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Abstract:

Downward continuation is a continuing problem in geodesy and geophysics. Inversion of the discrete form of the Poisson integration
process provides a numerical solution to the problem, but because the Bmatrix that defines the discrete Poisson integration is not always
well conditioned the solution may be noisy in situations where the discretization step is small and in areas containing large heights.
We provide two remedies, both in the context of the Jacobi iterative solution to the Poisson downward continuation problem. First, we
suggest testing according to the upward continued result from each solution, rather then testing between successive solutions on the
geoid, so that choice of a tolerance for the convergence of the iterative method is more meaningful and intuitive. Second, we show how
a tolerance that reflects the conditioning of the Bmatrix can regularize the solution, and suggest an approximate way of choosing such a
tolerance. Using these methods, we are able to calculate a solution that appears regular in an area of Papua New Guinea having heights
over 3200 m, over a grid with 1 arc-minute spacing, based on a very poorly conditioned B matrix.
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1. Introduction

A continuous plague in geodesy and geophysics is the problem

of downward continuation of gravity. That is, the determination

of the values of the field below the surface of the Earth from

observations of gravity field on the surface. While variousmethods

may be used for this process, we will discuss only the theoretically

exact solution by the inversion of Poisson integration.

Downward continuation can be considered the inverse operation

of Poisson integration, which itself is a solution to the first bound-

ary problem of potential theory: given values of a potential field

on a sphere, that is harmonic outside the sphere, Poisson inte-

gration provides values of the field anywhere outside the sphere

(MacMillan, 1930). In our case, the field will be the anomalous
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gravity field in the Helmert space, as described by Vaníček et al.

(1996), multiplied by the geocentric radius. Considering the geoid

as a spherical surface allows us to apply Poisson integration, valid

for computation points external to the geoid, according to the

formula (Heiskanen and Moritz, 1967):

∆gh(r, φ, λ) = (1)

R2(r2 − R2)4πr
π2∫

φ′=− π2
2π∫

λ′=0
∆gh(R, φ′, λ′)

`3(r, φ, λ;R, φ′, λ′) cosφ′dφ′dλ′,
where ∆gh(r, φ, λ) is the Helmert gravity anomaly at a point

with geocentric spherical latitude φ, longitude λ and radius r.
The symbol R stands for the mean radius of the Earth, used

here to approximate the radius of the geoid in the geocentric

spherical coordinate system where the calculation is performed.

We assume the value to be R=6371008.7714 m, i.e., equal to the

mean radius of the GRS-80 ellipsoid (Moritz, 1980). ∆gh(R, φ, λ)
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is the Helmert gravity anomaly at an integration point on the

geoidwith geocentric spherical latitudeφ and longitudeλ. Finally,
`(r, φ, λ;R, φ′, λ′) is the distance between the computation

and integration points, also calculated in a geocentric spherical

coordinate system.

The integral in Eq. (1) is a Fredholm integral of the 1st kind

(Fredholm, 1900). It can be evaluated numerically in a discrete

form for a set of N points, each point Pi having coordinates(ri,φi,λι), by:
∀i ∈ 1, 2, . . . , N : ∆ghi (ri, φi, λi) =
R2(r2

i − R2)4πri M∑
j=1

∆ghj (R, φj , λj )
`3(ri, φi, λi;R, φj , λj ) cosφj∆φ∆λ, (2)

whereM is the number of points used for discrete representation

of the gravity anomalies on the geoid, ∆ghj (R, φj , λj ) is the

gravity anomaly for the point Pj on the geoid having latitude φj
and longitudeλj ,∆φ is the step size in the latitudinal direction and∆λ is the step size in the longitudinal direction. In matrix-vector

notation, Eq. (2) can be written as (Vaníček et al., 1996):

∆gt= B∆gg, (3)

where∆gt is a vector of gravity anomalies of lengthN , containing

all point anomalies ∆ghi on the terrain; ∆gg is a vector of gravity

anomalies of length M , containing all point anomalies ∆ghj on

the geoid, and theN byM matrixB is composed of elements bij
given by (cf. Vaníček et al., 1996):

bij = R2(r2
i − R2)4πri 1

`3(ri, φi, λi;R, φj , λj ) cosφj∆φ∆λ. (4)

Usually, N = M , and the horizontal coordinates of the locations

of the ∆gg vector correspond to the locations of the ∆gt vector.
This results in a square B matrix with the maximum value in each

row and column being along the main diagonal, an arrangement

which will be assumed in the following developments.

Note that the discretization given by Eq. (2), which relates point

values on the geoid to point values on the Earth surface, is not the

only possible way to discretize the Poisson integration. In addition

to the ''point-point'' approach given by Eq. (2), there are the

''point-mean'', ''mean-mean'', and ''mean-point'' discretizations,

according to what representation of the field is used on each

surface where it is considered - the meaning of these descriptors

should be self-evident. These alternative approaches result in

different formulations of the elements of the B matrix and a

different interpretation of the elements of ∆gt and ∆gg . Eq. (3)
and the developments presented here are valid for any of the four

formulations, and for the calculations in this paper a point-mean

scheme will be used, where the output is mean Helmert gravity

anomalies, averaged over each cell on the geoid, and the elements

of the B matrix are given by (cf. Vaníček et al., 1996):

bij = (5)
R2(r2

i − R2)4πri 1
n

n∑
k=1

1
`3(ri, φi, λi;R, φj,k , λj,k ) cosφj,k∆φ∆λ,

which represents an average of n kernel values calculated at each

point Pk with coordinates φj,k , λj,k . The averaging points are

usually given on a regular grid within each cell, and the cell

dimensions are equal to ∆φ and ∆λ. The other 3 formulations for

theBmatrix are discussed in (Vaníček and Santos, 2010).

While Eq. (3) allows us to calculate∆gt given∆gg , we really want

to perform the inverse operation. We want gravity anomalies on

the geoid based on values at the Earth's surface, i.e., we want to

use the following equation:

∆gg= B−1∆gt . (6)

Fredholm's integral equations of first kind, such as Eq. (1), are

inherently unstable. Even though the problem of downward

continuation is ''well posed'' in the Hadamard sense (Wong, 2002),

the systemof linear equations formed as a numerical equivalent to

the Fredholm integral may be ill-conditioned (see, e.g., Martinec,

1996). Under some circumstances, the system may be almost

singular, meaning that the inverse B−1 may be very difficult

to obtain, a situation that some people solve by adopting one

regularization scheme or another (e.g. Schwarz, 1978; Goli et al.,

2010). Under these circumstances, no exact iterative solution can

be found but a non-iterative solution can. The LUdecomposition is

the most efficient non-iterative numerical method for calculating

B−1 ∆gt exactly, since it does not require a complete inversion

of the B matrix (Press et al., 2002). However, it is still very

time consuming because it goes through the decomposition of a

potentially very largeBmatrix. For a typical example, using gravity

anomalies given at 5 arc-minute spacing over a 2o by 2o region

requires anBmatrix with 576 rows and 576 columns (one for each

integration/computation point).

2. The theory

An approximate iterative solution seems to be the direction to

choose. Themost intuitively attractive iterative approach is the Ja-

cobi iterativemethod (e.g. Young, 1971), whichmaybe formulated

as (Vaníček et al., 1996):

∆gg(k)= ∆gt + (I − B)∆gg(k−1), (7)

where∆gg(k) is thek -th iterationof∆gg ,∆gg(k−1) is the previous,
(k − 1)-st iteration, and the usual initial estimate of∆gg is∆gg(0)
=∆gt . Our formulation here is slightly different from the standard
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formulation by Jacobi which uses the diagonal elements of the

B matrix instead of I and therefore has a slightly faster rate of

convergence (Press, 2002). Wehavechosen theabove form (Eq. (7))

since it is conducive to testing the convergence of the solution

using the methods we prescribe.

The ill-conditioning of B increases with the maximum height of

the evaluation points in the area of interest, and with decreasing

the step size of the grid of integration points on the geoid. An

upper bound, κmax , of the condition number of the B matrix is

given, according to Martinec (1996), by:

κmax = ( rmax
R

) π∆Ω = (1 + Hmax
R

) π∆Ω
≈ 1 + π∆Ω Hmax

R , (8)

where Hmax is the maximum value of height for i =1,2,...,N ,

and ∆Ω is the step size of the grid of input gravity anomalies,

consideredequal inboththe latitudinalandlongitudinaldirections.

Thus, for the area with heights over 3200 m in Papua-New Guinea

(used for our computations here) and input Helmert anomalies on

the topography spaced 1 arc-minute apart, the upper bound on

theconditionnumber is over 227. Thepractical result of suchahigh

condition number is that the numerical precision of the solution is

worse than that of the input. Note also that the condition number

may be higher than that predicted by Eq. (8), which relies on a

definition of the condition number that uses the eigenvalues of

the B matrix rather than its singular values. The definition that

uses eigenvalues is only validwhen theBmatrix is a normalmatrix,

which is rarely the case.

As an approximate rule, the loss of precision is equivalent to the

base 10 logarithm of the condition number (e.g. Cheney and

Kincaid, 2008), so that for a condition number of 1 there is no

loss of precision, while for a condition number of 227 the loss

of precision is up to 2 or 3 digits. So for gravity anomalies on

the topography known with a precision of 0.01 mGal, the output

gravity anomalies on the geoid may have a precision as low as

10 mGal, and any attempt to increase the precision of the output,

for example by further iterations in the Jacobi method, will only

add spurious noise to the result. Thus, it is reasonable to terminate

the iterativeprocess as soonas thebest attainable result is reached.

A traditional approach to test whether an iterative solution has

converged is to test the difference between the solutions from two

successive iterations (e.g. Young, 1971). So, indicating the k -th
difference being tested by the vector δg(k) , we would have:

δg(k) = ∆gg(k) − ∆gg(k−1). (9)

Since the process generating∆gg(k) is convergent in the L1 norm
(Vaníčeketal., 1996),weknowthat theaccuracy improvement from

any subsequent iterations will be less than δg(k) , and the process

can be considered to have converged in L1 when ||δg(k)||L1 is

smaller than some prescribed tolerance. If the L1 norm is used,

a statement like ''the errors will not exceed 0.1 mGal'' can be

substantiated. If the maximum value in δg(k) has a magnitude less

than 0.1 mGal, it is presumed that including additional iterations

would not change any value in∆gg by more than 0.1 mGal.

The difficulty in applying Eq. (9) is with choosing an adequate

tolerance. We might assign a tolerance prescribing the desired

accuracy for our ∆gg(k) determination. However, we may choose

a desired accuracy higher than what the numerical apparatus is

able to deliver. Also, even if the tolerance we set can be achieved

by the numerical apparatus, there is no guarantee that our result

will achieve the desired accuracy. In an ill-conditioned system, an

exact solution will be very noisy, and as such will be very difficult

to interpret.

Analternative tousingEq. (9) is, at eachstep, tocompare ''iterations

of gravity anomalies on the topography'',∆gt(k) , using the already

calculatedBmatrix:

∆gt(k) = B∆gg(k). (10)

The testing is then done on the difference between the gravity

anomalies on the topographical surface determined from the k -th
solution (∆gt(k)), and the input anomalies on the topographical

surface (∆gt ):
δt(k) = ∆gt(k)−∆gt . (11)

If we use δt(k) as defined by Eq. (11), then we are no longer

testing for convergence based on the desired accuracy of the

result. Instead, we are testing whether the gravity anomalies

arising from the k -th solution are distinguishable from those used

as input. Assuming the system is well conditioned, this is done

by comparing the L1 norm of δt(k) to a tolerance reflecting the

precision of the input data. Thus, if the input data has a precision

of 0.01 mGal, we might suppose that we have derived results of

the best possible quality when they produce input values less than

0.005mGaldifferent fromtheoriginals. Inan ill conditionedsystem,

where ∆gt(k) is imprecise because of imprecise values of ∆gg(k) ,
it may be impossible to reproduce the input gravity anomalies to

such a precision (Wong, 2002). However, the choice of half the

precision of the input data as a tolerance will still produce a result

compatible with an exact solution of Eq. (6), since exact solution

methods are likewise blind to the effect of the ill-conditioned B
matrix (e.g. Young, 1971).

This change in approach is important mainly because it gives a

context for choosing tolerances. It is only expected to have a

significant effect on results in cases where the convergence is very

rapid. In fact:

δg(k) = δt(k−1), (12)

so that, for any given tolerance, testing using the geoid gravity

anomalies always requires one additional iteration.
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If we use a δt(k) calculated by Eq. (11) or (12), and a tolerance

consistent with the precision of our input data, we will be able

to produce an iterative solution as close to the exact solution of

the system of equations as the precision of our input data allows.

However, if the system of equations is especially ill-conditioned

then we will still produce noisy results. This can be avoided by

taking the possible error in ∆gg(k) into account in choosing our

tolerance for δt(k) .
If the tolerance chosen is consistent with the conditioning of

the system of equations, the best possible solution under the

circumstances may be reached. Thus, the choice of tolerance may

be regarded as a regularization of the solution. If the result seems

unwarrantedly rough, the tolerance applied may be too stringent,

and can be varied until a reasonably smooth result is obtained.

This refinement of the tolerance choice is equivalent to tuning the

tolerance so that it properly reflects what the system of equations

and input data are actually able to deliver.

As a rough attempt at defining a suitable tolerance a-priori, we

can apply the rule described above, which says that the order of

magnitude of the loss of precision due to ill conditioning is roughly

equal to the logarithm of the condition number. If we take p
as the L1 norm of the vector of precision of the input data (e.g.

0.01mGal), we can choose an approximate tolerance,T , based on:

T = pκ, (13)

where κ is the condition number of the system of equations. If the

system is well conditioned, then Eq. (13) provides a tolerance close

to half of the precision of the input, suitable for testing ||δt(k)||L1 .
If the conditioning is poor, Eq. (13) scales the tolerance according

to the expected loss of precision in the result.

In the following, wewill test themethods discussed above on ''real

data'' from an area of high mountains in Indonesia, based on a

portion of the AusSEGM synthetic gravity field (Baran et al., 2006).

The next section will describe these results.

3. Results and discussion

3.1. Test area and data sets

We have performed three experiments to illustrate the points

above. All cover the same area, from 147.5o to 148.5o longitude

and -9o to -10o degrees latitude, using data from 147o to 149o

longitude and -8.5o to -10.5o latitude, to avoid any edge effects (as

described by Sun and Vaníček, 1996). This involves 14,400 input

data points on a grid with1 arc-minute spacing. The large number

of data points magnifies the differences in computation time for

different solution methods. The maximum point height in the test

area, which includes some large mountains in Indonesia, is above

3,200 metres. This corresponds, according to Eq. (8) to an upper

bound for the condition number of the B matrix of about 227,

although we have estimated the actual condition number of the

B matrix, based on the L1 norms of B and B−1 , to be 1347. We

therefore expect significant numerical instability in the downward

continuation process, allowing us to assess how well different

solutions deal with the numerical instability.

The input gravity data for the tests will be Helmertized gravity

anomalies based on the AusSEGM synthetic data set (Baran et al.,

2006). The input Helmert anomalies are given in Figure 1.

Figure 1. Helmert gravity anomalies over the study area.

While Figure 1 shows gravity anomaly data over the whole input

area, the white square indicates the computation area. All input

gravity anomalies are given in mGal to two decimal places, and

lacking other information about their accuracy we assume they

have a precision of 0.005 mGal. The values in this area range from

-54.0 mGal to 290.0 mGal.

Heights are taken from the digital elevation model (DEM) accom-

panying the AusSEGM data set, and are shown in Figure 2. They

range from 0 m to over 3200 m.

By using synthetic data, we will ensure that the comparisons of

solution methods are affected as little as possible by errors in the

input data. The influence of data errors ondownward continuation

is not a focus of this study.

3.2. Comparison of three methods for solving the downward contin-
uation

First, we test whether our use of the δt(k) vector, given by Eq. (11),

allows us to properly assess convergence of the Jacobi iterative

process, so as to obtain a result congruous with an exact solution.

To do this, we have performed downward continuation over our

test area using LU decomposition, which provides an algebraically

exact solution, and the Jacobi iterative method with convergence

testing based on ||δt(k)||L1 , and also ||δg(k)||L1 .
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Figure 2. Heights of topography over the study area.

In this test, the ||δt(k)||L1 will be required to meet a tolerance

of 0.005 mGal, equivalent to half the nominal precision of the

input values. In other words, the iterative process will cease

whenthedownwardcontinuedanomaliesgeneratesurfacegravity

anomalies indistinguishable in the L1 norm from the input data on

the level of one half of the maximum data error. In this case, the

result should be very close to the solution by LU decomposition.

The ||δg(k)||L1willberequiredtomeet thesametolerance, allowing

us to verify Eq. (12), andexamine theadditional computational cost

ofusingδt(k) insteadofδg(k) ,whichrequiresanextramultiplication

by the B matrix for each iteration. If Eq. (12) is correct, the extra

multiplication need not be carried out in normal calculations, since

δt(k) can just be calculated based on δg(k+1) − and thus the

computational cost of each method would be almost the same.

The result for the calculation using the Jacobi method and testing

||δt(k)||L1 is given in Figure 3. The results from LU decomposition

and from testing ||δg(k)||L1 are almost identical to Figure 3, and

so they are not plotted. Additionally, Table 1 provides statistics

and computation times for each result. All computation times

indicated below are for running computations on the ACENet grid

computing system.

The similarity of all three results indicates that the tolerance of

0.005 mGal does lead to an iterative result commensurate with

the exact result. Furthermore Eq. (12) is verified since the method

using δg(k) required exactly one more iteration than that using

δt(k) , to meet the same tolerance. The time required per iteration,

was about 0.46 seconds per iteration for theδg(k) method and 0.67

seconds for theδt(k) method. Thus theδt(k) method, implemented

as it was here, is relatively slow, and values of δt(k) should be

calculated by Eq. (12) in normal practice.

As expected, all three results are very spiky. This does notmean the

iterative solutionswere unsuccessful - they achieved their purpose

Figure 3. Result for ∆gg from Jacobi iterative approach based on
norm of the δt vector.

by converging to a result very close to the LUdecomposition result.

However, because of the ill conditioning of theBmatrix , we have

tried toachieveabetter agreementbetween thegenerated surface

anomalies and the input surface anomalies than we possibly can.

3.3. Comparison of Jacobi results using varying tolerances

Next, we show how by varying the tolerances for the L1 norm,

bothwhen testing the surface gravity anomalies and geoid gravity

anomalies, the computational noise in thedownwardcontinuation

solution can be reduced. The results given are for the ''downward

continuation effect'', or the difference between the surface (as

shown in Figure 1) and downward continued gravity anomalies,

given by:

ε(k)= ∆gg(k) − ∆gt , (14)

This presentation is used to best indicate the noisiness of the

different results and their characteristic features. Figure 4 and

Table2give four results basedon tolerancesof 0.05mGal, 0.5mGal,

5 mGal and 50 mGal, as well as the statistics of the surface gravity

anomalies in the area for comparison.

In all cases we have used the method of testing based on the

L1 norm of the δt vector. The figures and statistics confirm the

smoothing effect of choosing a less stringent tolerance. The spikes

evident in the solution for a 0.05 mGal tolerance, which has a

standard deviation of 78.99 mGal and range of 1662.00 mGal,

is diminished in the solutions that use a 0.5 mGal and 5 mGal

tolerance. It is absent in the solution using the 50 mGal tolerance,

where the standard deviation has dropped to 66.40 mGal and the

range to 317.03 mGal. Since the extreme positive and negative

spikes are surely spurious, this suggests that a suitable tolerance

will be somewhere between 5 mGal and 50 mGal − since the



Journal of Geodetic Science 79

Table 1. Statistics of results from three computation methods.

Method LU decomposition Jacobi testing δg Jacobi testing δt

Minimum [mGal] -291.65 -291.54 -291.54
Maximum [mGal] 1331.33 1331.23 1331.23

Mean [mGal] 127.24 127.42 127.42
Std. deviation [mGal] 79.26 79.01 79.01

No. of iterations n/a 4684 4683
Processing time [mm:ss] 208:08 36:11 52:09

a) b)

c) d)

Figure 4. Downward continuation effect from the Jacobi iterative method with testing of the δt vector with a) 0.05 mGal, b) 0.5 mGal, c) 5 mGal
and d) 50 mGal tolerances.
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Table 2. Statistics of the downward continuation effect for the Jacobi iterative method with testing of the δt vector using various tolerances.

Jacobi results for anomalies on geoid Surface anomalies
Tolerance [mGal] 0.05 0.5 5 50 n/a

Minimum [mGal] -291.18 -268.91 15.52 15.52 15.52
Maximum [mGal] 1330.82 1303.08 558.79 332.55 261.43

Range [mGal] 1662.00 1571.99 543.27 317.03 245.91
Std. deviation [mGal] 78.99 78.27 68.77 66.40 57.21

No. of iterations 2745 1066 47 3 n/a
Processing time [mm:ss] 32:35 15:37 5:19 4:56 n/a

5mGal solution shows questionable spikes, which disappear in the

50 mGal solution.

As expected, the number of iterations and time consumed drop

significantly as the tolerance is relaxed, although the drop is

less pronounced once the tolerance exceeds about 1 mGal. The

relationshipbetweenthechoiceof thetoleranceandthenumberof

iterations, for our computation area, is shown in a semi-logarithmic

graph in Figure 5.

Figure 5. Number of iterations of the Jacobi method vs. tolerance
chosen for convergence testing.

The impressive decrease in computation time with the relaxation

of the Jacobi tolerance shows that in addition to regularizing the

solution and producing a better result, using a suitable tolerance

will also significantly improve computation speed.

3.4. Testing the choice of tolerance based on the condition number

Finally, wehaveappliedEq. (13) toour situation, usingour estimate

of the condition number based on the L1 norms of 1347, and an

assumed precision of the input data of 0.005 mGal, and come up

with a tolerance of 6.7 mGal. This number is in the range wemight

guess for the best tolerance, based on the results in section 3.3. If

we use this tolerance in our calculations, we find the result shown

in Figure 6.

Figure 6. Downward continuation effect of Jacobi method using a
tolerance of 6.7 mGal.

As with any attempt at regularization, we can do little to verify

this result, apart from saying that it appears to behave as we

expect it to. The gravity anomalies on the geoid are rougher than

those at the topographical surface, but do not have any significant

spikes, and do not have extreme ranges such as we have seen

when using tolerances of 0.5 mGal or less. Thus, the tolerance

chosen according to Eq. (13) at least produces a reasonable result.

There are still some smaller spikes in the solution, and so Eq. (13)

may provide too stringent of a tolerance, at least when based

on the L1 norm when estimating of the condition number. If

the condition number is estimated according to the L2 or L∞
norm, or determined exactly by singular value decomposition, it

will be higher and the tolerance provided by Eq. (13) will be less

stringent. Also, Eq. (13) would be slow to implement in practical

computations due to the time consumption involved in finding

the condition number, or even one of the more specific estimates

of it. Thus, a better method of finding the most suitable tolerance

would help in practical applications.
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4. Conclusions

The results have shown first that testing downward continuation

according to theL1 normofgravity anomalies (the largest absolute

value in the vector of values) at the topographical surface, rather

than on the geoid, provides a solution commensurate with the

theoretically exact LU decomposition solution and also with the

traditional method of testing gravity anomalies on the geoid.

Testing of anomalies on the surface should be preferred because it

allows amoremeaningful choice of tolerance criteria and because

in cases where convergence is rapid, testing the fit of anomalies

at the geoid level leads to truncating the iterations one iteration

too soon and this may result in a significant difference in the

results. The vector of differences for testing, however, should be

determined by Eq. (12), to provide a faster calculation than Eq. (11).

We have also shown that by relaxing the L1 tolerances in the Ja-

cobi method from those required to get the exact solution, we can

regularize the downward continuation solution and significantly

decrease computation time. While a better prescription can prob-

ably be found, our proposal for the choice of a relaxed tolerance

based on the condition number of the B matrix, according to

Eq. (13), yields a reasonable result. It certainly provides a better

result than the solution with a higher tolerance or the ''exact''

solution by LU decomposition.

It seems tous, that thedescribedapproach todownward continua-

tion of gravity anomalies from the Earth surface to thegeoidmakes

a good physical sense. It also produces results that appear more

transparent from the mathematical point of view, and that would

be evaluated faster than by using some regularization methods.
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