an exact combi-
nation of heterogeneous data (1968); and
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7. The determination of points on the Earths’ surface by GPS
since about 1980.

Mostworkin physical geodesy is concerned with the determination
of the geoid, but there is no unique workable — and uniquely
accepted — definition of the geoid. We have three main definitions
of the geoid:

— The classical definition,

— The quasigeoid,

— The harmonic geoid.

All three definitions have their merits and their drawbacks, which
can befound in the textbooks of physical geodesy. The aim
of the present article is to describe the basic ideas of this rather
difficult problem from a different perspective, focusing on principal
features rather than computational methods and details, which
can be found in the literature. For details, formulas and references
we shall, for simplicity, frequently refer to the references in the
book (Hofmann-Wellenhof and Moritz, 2005), denoted briefly by
HWM. However, we shall frequently discuss the matters from a
"fresh” perspective. Extensive references are given in this book;
see also the Journal of Geodesy and the Internet.



We shall disregard small temporal variations such as waves, tides

and other small effects, which are the subject of special investiga-
tions. The Earth model, used here as usual, is a rigid Earth rotating
uniformly about a rigid axis.

A basic progress, achieved since a few decades, has been the
possibility to determine the topographic Earth surface S geomet-
rically. This has fundamentally changed the character of physical
geodesy, which has been relieved its classical task of determining
S. It makes the basic problem of physical geodesy an overde-
termined boundary-value problem, which is a definite advantage
over Stokes and Molodensky. The present paper takes this feature
into account systematically, which may be new in this consistent
form.

2. The classical definition of the geoid

The geoid has been first proposed by C.F. Gauss as the "mathe-
matical Earth surface”. On the oceans, it is the sea surface; on the
continents it is the surface above which the “heights above sea
level” or “orthometric” heights are counted. Introducing the grav-
ity potential or geopotential W, the geoid is a surface of constant
geopotential W = W, = const.
Gravity is the resultant of gravitational attraction and centrifugal
force of Earth rotation. The latter can be computed by a simple
formula and can be taken for granted. The difficulty rests with
the gravitational attraction of the “topographic masses” above
sea level. The big problem is the principal impossibility of the
determination of the density of the topographic masses below the
Earth surface. We shall call it the density problem.
(The second problem is practical; the gravity field has to be given
at every point of the Earth surface; it is always measured at discrete
problems only and interpolated in between. We shall call this
the interpolation problem. It is not a theoretical problem since,
in principle, we can make the net of gravity stations as dense as
required). The geoid’s companion is the reference ellipsoid, above
which the ellipsoidal height or “GPS height”. It is directly measured
by GPS and poses no problem in the sense of this paper. It is purely
geometric and thus perfectly simple and unique.
Figure 1 provides a simple view of the situation. The geoid height
N isthe difference between the orthometric height H and the GPS
height h. They are counted along the same normal to the ellipsoid,
which, for the present purpose, is considered to be normal to the
geoid as well. This is a permissible simplification, so that the basic
equation

h=H+NorH=h—-N (1)

holds: if we measure h by GPS and know the geoid height N, we
can determine the orthometric height H. Or, again knowing the
geoid height N, we get the ellipsoidal height h by levelling, which
is appropriate for purposes of engineering surveying, for instance
in a tunnel, where GPS does not work.

(Inertial surveying (INS) does work in tunnels but depends on the
gravity field. Among other problems, engineering surveying keeps
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Figure 1. The basic geometry.

alive the consideration of the gravity field inside the earth in spite
of the density problem mentioned above.)

If there were no masses above the geoid, then gravity g could be
measured at sea level, since in this case the Earth surface coincides
with the geoid.

Let us first consider this case. Considering the reference ellipsoid
E as an approximation to the geoid linearizes the problem. A
suitable reference gravity field of normal gravity y and normal
potential U is defined. The gravity potential, or geopotential, has
introduced above, and the ellipsoidal normal potential U is also
called spheropotential (spheroid is an obsolete name of ellipsoid).
The corresponding linear quantities are the disturbing potential
T = W — U and the gravity disturbance 0g = g — y. These two
linear quantities are all referred to the same geoidal point Py. (This
is in contrast to the old concept of gravity anomaly Ag, where
gravity referred to the geoid but normal gravity to the ellipsoid.
This is now obsolete if the heights of the gravity stations have
been measured by GPS. Therefore, the gravity anomaly Ag will no
longer be used in this paper.)

The geoid height N is related to the gravity disturbance 0g by
the integral formula by Neumann, Hotine and Koch, briefly called
Koch’s formula, which is the modern equivalent of Stokes’ formula.

We have
R
T [[Kwsg ao @
with
1 1
KO =G " Sy 3

and get by Bruns' formula

N=T]y. “

All this is quite analogous to the familiar Stokes method; see HWM
pp. 299-303 for details.

3. The quasigeoid

The density problem was first clearly recognized by the Russian
geodesist and geophysicist M.S. Molodensky in 1945. He solved it
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by the following idea, which is certainly one of the greatest ideas
of all time in geodesy.
Molodensky proposed to glve up the geoid and the internal grav-
ity field altogether and to work at the Earth surface only. Stokes’
formula involves an integral extended over the sea surface repre-
sented, for this purpose, by an ellipsoid (whichisfirst approximated
by a sphere but the extension to the reference ellipsoid poses no
problem as Molodensky himself recognized). Molodensky (1945)
found an integral equation extended over the Earth solved by a
series whose first term is Stokes’ formula and the higher terms
represent the topography (HWM p. 304, 308).
In the place of Figure 1 we shall now consider Figure 2. Instead of
the geoid height N at sea level we now have the height anomaly
 at the Earth surface:

N = QoPo (5)

and

¢=QP. ©)

Let us repeat from Sec. 2: The geoid is
W = W, = constant, (@)

and the normal potential U is defined such that the reference
ellipsoid is a surface of constant spheropotential

U = Uy = const. = U(Qyp). ®)

Earth surface
telluroid

geoid
ellipsoid

Figure 2. The classical and the modern view.

The constant Uy is chosen to be equal to W, so that also

U(Qo) = W(Py). ©)

This is for the geoid at sea level, and is quite simple indeed
(Figure 1). Around 1945, Molodensky had the brilliant idea to
transfer this relation to the Earth surface, defining

u(Q) = W(P). (10)
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To each point P on the Earth surface, there corresponds a point Q

along the vertical. All points Q define a surface, which Hirvonen in
1962 called the telluroid.

Of course, neither the Earth surface nor the telluroid are level
surfaces, and the "height anomaly” { is a function of the variable
point Q. Itis the result of Molodensky’s solution, but it is just the
opposite of N: ( is “above” at the Earth surface, whereas N is
"below” at sea level. However, their values are pretty similar. Also
Bruns’ Equation (4) holds and gives for the height anomaly

{=Tly. an

Of course, T and y now refer to the Earth surface S rather than to
the geoid; cf. Egs. (5) and (6).

Now we work on S, which is not an equipotential surface. Thus
the height h must be taken into account. So for T, the disturbing
potential at the Earth surface, we get Molodensky-Koch’ series

R
T=, //K((/J)égd0+K1+K2+K3..., (12)
[

where the "Molodensky corrections” k; are decreasing functions
of height h; cf. HWM Eq.8-87.

The height anomalies ¢ are similar in magnitude to the geoid
height N, but have quite a different geometric interpretation. Still,
surveyors like to have "heights above sea level”, above some
geoid-like surface. To satisfy them, Molodensky introduced an
artificial “quasigeoid” by plotting the height anomaly { above
the ellipsoid (if it is positive and below if it is negative). The
quasigeoid is pretty close to the geoid but has no direct physical
interpretation whatsoever. On the hand, it can be computed
theoretically rigorously without needing any hypotheses about
the density of the topographic masses. Thus we have the “geoid
dilemma":

— geoid: direct physical interpretation but theoretically not com-
putable;

— quasigeoid: directly computable but no physical interpretation.

4. The satellite geoid and analytical continuation

The geoid has the basic definition as a surface of constant geopo-
tential (Eq. (7) above). The geopotential W at satellite heights
can be developed into a convergent infinite series of spherical
(or ellipsoidal) harmonics. (As usual, we disregard the centrifugal
force, which is elementary.)

If we wish to use this series for the definition (7) of the geoid, we
have to continue the spherical harmonic series down the sealevel,
more precisely to the reference ellipsoid. However, if we regard
the series as infinite, it will in general not converge anymore and,
thus, cannot be used to describe the geoid W = constant.



A trivial matter is the centrifugal force: it can easily be added

wherever appropriate and we shall thus disregard it. The real
difficulty, and it is tremendous, is the following fact. Outside the
Earth surface, the geopotential is harmonic: it satisfies Laplace’s
equation

AW =0 (13)

where

0° 0° 0°

A= —+-—+=— 14

ox?  dy?  0z? 14
is the Laplace operator (we take the centrifugal potential for
granted).
Inside the Earth, however, we have Poisson’s equation (setting the
gravitational constant = 1)

AW = —4mp, (15)

where p denotes the density of the “topographic masses” above
the reference ellipsoid (ad generally of all masses inside the Earth
surface S). Outside S we have p =0, inside the Earth we naturally
have p >0. Thus, by Egs. (14) and (15), second derivatives have
a jump discontinuity across S, which shows that W outside S
and W inside S are really two different analytical functions. We
can, however, analytically continue W from the outside into the
Earth'sinterior, so that AW =0 holds throughout space. Inside the
Earth, of course, we must replace W by W, , which is the analytical
continuation of the geopotential into the Earth’ interior.

In HWM p. 313, we have tried to explain analytical continuation
by a simple example from daily life. Imagine you drive a road
that at first is completely straight. (The straight line is the simplest
analytical curve.) At some point the road goes into a circular curve,
which also is an analytical curve, but a different one. Thus the
straight line is analytical, but the road "straight line + curve” as a
whole is not analytical. In the curve, the straight line becomes a
circle, and the driver is well advised to turn the steering wheell As
a good mathematician but bad driver, he would continue in the
original straight direction and get off the road. He would have
mistaken the straight line, which is the analytical continuaton of
the road, for the curved road, causing an accident.

Returning to geodesy, AW = 0 outside the Earth, but inside the
Earth we have AW, =0 only for the analytical continuation W.,.
Any function satisfying Af = 0 is called harmonic, so instead of
analytical continuation we also speak of harmonic continuation,
so W, is the harmonic continuation of W into the Earth’s interior.
Unfortunately, most external potentials cannot be continued an-
alytically into the Earth’s interior. This is directly related with the
fact that most spherical-harmonic series of the geopotential are
divergent (as far as they are infinite). Thus, the harmonic geoid,
that is the surface of constant harmonic downward continuation
of the geopotential,

W.=W,, (16)
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does not in general exist ! (Please carefully distinguish the quasi-
geoid, as determined by analytical continuation to point level, from
the harmonic geoid, which corresponds to analytical continuation
to sea level, cf. HWM p.304.)

This bitter truth is somewhat sweetened by the fact that empirically
from satellites determined spherical (or ellipsoidal) harmonic series
must anyway be truncated and then it is continuable. Also in the
terrestrial case, any not-continuable potential W can, outside the
Earth, be approximated by a continuable potential as closely as
we wish. This Runge theorem, called so by Krarup in 1969, is
theoretically very important. It is an existence theorem but does
not give us a means to compute it for a given accuracy.

The problem is theoretically very difficult. We can, and in fact we
must, disregard it but we must know that a Runge theorem exists.
The most recent review of this topic is H. Moritz’ article “Classical
Physical Geodesy” in Freeden et al. (2010 pp. 127-158). (Other
references are in HWM as we have already remarked.)

5. The new geodetic boundary value problem

A very general formulation of Molodensky's problem is in terms of
a boundary-value problem.

If the Earth surface S and the potential W on S are given, then W
in space outside S can be determined by a solution of the Dirichlet
boundary problem for harmonic functions (W is harmonic outside
S if the centrifugal force is disregarded; see Sec. 4).

The gravity vector g is the gradient of the geopotential W:

ow aw ow
ox ' dy' oz |

g =gradW = (W, W,,W,) = (7 - 7
a7
Thus, on S, the following symbolic relation holds (g is the norm of
9k
g= (5 W) (13)

Note that(18) is notan ordinary equation, but afunctional equation
in the sense of nonlinear functional analysis. This is a difficult
mathematical subject, but gives a simple symbolic expression. Its
difficulty is also seen from the fact that the boundary problem in
the modern sense is overdetermined as we have remarked in Sec. 1
and will better understand in Sec. 6.

If we solve symbolically Eq. (18) for W/, then we get

W = f(g, S). (19)

What does this mean? Itis really a very difficult functional equation.
We try to solve it by linearization. Actually, the Earth surface S is
known. The linearized version of W is the disturbing potential T,
and for the linearization of g we take the gravity disturbance 0¢ ;
see Sec. 2.

Then Eq. (19) may be written

T = Koch (0) + Molodensky corrections k,, (20)
which is nothing else than the Molodensky-Koch series (3) !
7
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6. Solution by least-squares collocation

So far, we have assumed, that the measured function d¢ is known
continuously at every point of the Earth surface. This, of course,
is only an idealization because gravity can be measured at a set
of discrete points only. This is shown in Figure 3, which may
picturesquely be called the “geodetic porcupine” (in German, “der
geodatische Igel”). It shows the body of the porcupine, which is
the reference ellipsoid, and a finite, though very great, number of
“spines” or "quills”, orthogonal to the ellipsoid, whose ends are
the points P; of measurements on the Earth surface situated at

height h; above the ellipsoid.

measurement
point

0,

reference
ellipsoid

Figure 3. The basic structure of collocation.

The model consists only of the surface of the ellipsoid and its
spines; initially there is nothing else, especially no Earth surface.
The latter will be computed later.

Since the data are given at a finite set of points only, any exact
linearized solution must be a matrix ratherthanan integral formula.
The method is called "least-squares collocation”. Since this has
become a geodetic household word, we shall not derive it here
(see again HWM chapter 10), but immediately give the solution:

C11 C12....C1q 61
Cn Cp....C ¢
f(P)=[Cp1 Cpy ...Cpg] | 2" 7222 :
Cq1 CqZ'--'qu eq

21
Here ¢; denotes the measurements at points P;, which may be
gravity disturbances 0g or any other “linear functionals”, that is,
linearized measurements such as deflections of the vertical, or even
linearized satellite data such as spherical harmonic coefficients or
the data obtained by satellite gradiometry.
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The analytical and geometric structure of the (linearized) gravity
field enters through the "kernel function” K (P, Q). This is a given
spatial function of points P and Q. It is harmonic at any point

outside the ellipsoid, that is, it satisfies Laplace’s equation both as
afunction of P and of Q. Itis a positive definite function. (Positive-
definiteness of functions is defined exactly like with matrices.)
The matrix coefficients Cp; and Cyi are computed exactly from the
structure of the model as linear functions of the kernel function
K (P, Q) independent of the data but embodying their mathe-
matical structure.

The computed function f(P) may be the disturbing potential T
at any point P on, outside or inside the Earth surface. Because
of the harmonic character of the kernel function K(P, Q), it will
represent the disturbing potential outside and on S. Inside S it
will represent the harmonic downward continuation of T, which
is now a regular analytic function by the definition of the kernel
function K(P, Q). Through collocation we automatically get a
regular harmonic geoid in the sense of Eq. (16)! In other terms,
collocation allows and implies analytical continuation in the sense
of Runge (Sec. 5).

The computed function may, however, also be T/y, y being
normal gravity. Then, by Egs (5) and (6), the same formula (21)
gives the height anomaly ( if we set the height parameter equal to
h, and it gives the harmonic geoid height N if we put the height
parameter equal to zero. In the first case, we get, point by point,
the Earth surface S.

Now we also understand that our problem is overdetermined,
as we have remarked in Sections 1 and 5. We can determine
differences of the geopotential between two arbitrary points of
the Earth surface in two ways:

1. By applying the basic formula (21) to determine W at the
two prescribed points and form the difference; or

2. To determine the potential difference (“geopotential num-
ber” by classical spirit levelling.

We shall here use these two methods, and the small differences
they give, only as a check. We shall not continue here; it will
probably not need a Gauss to turn this idea into an adjustment
procedure; this may, however, be the subject of a nice research
paper.

Another simple application is the case that in Eq. (21) both the
function f and the measurements ¢; are gravity disturbances 0 ¢ at
the same level. This reduces collocation to least-squares prediction
of gravity with which all this began in 1963 (cf. HWM Sec. 9.4) before
Krarup in 1969 turned it into full-fledged least-squares collocation
for arbitrary geodetic data.

The term "least-squares” indicates some possible relation to statis-
tics. The kernel function K(P, Q) is an analytic function and as
such independent of statistics. It has, however, been shown that
frequently is advantageous to interpret the kernel function statis-
tically, identifying it with a statistical covariance function of the
linearized gravity potential. The “covariances” C in Eq. (21) must



be exactly and carefully derived from the kernel function because

they carry the burden of the precise analytical and geometrical
structure.

The collocation model may be extended to include random errors
and systematic parameters in order to obtain a general synthesis
of least-squares collocation-adjustment. The matrix structure is
very suitable for the application of computers; depending in the
number of observations the matrices to be inverted may be very
large.

Least-squares collocation is theoretically able to extract all infor-
mation from the data in an optimal way. It as also realistic in
the sense that it takes into account the fact that the data given
are finite number and not as continuous functions on the Earth
surface as presupposed in the integral formulas discussed above.
(Interpolation between discrete data is automatically included in
collocation.)

7. Interpolation and gravity reduction

The implementation the classical geoid definition is theoretically
impossible because the density of the topographic masses, the
masses above sea level, cannot be empirically determined, so it we
have a principal error, the density error (Section 2).

The classical method was to remove a hypothetical model of
the topographic masses by gravity reduction. The intention
was to computationally remove the topographic masses either
completely (Bouguer reduction) or to move it into the interior
of the ellipsoid according some model of isostasy (topographic-
isostatic reduction). This procedure is theoretically inadequate
because of the density error, but it works practically to, say,
decimeter accuracy.

The primary effect of classical gravity reduction is that (hopefully)
there are no more masses outside the reference ellipsoid, so that
the Koch integral and similar formulas for harmonic gravity can be
applied.

Topographic-isostatically gravity even has an advantage: itis much
smoother than original gravity and therefore can be interpolated
much more easily and accurately. This advantage may even to a
certain extent compensate the basic density uncertainty.
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In Molodensky’s theory and in collocation, gravity reduction may
(and in high mountains must) be applied also to get smoother data
that may be better interpolated. Thisis the remove-restore process:
the topographic model (together with its isostatic compensation)
is removed, an integral formula or collocation is performed, and
the topographic model is restored again at the same point.

In contrast to classical geoid computation (where the “remove
point” is different from the "restore” point), errors in the
topographic-isostatic density model do not matter here if the
same density model is used for removal and restoration: removing
a wrong density model is no worse than not removing it at all. So,
the density error will not play a role here.

The remove-restore model is not limited to gravity reduction or
deflections of the vertical: we may also remove (and restore) a
global satellite model to get a smaller and smoother field for
interpolation.

The present paper only outlines the basic structures, which should
be taken into account for actual computations. Also, least-squares
collocation is theoretically optimal, but in some practical compu-
tations, integral formulas may be preferable in some cases, e.g.
with gravity measurements only.
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