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Abstract:

Downward continuation is a continuing problem in geodesy and geophysics. Inversion of the discrete form of the Poisson integration
process provides a numerical solution to the problem, but because the B matrix that defines the discrete Poisson integration is not always
well conditioned the solution may be noisy in situations where the discretization step is small and in areas containing large heights.
We provide two remedies, both in the context of the Jacobi iterative solution to the Poisson downward continuation problem. First, we
suggest testing according to the upward continued result from each solution, rather then testing between successive solutions on the
geoid, so that choice of a tolerance for the convergence of the iterative method is more meaningful and intuitive. Second, we show how
a tolerance that reflects the conditioning of the B matrix can regularize the solution, and suggest an approximate way of choosing such a
tolerance. Using these methods, we are able to calculate a solution that appears regular in an area of Papua New Guinea having heights
over 3200 m, over a grid with 1 arc-minute spacing, based on a very poorly conditioned B matrix.
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1. Introduction

A continuous plague in geodesy and geophysics is the problem
of downward continuation of gravity. That is, the determination
of the values of the field below the surface of the Earth from
observations of gravity field on the surface. While various methods
may be used for this process, we will discuss only the theoretically
exact solution by the inversion of Poisson integration.

Downward continuation can be considered the inverse operation
of Poisson integration, which itself is a solution to the first bound-
ary problem of potential theory: given values of a potential field
on a sphere, that is harmonic outside the sphere, Poisson inte-
gration provides values of the field anywhere outside the sphere
(MacMillan, 1930). In our case, the field will be the anomalous
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gravity field in the Helmert space, as described by Vanicek et al.
(1996), multiplied by the geocentric radius. Considering the geoid
as a spherical surface allows us to apply Poisson integration, valid
for computation points external to the geoid, according to the
formula (Heiskanen and Moritz, 1967):

Ag'(r, @, ) = M
RZ(,,Z _ RZ) ? Agh(R, (P’, )\/)
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where Ag"(r, @, A) is the Helmert gravity anomaly at a point
with geocentric spherical latitude ¢, longitude A and radius r.
The symbol R stands for the mean radius of the Earth, used
here to approximate the radius of the geoid in the geocentric
spherical coordinate system where the calculation is performed.
We assume the value to be R=6371008.7714 m, i.e., equal to the
mean radius of the GRS-80 ellipsoid (Moritz, 1980). Agh(R, @, A)



is the Helmert gravity anomaly at an integration point on the

geoid with geocentric spherical latitude ¢ and longitude A. Finally,
r,o, AR, ¢, X) is the distance between the computation
and integration points, also calculated in a geocentric spherical
coordinate system.

The integral in Eqg. (1)} is a Fredholm integral of the 1st kind
(Fredholm, 1900). It can be evaluated numerically in a discrete
form for a set of N points, each point P; having coordinates

(ri-@iA), by:
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where M is the number of points used for discrete representation
of the gravity anomalies on the geoid, Ag;’(R, @A) is the
gravity anomaly for the point P; on the geoid having latitude ¢;
andlongitude A;, A@is the step sizein the latitudinal direction and
AA is the step size in the longitudinal direction. In matrix-vector
notation, Eq. (2) can be written as (VaniCek et al., 1996}:

Ag'= BAgY, 3)

where Agt is a vector of gravity anomalies of length N, containing
all point anomalies Agf’ on the terrain; AgY is a vector of gravity
anomalies of length M, containing all point anomalies Ag/’-’ on
the geoid, and the N by M matrix B is composed of elements by;
given by (cf. VaniCek et al., 1996):

R%(r? — R?) 1
gg(l'[, (pir)‘i; R, (pj,)\j)

by = cos @, ApAA. (4)
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Usually, N = M, and the horizontal coordinates of the locations
of the AgY vector correspond to the locations of the Ag' vector.
This results in a square B matrix with the maximum value in each
row and column being along the main diagonal, an arrangement
which will be assumed in the following developments.

Note that the discretization given by Eq. (2), which relates point
values on the geoid to point values on the Earth surface, is not the
only possible way to discretize the Poisson integration. In addition
to the "point-point” approach given by Eq. (2), there are the
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"point-mean”, "mean-mean”, and “mean-point” discretizations,
according to what representation of the field is used on each
surface where it is considered - the meaning of these descriptors
should be self-evident. These alternative approaches result in
different formulations of the elements of the B matrix and a
different interpretation of the elements of Ag’ and AgY. Eq. (3)
and the developments presented here are valid for any of the four
formulations, and for the calculations in this paper a point-mean

scheme will be used, where the output is mean Helmert gravity
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anomalies, averaged over each cell on the geoid, and the elements
of the B matrix are given by (cf. VaniCek et al., 1996):

by = &)
RArE—R)1 & 1
n (5 B @ Ao R @y Ajk)

4. cos @; K APAA,

which represents an average of n kernel values calculated at each
point Py with coordinates @; i, A;«. The averaging points are
usually given on a regular grid within each cell, and the cell
dimensions are equal to A¢@ and AA. The other 3 formulations for
the B matrix are discussed in (Vani¢ek and Santos, 2010).

While Eq. (3) allows us to calculate Ag' given AgY, we really want
to perform the inverse operation. We want gravity anomalies on
the geoid based on values at the Earth’s surface, i.e., we want to
use the following equation:

Ag?= B 'Ag'. (6)

Fredholm'’s integral equations of first kind, such as Eq. (1), are
inherently unstable. Even though the problem of downward
continuation is “well posed” in the Hadamard sense (Wong, 2002),
the system of linear equations formed as a numerical equivalent to
the Fredholm integral may be ill-conditioned (see, e.g., Martinec,
1996). Under some circumstances, the system may be almost
singular, meaning that the inverse B~" may be very difficult
to obtain, a situation that some people solve by adopting one
regularization scheme or another (e.g. Schwarz, 1978; Goli et al.,
2010). Under these circumstances, no exact iterative solution can
be found but a non-iterative solution can. The LU decomposition is
the most efficient non-iterative numerical method for calculating
B! Ag' exactly, since it does not require a complete inversion
of the B matrix (Press et al., 2002).
time consuming because it goes through the decomposition of a

However, it is still very

potentially very large B matrix. For a typical example, using gravity
anomalies given at 5 arc-minute spacing over a 2° by 2° region
requires an B matrix with 576 rows and 576 columns (one for each
integration/computation point).

2. The theory

An approximate iterative solution seems to be the direction to
choose. The most intuitively attractive iterative approach is the Ja-
cobi iterative method (e.g. Young, 1971), which may be formulated
as (VaniCek et al., 1996):

AgM=Ag' + (I — B)Ag?* Y, @)

where Ag9" is the k-thiteration of Ag?, Ag?* =" is the previous,
(k — 1)-st iteration, and the usual initial estimate of Ag? is Ag9®®)
=Ag". Our formulation here is slightly different from the standard
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formulation by Jacobi which uses the diagonal elements of the
B matrix instead of / and therefore has a slightly faster rate of
convergence (Press, 2002). We have chosen the above form (Eq. (7))
since it is conducive to testing the convergence of the solution
using the methods we prescribe.

The ill-conditioning of B increases with the maximum height of
the evaluation points in the area of interest, and with decreasing
the step size of the grid of integration points on the geoid. An
upper bound, Kqx, of the condition number of the B matrix is
given, according to Martinec (1996), by:

rmax % Hmax ﬁ 7T Hmax
)™ = ( ) @)

R T+ 1+ X0 R

o =
where H, 4y is the maximum value of height for i =1,2,..,N,
and AQ is the step size of the grid of input gravity anomalies,
considered equal in both the latitudinal and longitudinal directions.
Thus, for the area with heights over 3200 m in Papua-New Guinea
(used for our computations here) and input Helmert anomalies on
the topography spaced 1 arc-minute apart, the upper bound on
the condition numberis over 227. The practical result of such a high
condition number is that the numerical precision of the solution is
worse than that of the input. Note also that the condition number
may be higher than that predicted by Eq. (8), which relies on a
definition of the condition number that uses the eigenvalues of
the B matrix rather than its singular values. The definition that
uses eigenvalues is only valid when the B matrix is a normal matrix,
which is rarely the case.

As an approximate rule, the loss of precision is equivalent to the
base 10 logarithm of the condition number (e.g. Cheney and
Kincaid, 2008), so that for a condition number of 1 there is no
loss of precision, while for a condition number of 227 the loss
of precision is up to 2 or 3 digits. So for gravity anomalies on
the topography known with a precision of 0.01 mGal, the output
gravity anomalies on the geoid may have a precision as low as
10 mGal, and any attempt to increase the precision of the output,
for example by further iterations in the Jacobi method, will only
add spurious noise to the result. Thus, it is reasonable to terminate
the iterative process as soon as the best attainable result isreached.
A traditional approach to test whether an iterative solution has
converged is to test the difference between the solutions from two
successive iterations {e.g. Young, 1971). So, indicating the k-th
difference being tested by the vector §9), we would have:

390 = AgIk) _ pgak-T), )

Since the process generating Agg(k) is convergent in the Ly norm
(VaniCeketal., 1996), we know that the accuracy improvement from
any subsequent iterations will be less than §9%), and the process
can be considered to have converged in L1 when ||890)]|; is
smaller than some prescribed tolerance. If the Ly norm is used,
a statement like "the errors will not exceed 0.1 mGal” can be
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substantiated. If the maximum value in 09 has a magnitude less

than 0.1 mGal, it is presumed that including additional iterations
would not change any value in Ag? by more than 0.1 mGal.

The difficulty in applying Eq. (9) is with choosing an adequate
tolerance. We might assign a tolerance prescribing the desired
accuracy for our Agg(k) determination. However, we may choose
a desired accuracy higher than what the numerical apparatus is
able to deliver. Also, even if the tolerance we set can be achieved
by the numerical apparatus, there is no guarantee that our result
will achieve the desired accuracy. In an ill-conditioned system, an
exact solution will be very noisy, and as such will be very difficult
to interpret.

An alternative to using Eq.(9) is, at each step, to compare "iterations
of gravity anomalies on the topography”, Ag’(k), using the already
calculated B matrix:

Ag'™ = BAgI®), (10)

The testing is then done on the difference between the gravity
anomalies on the topographical surface determined from the k-th

t(k

solution (Ag )), and the input anomalies on the topographical

surface (Ag"):

o' = Ag'M—Ag". (11

If we use 0'® as defined by Eq. (11), then we are no longer
testing for convergence based on the desired accuracy of the
result. Instead, we are testing whether the gravity anomalies
arising from the k-th solution are distinguishable from those used
as input. Assuming the system is well conditioned, this is done
by comparing the Ly norm of 0'™ to a tolerance reflecting the
precision of the input data. Thus, if the input data has a precision
of 0.01 mGal, we might suppose that we have derived results of
the best possible quality when they produce input values less than
0.005 mGal differentfrom the originals. In anill conditioned system,
where Ag'™%) is imprecise because of imprecise values of Ag9*),
it may be impossible to reproduce the input gravity anomalies to
such a precision (Wong, 2002). However, the choice of half the
precision of the input data as a tolerance will still produce a result
compatible with an exact solution of Eq. (6), since exact solution
methods are likewise blind to the effect of the ill-conditioned B
matrix (e.g. Young, 1971).

This change in approach is important mainly because it gives a
context for choosing tolerances. It is only expected to have a
significant effect on results in cases where the convergence is very
rapid. In fact:

99k) — 5'(’(—1)’ (12)

so that, for any given tolerance, testing using the geoid gravity
anomalies always requires one additional iteration.



If we use a 0'%) calculated by Eq. (11) or (12), and a tolerance

consistent with the precision of our input data, we will be able
to produce an iterative solution as close to the exact solution of
the system of equations as the precision of our input data allows.
However, if the system of equations is especially ill-conditioned
then we will still produce noisy results. This can be avoided by
taking the possible error in Ag9¥) into account in choosing our
tolerance for '),

If the tolerance chosen is consistent with the conditioning of
the system of equations, the best possible solution under the
circumstances may be reached. Thus, the choice of tolerance may
be regarded as a regularization of the solution. If the result seems
unwarrantedly rough, the tolerance applied may be too stringent,
and can be varied until a reasonably smooth result is obtained.
This refinement of the tolerance choice is equivalent to tuning the
tolerance so that it properly reflects what the system of equations
and input data are actually able to deliver.

As a rough attempt at defining a suitable tolerance a-priori, we
can apply the rule described above, which says that the order of
magnitude of the loss of precision due to ill conditioning is roughly
equal to the logarithm of the condition number. If we take p
as the L1 norm of the vector of precision of the input data (e.g.
0.01 mGal), we can choose an approximate tolerance, T, based on:

T = pk, (13)

where K is the condition number of the system of equations. If the
system is well conditioned, then Eq. (13) provides a tolerance close
to half of the precision of the input, suitable for testing || /|| ;1.
If the conditioning is poor, Eq. (13) scales the tolerance according
to the expected loss of precision in the result.

In the following, we will test the methods discussed above on “real
data” from an area of high mountains in Indonesia, based on a
portion of the AusSEGM synthetic gravity field (Baran et al., 2006).
The next section will describe these results.

3. Results and discussion

3.1. Test area and data sets

We have performed three experiments to illustrate the points
above. All cover the same area, from 147.5° to 148.5° longitude
and -9° to -10° degrees latitude, using data from 147° to 149°
longitude and -8.5% to -10.5° latitude, to avoid any edge effects (as
described by Sun and Vanicek, 1996). This involves 14,400 input
data points on a grid with1 arc-minute spacing. The large number
of data points magnifies the differences in computation time for
different solution methods. The maximum point height in the test
area, which includes some large mountains in Indonesia, is above
3,200 metres. This corresponds, according to Eq. (8) to an upper
bound for the condition number of the B matrix of about 227,
although we have estimated the actual condition number of the
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B matrix, based on the L; norms of B and B~", to be 1347. We
therefore expect significant numerical instability in the downward
continuation process, allowing us to assess how well different
solutions deal with the numerical instability.

The input gravity data for the tests will be Helmertized gravity
anomalies based on the AusSEGM synthetic data set (Baran et al,,
2006). The input Helmert anomalies are given in Figure 1.
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Figure 1. Helmert gravity anomalies over the study area.

While Figure 1 shows gravity anomaly data over the whole input
area, the white square indicates the computation area. All input
gravity anomalies are given in mGal to two decimal places, and
lacking other information about their accuracy we assume they
have a precision of 0.005 mGal. The values in this area range from
-54.0 mGal to 290.0 mGal.

Heights are taken from the digital elevation model (DEM) accom-
panying the AusSEGM data set, and are shown in Figure 2. They
range from O m to over 3200 m.

By using synthetic data, we will ensure that the comparisons of
solution methods are affected as little as possible by errors in the
input data. The influence of data errors on downward continuation
is not a focus of this study.

3.2. Comparison of three methods for solving the downward contin-

uation

First, we test whether our use of the otk vector, given by Eq. (11),
allows us to properly assess convergence of the Jacobi iterative
process, so as to obtain a result congruous with an exact solution.
To do this, we have performed downward continuation over our
test area using LU decomposition, which provides an algebraically
exact solution, and the Jacobi iterative method with convergence
testing based on ||6/®)|| 4, and also || 890 | 4.
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Figure 2. Heights of topography over the study area.

In this test, the ||8"¥]||;1 will be required to meet a tolerance
of 0.005 mGal, equivalent to half the nominal precision of the
input values. In other words, the iterative process will cease
when the downward continued anomalies generate surface gravity
anomalies indistinguishable in the L1 norm from the input data on
the level of one half of the maximum data error. In this case, the
result should be very close to the solution by LU decomposition.

The||69%]|,1 will be required to meet the same tolerance, allowing
us to verify Eq. (12), and examine the additional computational cost
of using 0™ instead of 39, which requires an extra multiplication
by the B matrix for each iteration. If Eq. (12) is correct, the extra
multiplication need not be carried out in normal calculations, since
k1) — and thus the
computational cost of each method would be almost the same.

0™ can just be calculated based on 09

The result for the calculation using the Jacobi method and testing
[|81®]|11 is given in Figure 3. The results from LU decomposition
and from testing ||69%)|| 4 are almost identical to Figure 3, and
so they are not plotted. Additionally, Table 1 provides statistics
and computation times for each result. All computation times
indicated below are for running computations on the ACENet grid
computing system.

The similarity of all three results indicates that the tolerance of
0.005 mGal does lead to an iterative result commensurate with
the exact result. Furthermore Eq. (12) is verified since the method
using 09%) required exactly one more iteration than that using
6““, to meet the same tolerance. The time required per iteration,
was about 0.46 seconds per iteration for the 09 method and 0.67
seconds forthe 0% method. Thus the 6*) method, implemented
as it was here, is relatively slow, and values of 6'%) should be
calculated by Eq. (12) in normal practice.

As expected, all three results are very spiky. This does not mean the
iterative solutions were unsuccessful - they achieved their purpose
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Figure 3.

Result for Ag? from Jacobi iterative approach based on
norm of the &' vector.

by converging to aresult very close to the LU decomposition result.
However, because of the ill conditioning of the B matrix , we have
tried to achieve a better agreement between the generated surface
anomalies and the input surface anomalies than we possibly can.

3.3. Comparison of Jacobi results using varying tolerances

Next, we show how by varying the tolerances for the L4 norm,
both when testing the surface gravity anomalies and geoid gravity
anomalies, the computational noise in the downward continuation
solution can be reduced. The results given are for the “"downward
continuation effect”, or the difference between the surface (as
shown in Figure 1) and downward continued gravity anomalies,
given by:

= AgIh — Agt, (14)

This presentation is used to best indicate the noisiness of the
different results and their characteristic features. Figure 4 and
Table 2 give four results based on tolerances of 0.05 mGal, 0.5 mGal,
5 mGal and 50 m@Gal, as well as the statistics of the surface gravity
anomalies in the area for comparison.

In all cases we have used the method of testing based on the
L1 norm of the 8! vector. The figures and statistics confirm the
smoothing effect of choosing a less stringent tolerance. The spikes
evident in the solution for a 0.05 mGal tolerance, which has a
standard deviation of 78.99 mGal and range of 1662.00 mGal,
is diminished in the solutions that use a 0.5 mGal and 5 mGal
tolerance. It is absent in the solution using the 50 mGal tolerance,
where the standard deviation has dropped to 66.40 mGal and the
range to 317.03 mGal. Since the extreme positive and negative
spikes are surely spurious, this suggests that a suitable tolerance
will be somewhere between 5 mGal and 50 mGal — since the
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Table 1. Statistics of results from three computation methods.

Method LU decomposition Jacobi testing 89 Jacobi testing 8¢
Minimum [mGal] -291.65 -291.54 -291.54
Maximum [mGal] 1331.33 1331.23 1331.23

Mean [mGal] 127.24 127.42 127.42
Std. deviation [mGal] 79.26 79.01 79.01
No. of iterations n/a 4684 4683
Processing time [mm:ss] 208:08 36:11 52:09
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Figure 4. Downward continuation effect from the Jacobi iterative method with testing of the 3! vector with a) 0.05 mGal, b) 0.5 mGal, ¢) 5 mGal
and d) 50 mGal tolerances.
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Table 2. Statistics of the downward continuation effect for the Jacobi iterative method with testing of the ' vector using various tolerances.

Jacobi results for anomalies on geoid Surface anomalies

Tolerance [mGal] 0.05 0.5 5 50 n/a
Minimum [mGal] -291.18 -268.91 15.52 15.52 15.52
Maximum [mGal] 1330.82 1303.08 558.79 332.55 261.43
Range [mGal] 1662.00 1571.99 543.27 317.03 24591
Std. deviation [mGal]  78.99 7827 68.77  66.40 57.21
No. of iterations 2745 1066 47 3 n/a
Processing time [mm:ss] 32:35  15:37  5:19 4:56 n/a

5 m@Gal solution shows questionable spikes, which disappear in the
50 mGal solution.

As expected, the number of iterations and time consumed drop
significantly as the tolerance is relaxed, although the drop is
less pronounced once the tolerance exceeds about 1 mGal. The
relationship between the choice of the tolerance and the number of
iterations, for our computation area, is shown in a semi-logarithmic
graph in Figure 5.
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47 3

0.001 0.01 0.1 1 10 100
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Figure 5. Number of iterations of the Jacobi method vs. tolerance
chosen for convergence testing.

The impressive decrease in computation time with the relaxation
of the Jacobi tolerance shows that in addition to regularizing the
solution and producing a better result, using a suitable tolerance
will also significantly improve computation speed.

3.4. Testing the choice of tolerance based on the condition number

Finally, we have applied Eq. (13) to our situation, using our estimate
of the condition number based on the L1 norms of 1347, and an
assumed precision of the input data of 0.005 mGal, and come up
with a tolerance of 6.7 mGal. This number is in the range we might
guess for the best tolerance, based on the results in section 3.3. If
we use this tolerance in our calculations, we find the result shown
in Figure 6.
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Figure 6. Downward continuation effect of Jacobi method using a
tolerance of 6.7 mGal.

As with any attempt at regularization, we can do little to verify
this result, apart from saying that it appears to behave as we
expect it to. The gravity anomalies on the geoid are rougher than
those at the topographical surface, but do not have any significant
spikes, and do not have extreme ranges such as we have seen
when using tolerances of 0.5 mGal or less. Thus, the tolerance
chosen according to Eq. (13) at least produces a reasonable result.
There are still some smaller spikes in the solution, and so Eq. (13)
may provide too stringent of a tolerance, at least when based
on the L4 norm when estimating of the condition number. If
the condition number is estimated according to the L, or L,
norm, or determined exactly by singular value decomposition, it
will be higher and the tolerance provided by Eq. (13) will be less
stringent. Also, Eq. (13) would be slow to implement in practical
computations due to the time consumption involved in finding
the condition number, or even one of the more specific estimates
of it. Thus, a better method of finding the most suitable tolerance
would help in practical applications.



4. Conclusions

The results have shown first that testing downward continuation
according tothe Ly norm of gravity anomalies (the largest absolute
value in the vector of values) at the topographical surface, rather
than on the geoid, provides a solution commensurate with the
theoretically exact LU decomposition solution and also with the
traditional method of testing gravity anomalies on the geoid.
Testing of anomalies on the surface should be preferred because it
allows a more meaningful choice of tolerance criteria and because
in cases where convergence is rapid, testing the fit of anomalies
at the geoid level leads to truncating the iterations one iteration
too soon and this may result in a significant difference in the
results. The vector of differences for testing, however, should be
determined by Eq. (12), to provide a faster calculation than Eq. (11).
We have also shown that by relaxing the L, tolerances in the Ja-
cobi method from those required to get the exact solution, we can
regularize the downward continuation solution and significantly
decrease computation time. While a better prescription can prob-
ably be found, our proposal for the choice of a relaxed tolerance
based on the condition number of the B matrix, according to
Eq. (13), yields a reasonable result. It certainly provides a better
result than the solution with a higher tolerance or the "exact”
solution by LU decomposition.

It seems to us, that the described approach to downward continua-
tion of gravity anomalies from the Earth surface to the geoid makes
a good physical sense. It also produces results that appear more
transparent from the mathematical point of view, and that would
be evaluated faster than by using some regularization methods.
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