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Abstract:

The problem of analyzing surface deformation of the Earth's crust in three-dimensions is discussed. The isoparametric and Lagrangian
formulations of deformation are extended from 2D to 3D. Analytical and numerical investigation of problem conditioning proves
that analyzing the 3D kinematics of deformation can be an ill-posed problem. The required mathematical elements for solving this
problem, including sensitivity analysis of the deformation tensor and regularization, are proposed. Regularized deformation tensors were
computed using the method of truncated singular value decomposition (TSVD). The optimal regularization parameter was attained by
minimizing regularization errors. Regularization errors were assessed using the corresponding 2D results of deformation analysis. The
proposed methods were applied to the GPS network in the Kenai Peninsula, south-central Alaska, in order to compute the 3D pattern
of postseismic crustal deformation in this area. Computed deformation in the vertical direction is compared to the existing pattern of
vertical deformation obtained from the combination of precise leveling, gravity and GPS measurements from other studies on this area.
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1. Introduction

According to Berber et al. (2003), the earliest known publication

on the application of geodetic techniques to the analysis of the

deformation of the Earth's surface is Terada and Miyabe (1929).

They use strain analysis for describing seismic surface deformation.

Since then, repeated geodetic observations have been used to de-

rivedisplacement fields and to analyzegeodynamical phenomena.

A variety of methods have been developed and proposed. Charac-

teristic features of the geometric geodetic analysis of deformation
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have also been explored (Frank 1966; Welsch 1979; Bibby 1982;

Chen 1991; Altiner 1999; Krumm and Grafarend 2002, Dermanis

and Grafarend, 1981; Xu, 1995, 1997; Xu et al., 2000).

For geodetic networks without a connection to an external ref-

erence frame, free network adjustment are widely used to derive

deformation parameters. It is now commonly accepted that ab-

solute displacements cannot be uniquely determined unless the

geodetic network is tied to an external reference frame (Segall and

Matthews, 1988; Xu, 1997; Xu et al., 2000). The invariance of strain

parameters have also been thoroughly analyzed (Dermanis, 1981,

1985; Dermanis and Grafarend, 1992; Grafarend, 1992; Biby, 1982;

Lambeck, 1988 and Xu, 1994, 1995, 2000). It is also commonly

accepted that components of the strain tensor are not all invariant

and therefore cannot be uniquely determined. Xu et al., (2000)

mathematically investigated the invariance of the deformation
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tensor elements and derived quantities such as principal and shear

strains.

Assuming that small vertical deformations have a negligible ef-

fect on the horizontal ones (Lichtenegger and Sünkel 1989), the

majority of existing geodetic techniques systematically ignore the

effect of vertical deformations on the horizontal ones. However,

deformation of the Earth's crust is a 3D phenomenon. There-

fore, the formulation and study of deformation in 3D is necessary

to properly account for the cross-correlation of the vertical and

horizontal deformations.

Mathematically, deformation can be defined as the mapping that

transforms a body from its unstrained to deformed state. This can

be written as:

x2 = f (Θ, x1) (1)

where, x1 and x2are 3p×1 vectors whose elements are the coor-

dinates of thematerial points of deformable body before and after

deformation. The vector-valued function f is the corresponding

mapping function and p is the number of the points that have

been considered in the problem. Deformation of the body is

characterized through the mapping function f and deformation

parametersΘ.

This approach to the analysis of deformation defines the mathe-

matical basis in the theory of shape analysis (Dryden and Mardia

1998; Crosilla 2003). For example, thin-plate spline functions are

commonly used as the mapping function for characterizing the

deformation. It is not possible to establish constitutive equations

within the context of continuummechanics (e.g. Flügge 1972) us-

ing parameters that describe the deformation of a body by means

of theory of shape analysis. Therefore, they are not tailored to the

modeling of the dynamics of deformation.

When the mapping function f in Eq. (1) is taken as an affine trans-

formation, deformation parameters benefit from direct physical

implications: they characterize homogeneous deformation of a

deformable body (Sokolnikoff 1956). Moreover, themapping func-

tion can bewritten as the sumof a symmetricmatrix (strain tensor)

and a skew-symmetric matrix (rigid body rotations). Based on this

idea, Brunner (1979) proposed a 3D approach for the analysis of

the overall deformations of the Earth's crust.

Wittenburg (2003) studied the problem of 3D analysis of deforma-

tion and argued that, due to the deficit of required information,

a 3D description of deformation based on geodetic surveys is not

possible. This argument is not generally correct because depend-

ingon themethodologyused in theanalysisofdeformation, the3D

description of deformationmay be possible. For example, the the-

ory of analytical surface deformation analysis (Altiner 1999) takes

into account the 3D nature of deformation through the computa-

tion of the so-called external measures of deformation. However,

it is not possible to establish a functional relationship between the

external measures of deformation (such as the parameters that

characterize the deformation) and stress (i.e. constitutive equa-

tions) for all types of rheologies. In addition, the interpretation of

the external measures of deformation is difficult.

In this paper, the application of two new approaches for 3D analy-

ses of deformation of the Earth's surface is given. By analyzing the

conditioning of the problem, both analytically and numerically, it

is shown that the problemof the 3D kinematics of deformation can

be an ill-posed problem. Truncated Singular Value Decomposition

is used to regularize the problem and obtain a three-dimensional

pattern of deformation for the test area presented here. Regu-

larization errors have been assessed using the corresponding two

dimensional results of deformation analysis. The computed pat-

tern of vertical deformation is compared to the existing pattern of

vertical deformation in the test area of this research. The confor-

mance of the obtained pattern of deformation to the previously

obtained results proves that estimated parameters of deformation

are not dominated by regularization errors.

2. Test Area

2.1. Dominant factors contributing to the deformation of the test area

Southern Alaska, including the Aleutian Island chain (extending

fromFairbanks in the north to theGulf of Alaska in the south) is one

of theworld'smost active seismic zones. This area is a part of a vast

seismic zone known as Circum-Pacific seismic belt that coincides

with the world's largest orogenic belt and contains most of the

Earth's active volcanoes. Seismicity along the Circum-Pacific belt,

and south-central Alaska, is driven by the anticlockwise motion of

the Pacific Plate. This results in subduction in the north (Alaska)

and west (Japan to New Zealand).

South central Alaskawas severely affected by the 1964 PWS (Prince

William Sound) earthquake. Kanamori (1977) estimated amoment

magnitude ofMw = 9.2 for this earthquake. The main shock was

reportedly felt throughout most parts of Alaska, 600 miles to 800

miles from the epicenter (Hansen and Eckel 1966). The epicenter of

this earthquake is shown in Figure 1. Based on triangulation data

prior to this earthquake and post earthquake measurements in

1964 and 1965, Parkin (1972) estimated horizontal displacements

of 15 m at Seward (SE) with respect to the station Fishhook (FI)

shown in Figure 1.

Estimates of coseismic horizontal displacements exceed 20 m

in some parts of the affected area (Parkin, 1972). During this

event, most of the Kenai Peninsula subsided coseismically. In

contrast, the area east (the oceanic crust) underwent a coseismic

uplift. Coseismic uplift exceeded 12 m on Montague Islands

(Figure 1) -- (Plafker 1971). Plafker (1971) reported a maximum

coseismic subsidence of 2m in subsided area. Maximumcoseismic

subsidence occurred on the southeast portion of Kodiak Island,

along the east-central region of the Kenai Peninsula and at the

eastern end of Turnagain Arm (Figure 1). The most profound

effects of this event were seen in south-central Alaska, in the cities

of Anchorage, Valdez, Cordova and on Kodiak Island, southwest

of the Kenai Peninsula (Figure 1). Similar displacements were also

observed by Holdahl and Sauber (1994).
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Figure 1. The southern Alaska active faults. KP: Kenai Peninsula,
PWS: Prince William Sounds, CI: Cook Inlet, TA: Turna-
gain Arm of Cook Inlet, A: Anchorage, NI: Nikishki, SL: Sel-
dovia, SE: Seward, WH: Whitter, CO: Cordova, VA: Valdez,
FI: Fishhook, PA: Palmer. Star shows the epicenter of the
1964 Alaskan Earthquake.

2.2. Postseismic Deformation

Postseismic uplift in the Kenai Peninsula was firstly reported by

Brown et al. (1977), based on tidal observations at Anchorage and

four geodetic leveling surveys between Whittier and Anchorage.

They reported a maximum uplift of 0.55 m at a location midway

between the two cities. Brown et al. (1977) suspected that the

observeduplift followedanelongatepattern. They foundevidence

of domical pattern for the postseismic uplift in this area.

Savage and Plafker (1991) updated the Brown et al., (1997) study

by analyzing tide-gage records in Seward, Seldovia and Nikishka.

They also observed postseismic uplift at locationswhere coseismic

subsidence had occurred and postseismic subsidence at locations

wherecoseismicuplifthadoccurred. CohenandFreymueller (1997)

also confirmed the domical pattern of postseismic deformation

within the Kenai Peninsula.

GPS measurements supplement the suite of geodetic measure-

ments scientists use to improve their understanding of themecha-

nisms that control ongoing crustal deformation in this area. Cohen

et al. (1995) reported on the combined use of GPS results, grav-

ity measurements and leveling results of the 1964 survey. They

reoccupied six of the 1964 leveling benchmarks on the Kenai

Peninsula between Seward and Nikishka using geodetic GPS re-

ceivers. Using gravitymeasurements, a high-resolution local geoid

was computed. Geodetic heights were estimated, transformed to

orthometric heights using the geoidmodel and then compared to

the leveling results. Since orthometric heights of only one epoch

were based on the computed geoid model, the detected defor-

mations were caused by errors in the geoid. This study provided

insight into the cumulative 1964-1993 postseismic vertical defor-

mations in this area. Based on their analysis, a maximum uplift of

0.90 m to 1.1 m was observed in the middle of the peninsula. Co-

hen et al. (1995) suggested that a broad arch of postseismic uplift

extending at least from Kodiak Island to northeast of Anchorage

was ongoing in this area.

Cohen and Freymueller (1997) combined the results of the leveling

survey immediately after the Prince William Sound earthquake of

1964 and the GPS results from 1993 and 1995. They used NGS

geoid height model GEOID96 for transforming the GPS ellipsoidal

to orthometric heights. In their analysis they proposed an elongate

domical pattern for the postseismic uplift in the Kenai region

(Figure 2). They argued that the elongate dome is approximately

125 km wide with its major axis orienting southwest-northeast,

following the trend of major tectonic features of this area. They

estimated maximum uplift of about 0.90 m near the center of

peninsula with an average rate as high as 30 mm/yr. This study

presented the first detailed analysis of the spatial distribution of

cumulative uplift over 30 years.

Figure 2. Domical pattern of vertical deformation computed using
tidal, gravity and leveling observations, reproduced from
Cohen and Freymueller (1997).

3. Methodology

Continuous deformation of a deformable body at a point can be

either formulated in terms of the relative change between the

distances of points from their surrounding points (isoparametric

representationofdeformation)or in termsof thechange in their rel-
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ative positions (Lagrangian representation of deformation) (Love

1944; Jaeger 1969). The basic assumptions in both approaches

are that the points that contribute to estimating the parameters

of deformation at one point (here are called contribution points)

should fall within a small vicinity of the point at which the de-

formation parameters can be estimated (computation point) and

that, deformation of the body is homogeneous.

Both approachesmentioned above have been used for estimating

the 2D second rank deformation tensor e in the desired (ellipsoidal

or spherical) coordinate system (e.g. Chen 1991; Altiner 1999).

Elements of this tensor read as:

exx = ∂u
∂x , eyy = ∂v

∂y , exy = ∂u
∂y + ∂v

∂x (2)

In theseequationsuandv are thedeformationvector components

in the x and y directions.

In this study, the mathematical formulation of the problem in

isoparametric and Lagrangian representations of deformation are

extended from 2D to 3D. For practical applications, the traditional

least-squares technique may not be an appropriate mathematical

tool due to variations in network size, network configuration and

topography of the area.

Analyzing the coefficient or design matrix in the 3D Isoparametric

and 3D Lagrangian representations of deformation provides an

immediate insight into the practical aspects of this problem. To

clarify this argument the analytical form of the design matrix in

both isoparametric and Lagrangian formulations of the problem is

given in a local rectilinear Cartesian coordinate system. In a local

ENU-coordinate system these matrices read (see Hossainali, 2006

for further details):

A =


∆E2
k1
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k1

∆N2
k1
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∆Ek1∆Nk1
L2
k1

∆Ek1∆Uk1
L2
k1

∆Nk1∆Uk1
L2
k1

∆U2
k1

L2
k1∆E2

k2
L2
k2

∆N2
k2

L2
k2

∆Ek2∆Nk2
L2
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(3)

A =


∆Ek1 0 12∆Nk1 0 12∆Uk1 0 0 ∆Uk1 − 12∆Nk10 ∆Nk1 12∆Ek1 0 0 12∆Uk1 −∆Uk1 0 −∆Ek10 0 0 ∆Uk1 12∆Ek1 12∆Nk1 ∆Nk1 −∆Ek1 0
... ... ... ... ... ... ... ... ...∆Ekp 0 12∆Nkp 0 12∆Ukp 0 0 ∆Ukp − 12∆Nkp0 ∆Nkp

12∆Ekp 0 0 12∆Ukp −∆Ukp 0 −∆Ekp0 0 0 ∆Ukp 12∆Ekp 12∆Nkp ∆Nkp −∆Ekp 0


3p×9

(4)

where∆Eki ,∆Nki and∆Uki (i = 1, 2, ..., p)arethecomponents

of the relative position vector
−→
ki, between computation point k

and contribution points i, in the local coordinate system and Lki is
the length of this vector.

Forexample, it canbeseenthat ifeitherof thebaselinecomponents

are zero (e.g. no height differences between the network stations)

matrix A would not be of full column rank. When this condition

is approximately fulfilled, which is common in practice, some

of the columns of the design matrix (columns 4, 5 and 6 in the

isoparametric approachand column5 in the Lagrangian approach)

will approach zero. Consequently, the condition number of the

system of normal equations is much larger than one and the

problem is an ill-conditionedproblem. Therefore, the least-squares

technique is not an adequate mathematical tool for solving the

problem.

3.1. Elements of the 3D analysis of Deformation

Mathematical problems that can be solved numerically are clas-

sified as well-posed and ill-posed. A problem is considered well-

posed if its solution exists, is unique and continuous under in-

finitesimal changes of inputs. A problem is ill-posed if any of these

conditions is violated (Tikhonov and Arsenin 1977). Perturbation

theory and regularization techniques are standard mathematical

tools for treating discrete ill-posed problems.

The analysis of the effects of all possible perturbations (observa-

tional and computational errors) on estimated parameters com-

pared to the exact solution is the main aim of perturbation theory

(Dief 1986). The following theorems within this theory elaborate

the concept of condition number and its impact on the sought

solutionof a systemof simultaneous equations. Consider the linear

system of equations:

Ax = b, where: A ∈ Rn×m, x ∈ Rm×1
And b ∈ Rn×1 and n > m (5)

In a consistent system of simultaneous equations A ∈ Rn×n and

is nonsingular, what will be the effect on the solution x if we apply

small perturbations∆A and∆b to A and b respectively:

Theorem 1: Let A be nonsingular and consider the consistent

linear systemAx = b. The upper bound limit for the error in
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the exact solution x due to perturbations ∆A and ∆b of A and b
respectively in theperturbed linear system (A+ ∆A) x̃ = b+∆b,
where x̃ is the vector of perturbed unknown parameters, is:

∥∥x̃ − x∥∥∥x∥ 6
k2(A)(1− ∥∥A−1∆A∥∥)

[∥∥∆b∥∥∥∥b∥∥ + ∥∥∆A∥∥∥∥A∥∥
]

(6)

where k2(A) = ∥∥A∥∥2 ∥∥A−1∥∥2 is called the condition number
of A (Jain et al. 2003).

Corollary 1: LetA be a nonsingular and squarematrix in the linear

systemAx = b. The upper bound limit for the error in the exact

solution x due to perturbation ∆b in the perturbed linear system

Ax̃ = b+ ∆b is: ∥∥x̃ − x∥∥∥x∥ 6 k2(A) ∥∥∆b∥∥∥∥b∥∥ (7)

This is immediately followed from Theorem 1, ∆A = O where O
is an n-by-n null matrix.

Inequality Eq. 7 shows that in a system of linear equations, the

condition number acts as a noise amplifier. In other words, the

solution is not continuous under infinitesimal changes of inputs

when k2(A) is large. The system of equationsAx = b is said to be

ill-conditioned if k2(A) is large.
Similar to the linear system (Eqs. 6 and 7), the sensitivity of a least-

squares solution can also be analyzed. The following theorem

provides a norm-wise upper bound limit for the sensitivity of least-

squares solution based on the perturbations ∆A and ∆b of the

input parameters A and b.
Theorem 2: Let A ∈ Rm×n (m > n) and A + ∆Aare both

of full rank; and let:
∥∥b − Ax∥∥2 = min, r = b − Ax ;∥∥(b+ ∆b)− (A+ ∆A) x̃∥∥ = min, s = b+∆b− (A+ ∆A) x̃ ;∥∥∆A∥∥2 6 ε

∥∥A∥∥2 , ∥∥∆b∥∥2 6 ε
∥∥b∥∥2 , then provided that

k2(A)ε < 1 (Higham 2002):

∥∥x − x̃∥∥∥x∥ 6
k2(A)ε1− k2(A)ε

(2 + (k2 (A) + 1) ∥r∥2∥∥A∥∥2 ∥x∥2
)
(8)

Corollary 2: Sensitivity of least-squares solutions is measured by

k2(A)whenthe residuals are small or zeroandbyk2(A)2 otherwise.

Equations (3) and (4) show that ill-conditioning is a property of the

systemof equations (it only depends on thedesignmatrixA of this

problem) and not a property of the adopted numerical algorithm

for solving the problem. Therefore, ill-conditioning cannot be

simply treated by using a better numerical algorithm. Instead,

a better-conditioned system should be sought to replace the ill-

conditionedproblem (e.g. Aster et al. 2005). Thenewsystemmight

be based on a reformulation of the problem or its replacement

by a stable one which is literally based on the original system.

In inversion theory, the latter is normally termed as regularized
system.

First, the instability of least-squares solution is analyzed. The

instabilityof the least-squaressolution inboththe3DIsoparametric

and 3D Lagrangian representations of deformation are analyzed

using the discrete Picard condition (Hansen 1990). By regularizing

a problem, its sensitivity to the input perturbations is reduced.

However, this comes at the cost of introducing artifacts into

the solution. Therefore, a tradeoff between the resolution and

sensitivity of the system should be sought. This is the well-known

tradeoff between stability and resolution. It is also customary to

look for an optimum regularization parameter.

Among different regularization techniques, Truncated Singular

Value Decomposition or TSVD (Hansen, 1990 and Xu, 1998) is

used for regularizing the problem of the 3D representation of

deformation of the Earth's crust due to its simplicity in application

and visualization of the process.

The flow-diagram of Figure 3 outlines the mathematical steps for

solving the problem of analyzing deformation of the Earth's crust

in three dimensions. The different elements of this process are

discussed in the following sections of this paper.

Figure 3. Elements of the 3Dkinematic approach to the analysis of
the Earth’s surface deformations.
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3.1.1. Discrete Picard Condition

If xt and xk are exact and regularized solutions of the discrete

ill-posed problem:

min
x

∥∥Ax − b∥∥2 , A ∈ Rm×n, m > n (9)

where
∥∥xt − xk∥∥2 is a measure for regularization error. When

TSVD is used for regularizing the problem, an upper bound limit

for the regularization error is given by (Hansen 1990):

∥∥xt − xk∥∥2 6 p 12 max16i6p−k
{∣∣UT

.,ib
∣∣

σi

}
(10)

where σi , i = 1, 2, .., p, p + 1, ..., k , are the singular values,

vectors U.,iare the corresponding left singular vectors in the

spectral representation of matrix A and k is the total number

of singular values with p nonzero values. Products:
∣∣UT

.,ib
∣∣ are

normally called Fourier coefficients.

Inequality Eq. (10) shows that smaller regularization error is ex-

pected to be present in the regularized solution, if, on average, the

Fourier coefficients decay faster than the corresponding singular

values. This property is known as the discrete Picard condition.
The condition is numerically analyzed using themoving geometric

mean where q < n − 2 is an integer.

ρi = ∏i+q
j=i−q ∣∣UT

.,ib
∣∣

σι
, i = q+ 1, ..., n − q (11)

Spectral representation of the least-squares solution establishes a

close connection between the instability of this solution and the

Picard condition. This interrelation can also be seen in Ineq. (10) by

settings k = 0. To clarify this argument, the least-squares solution

of Eq. (9) has to be expressed in its spectral form. According

to the geometric SVD theorem (see theorem 4), matrix A in the

least-squares problem Eq. (9) can be expressed as the product

of orthonormal matrices U = [U.,1, U.,2, ..., U.,m] ∈ Rm×m ,

V = [V.,1, V.,2, ..., V.,n] ∈ Rn×n and the diagonal matrix Σ =
diag(σ1, σ2, ..., σn) ∈ Rm×n , where σ1 > σ2 > ... > σp >
σp+1 = .... = σn = 0, that is:

A = UΣV T (12)

Substituting this expression in the maximum likelihood solution

x = (ATA)−1 ATb gives:

x = (V T )−1 Σ−1 (ΣT )−1 V −1VΣTUTb = (V T )−1 Σ−1UTb
(13)

For the p non-zero singular values, Eq. (13) takes the following

form:

x = V
[ 1

σ1UT
.,1b 1

σ2UT
.,2b ... 1

σpU
T
.,pb

]T
(14)

In the presence of random noise, even if the true data were

orthogonal to U.,is, UT
.,ib is very likely to be non-zero. When

these non-zero values are divided by small singular values and

thenmultiplied byV.,i , an unstable solution is obtained. Therefore,
according to Eq. (14) for a stable least-squares solution, thediscrete

Picard condition is automatically fulfilled. In other words, the

discrete Picard condition is also a necessary condition to obtain a

stable least-squares solution. When the condition is not fulfilled,

the instability of least-squares solution is automatically assured.

Figure 4 shows the Picard condition for two stations KEN1 and

C85G of the GPS network in Kenai. The condition is not fulfilled at

both of these stations. Therefore, the least-squares solutionwill be

sensitive to observational and computational errors.

3.1.2. Sensitivity Analysis of the Deformation Tensor

Within the sensitivity analysis of the deformation tensor, the

instability of the parameters of deformation is analyzed. The

sensitivity of these parameters to the network configuration and

inputerrors is analyzed. Since theproblemof the3Drepresentation

ofdeformation is an ill-posedproblem,weareno longer concerned

with the multivariate confidence regions, commonly reported

in the sensitivity and precision analysis of geodetic networks.

Moreover, because the sensitivities of all of the parameters to the

perturbation of inputs are of equal interest, another mathematical

technique is required. We show that principal component analysis

(PCA) is an appropriate mathematical tool for this purpose. To

clarify this argument, the theoretical back ground of PCA is firstly

re-established through the following theorems.

Consider a vector of random variables x = [x1, x2, ..., xp]T with

the covariance matrix Σ. According to the propagation law of

errors, any two linear combinations yh and yk of the random

variablesx1, x2, ..., xp ; i.e.: yh = p∑
i=1 lihxiand yk = p∑

i=1 likxi have
the variance Var (yn) = lTnΣln ,n = h or k , and the covariance

Cov (yk , yh) = lThΣlk . By definition, principal components are

uncorrelated linear combinations y1, y2, ..., ypwhose variances

are as large as possible. Such uncorrelated linear combinations

can be established through the following theorem:

Theorem 3: Consider the positive definite matrix Σ whose spec-

tral decomposition is given by the eigenvalue-eigenvector pairs(λi, ei), i = 1, ..., p , in which λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0
is assumed. Then max

z6=0 zT Σz
zT z = λ1 is attained when z = e1

and max
z ⊥e1,...,ek

zT Σz
zT z = λk+1 is attained when z = ek+1 ,

k = 1, 2, ..., p − 1(Johnson and Wichern 2002).

Corollary 3: Let Σ be the covariance matrix associated with

the random vector x = [x1, x2, ...,xp]T . Let Σ have the spectral

decomposition (λ1, e1), (λ2, e2)�(λp, ep) where for the singular

values λi : λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 is assumed and eh =[e1h, e2h, ..., eph]T denote orthonormal singular vectors in its

spectral form. The hth principal component is then given by:

yh = eTh x = e1hx1 + e2hx2 + ...+ ephxp (15)
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a) b)

Figure 4. Discrete Picard Condition for two stations KEN1 (a) and C85G (b).

where for h = 1, 2, ..., p
Var (yh) = eThΣeh = λh (16)

Cov (yk , yh) = eThΣek = 0, when h 6= k (17)

Corollary 4: If yh = p∑
i=1 eihxi , h = 1, 2, ..., p, are the principal

components of the positive definite matrixΣ, then the correlation

coefficients of variables xj and the principal components yh are

given by (Johnson and Wichern 2002):

Cor
(
xj , yh

) = ejh
√
λh

σj
, j, h = 1, 2, ..., p (18)

The analysis of these correlation coefficients can identify the

parameters that are equally correlated with the total variance λh
of the hth principal component.

To analyze the sensitivity of the deformation tensor, principal

components of the normal matrix are set up. When the normal

matrix is ill-conditioned, the computation of the covariancematrix

isproblematic. Froma theoreticalpointof view, PCAcanbeapplied

to any positive definitematrixN (Johnson andWichern 2002). This

prerequisite is also a characteristic feature of the normal matrix in

all geodetic problems. For this purpose, the normal matrix is firstly

expressed in its spectral form.

The stability of the system can be visualized through the spectral

representationof thenormalmatrix. UsingEq. (15) the correspond-

ing principal components are then established. Each principal

component organizes randomvariables (deformation parameters)

into separate groups. The correlation coefficients between the

principal components and all unknown parameters are then esti-

matedusing Eq. (18). Finally, the computed correlation coefficients

areused for organizing the randomvariablesof eachgroupaccord-

ing to their individual correlation with the corresponding spectral

value in ascending order. For smaller singular values, random

variables that have larger correlation coefficients associated with

the corresponding principal components are highly sensitive to

perturbation of the input parameters. Figure 5 illustrates the re-

sults of the sensitivity analysis of the deformation tensor in one

of the GPS stations in the crustal deformation array of the Kenai

Peninsula.

3.1.3. Numerical Treatment of the 3D Representation of Deformation

The application of TSVD for solving linear discrete ill-posed prob-

lems like in Eq. (9) can be traced back to Hanson (1971) and Varah

(1973). Later, Hansen (1987) analyzed the problem and compared

itwith Tikhonov (1963) andPhilip (1962) regularization techniques.

This study demonstrated that the TSVD is a favorable alternative

for the standard Tikhonov-Philips regularization.

TSVD is based on the geometric SVD theorem:

Theorem 4: LetA ∈ Rn×mbe a nonzero matrix with rank r. Then,
thereexist realnumbersσ1 > σ2 > ... > σr > 0, anorthonormal

basis {v1, v2, ...,vm} that spans Rm and an orthonormal basis

{u1, u2, ...,un} that spansRn such that:

Avi = { σiui , 1 6 i 6 r

0, r + 1 6 i 6 m

ATui = { σivi , 1 6 i 6 r

0, r + 1 6 i 6 m

(19)

Base vectors {u1, u2, ...,un} and {v1, v2, ...,vm} are called the left

and the right singular vectors respectively (Watkins 2002).

This study considers a system of normal equations r =
rank(A) = n (rank of A is full) and there is no zero spectral

value in the spectral decomposition of the normal matrix. Instead,
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a) b)

Figure 5. Sensitivity analysis results of deformation tensor elements (a) sensitivity analysis of deformation tensor (b) spectral decomposition of
the normal matrix.

the singular values asymptotically decay in such a way that the

problem is ill-conditioned (see Figure 5b).

Similar to other regularization techniques, replacement of the ill-

conditioned problem by a more stable one that is directly related

to the main problem, but is less sensitive to perturbation of inputs

is preferred. Therefore, matrix A is replaced by Ak which is given

by:

Ak = UΣkV T , Σk = diag(σ1, ..., σk , 0, ..., 0) ∈ Rm×n, k < n
(20)

Ak approximates A by substituting the last n − ksingular values
by zero. Through this process the conditioning of the system

improves to k (Ak ) = σ1/σk (Aster et al. 2005; Press et al. 1992).

The regularized solution is finally given by:

xk = A−1
k b (21)

A−1
k = VΣ−1

k UT , Σ−1
k = diag(σ−11 , ..., σ−1

k , 0, ..., 0) (22)

The central point in any regularization technique is to find a

compromise between the resolution of the regularized solution

and the stability of the system. This is achieved by finding an

optimum regularization parameter. With regard to the TSVD, the

number of singular values rejected plays the role of regularization

parameter unlike other regularization techniques such as the

methods of Tikhonov (1963) and Philips (1962). Perturbation

theory of TSVD is well-developed and is the key for finding an

optimum regularization parameter in this study. The following

theorem within this theory is critical for obtaining an optimum

regularization parameter for the TSVD solution (e.g. Hansen 1987).

Theorem 5: For the perturbed TSVD solution x̃k = Ãk b̃, where

Ã = A + E = ŨΣ̃Ṽ T and b̃ = b + e, assuming that
∥∥E∥∥ <

σk − σk+1 , the relative error of ∥∥A−1
k
∥∥ is bounded by:

∥∥∥A−1
k − Ã−1

k

∥∥∥∥∥A−1
k
∥∥ 6 3 kk(1− ηk ) (1− ηk − ωk )

∥∥E∥∥∥∥A∥∥ (23)

where:

kk = ∥∥A∥∥∥∥A−1
k
∥∥ = σ1/σk

ηk = ∥∥E∥∥∥∥A−1
k
∥∥ = ∥∥E∥∥/σk = kk

∥∥E∥∥/∥∥A∥∥
ωk = ∥∥A − Ak∥∥∥∥A−1

k
∥∥ = σk+1/σk (24)

where kk is the condition number and ωk is the size of the

relative gap between the spectral values σk and σk+1 in spectral

representation of A. The proof is given by Hansen (1987).

Theorem 5 shows for Ã−1
k to be close to A−1

k , the relative gap ωk
should be small. This is because

3 kk(1− ηk ) (1− ηk − ωk )
∥∥E∥∥∥∥A∥∥ = 3 ηkωk

[ 11− ηk − ωk − 11− ηk
]

(25)
and therefore, for smallωk , the term in the square brackets tends

to zero. A smallωk corresponds to awell-determinedgapbetween

the singular values σk and σk+1 . Therefore, if the SVD is to be

successfully truncated at k , then there must be a well-determined

gap between the spectral values σk and σk+1 .
Considering Theorem 5, to find a tradeoff between the stability

and resolution in a regularized TSVD solution in this study, the

cumulative relativegapsbetweeneachspectral valueof thenormal

matrix and the last (smallest) ones are analyzed. The cumulative

relative gaps are plotted against the corresponding pair of spectral
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values. The ``well determined gap'' of Theorem 5 corresponds

to the point where a considerable change in the slope of this

curve occurs. If a considerable change in the slope of the curve

is observed between the spectral values σk and σp , where σp is

the smallest nonzero singular value in spectral decomposition of

the normal matrix, singular values σk+1, ..., σp are ignored. The

cumulative relative gaps for the 3D isoparametric representation

of deformation at station KEN1 are shown inset in Figure 5b.

This method appears similar to L-curve analysis, but the methods

are different, because in the L-curve analysis technique the norm

(or semi-norm) of solution is plotted and analyzed against the

norm (or semi-norm) of residuals (Hansen 1992).

3.1.4. Assessment of Regularization Errors

How well a regularized solution approximates an exact solution

(i.e. the assessment of regularization errors) is an important aspect

in any regularization technique. Normally, external information

about the sought solution is required. The proposed method

within this paper is self-contained, because the assessment of

regularization errors does not require any external information

about the sought solution and because the horizontal elements of

the 3D deformation tensor match the corresponding elements of

the 2D deformation tensor. The 2D deformation tensor is obtained

from the same approach as the 3D one. However, the assessment

of regularization errors on the vertical elements of deformation

tensor (exz , eyz , and ezz ) is not a straightforward process. For

regularization errors of these parameters only an upper and/or

a lower bound limit can be established. This is achieved by

comparing the resolution of these elements to resolutions of the

2D elements of deformation.

4. GPS Data, Analysis and Results

The 3D analysis approach outlined in this paper is applied to the

GPS network in the Kenai Peninsula in an attempt to analyze the

horizontal and vertical pattern of the postseismic uplift in this

area. GPS data from seven campaigns (1995, 1996, 1997, 1998.06,

1998.09, 1999 and 2000) were downloaded through the University

NAVSTAR Consortium (UNAVCO) Boulder facility. The data were

provided by the University of Alaska, Fairbanks and are accessible

via download from the Alaska Deformation Array (AKDA) data

center.

Requirements for this 3D approach is that GPS stations must be

re-measured in at least two successive campaigns. Therefore, a

set of 16 stations from the two successive campaigns (1996 and

1998.06) were selected. Ten benchmarks from the leveling survey

in 1964 (stations T19D, CROS, K76D, GRAV, DAHL, M78D, S79R,

H81D, Z82A and HOMA from Cohen et al. 1995; and Cohen and

Freymueller 1997) are included in the selected set of GPS stations.

These station locations and the topography of this area are shown

in Figure 6.

Three regional permanent stations were also included in this

configuration primarily to address the reference frame issue for

analyzing the GPS measurements (e.g. Becker et al. 2002). These

stations included KEN1 (in the city of Kenai) and KOD1 (on Kodiak

Island) from theCORSpermanentGPSnetwork andFAIR (in the city

of Fairbanks) from IGS network. The locations of these reference

stations are shown in the Figures 1 and 6.

Figure 6. The configuration of the GPS stations in this study. GPS
stations are shown by small triangles. GPS stations that
are colocated with leveling benchmarks of the survey 1964
are shown in red. Station names are the four character
abbreviations used in the processing of the GPS data.

4.1. Analysis

Bernese GPS software Version 4.2 (Beutler et al. 2001) was used to

process the data. The IGS (International GNSS Service for Geody-

namics) antennaphase center offset and variation calibration table

(Rothacher et al. 1995) was used to avoid the systematic effect of

using different antenna types in the regional and the local stations.

High precision results were obtained by using CODE (Center of

Orbit Determination in Europe) precise orbits and earth rotation

parameters (Beutler et al. 2001). Minimum elevation cut off angle

was set to 10 degrees at all epochs (Rothacher et al. 1998).

The OBS-MAX strategy was used for establishing baselines in both

campaigns. Observations whose residuals were larger than 0.003

mwere consideredoutliers and removed fromtheobservation files

during the data snooping process. Initial phase ambiguities were

resolved using the QIF (Quasi Ionosphere Free) strategy in both

campaigns (Mervart 1995). Site-specific troposphere parameters
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were estimated every two hours at each station and session.

For long baselines (greater than 10 km) local ionosphere models

(Wild 1994; Schaer 1999) that were estimated with the same data

set, were used to improve the ambiguity resolution. The consis-

tency of the resolved integer ambiguities with the mathematical

models implemented in the processing software was checked by

comparing the a posteriori variance of the unit weight in the float

solution and that of the fixed solution. A consistent integer am-

biguity results in a smooth change in the a posterior variance of

unit weight conversely an inconsistent integer ambiguity one can

produce abrupt variations in the estimate of this parameter.

As ameasureof theprecisionof theGPS results, RMS repeatabilities

of the stations coordinates were studied. Repeatability results

clearly showed the poorer quality of the height component when

compared to the horizontal components of each station's position.

They clearly show that the formal errors for the campaign solutions

were too optimistic to be considered. This is due to the fact that

systematic and time correlated error sources are neglected in the

stochastic model for processing the GPSmeasurements (Leinen et

al. 1999). Therefore, to get realistic accuracy for the GPS results,

the formal covariance matrices of the campaign solutions were

scaled by a factor of 14.73 for the 1996 campaign and 16.86 for

the 1998.06 campaign. Inflation factors were derived from the

analysis of the repeatability of the stations coordinates as shown

in Figures 7 and 8. Table 1 gives the mean formal errors of the

stations coordinates together with their scaled values.

Figure 7. The RMS repeatabilities of the Campaign 1996 for the
north, east and up components.

Table 1. Mean formal errors and scaled mean formal errors of the
coordinate components of campaigns 1996 and 1998.06.

Campaign Coordinate Mean Formal Scaled Mean
Components Error (mm) Formal Error (mm)

1996
Height 0.7526 11.0863

Latitude 0.3737 05.5044
Longitude 0.2895 04.2639

1998
Height 0.6526 11.0034

Latitude 0.3053 05.1467
Longitude 0.2737 04.6143

Figure 8. The RMS repeatabilities of the Campaign 1998.06 for the
north, east and up components.

4.2. Estimated Velocity Field

Horizontal and vertical velocity fields are computed from the

coordinate differences. The computed velocity field together

with the associated 95% confidence regions obtained from the

propagation of scaled errors are shown in 9 and 10, respectively.

Figure 9. Estimated horizontal velocity field for the deformation net-
work of the Kenai Peninsula.

4.2.1. 3D Pattern of Deformation in Kenai

Since coseismic deformation of the 1964 PWS event extends from

Fairbanks in the north to the Kodiak Islands in the south (e.g.

Hansen and Eckel 1966) both regional and local stations were

incorporated in the computation of the 3D pattern of deformation

in this area. First, the 2D pattern of deformation was computed

for the study area using the isoparametric approach. To compute

the parameters of deformation at each point, a subset of stations

(contribution points) was used in the least-squares estimation of
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Figure 10. Estimated vertical velocity field for the deformation net-
work of the Kenai Peninsula.

the deformation tensor elements for which the hypothesis test of

the a posteriori variance of unit weight is passed. Since station

PF12 was removed as an outlier from the final solution of the

Campaign 1998.06, it was not included in computations.

The analysis of the discrete Picard condition for all configurations

of computation and contribution points proves that the 3D rep-

resentation of the Earth's surface crustal deformation in the Kenai

Peninsula is ill-posed. The topography of the Kenai region also

supports this result. The western Kenai area is relatively flat while

rugged topography is observed in the east. Consequently, height

differences between stations in western Kenai are small when

compared to height differences in eastern Kenai. In addition, a set

of stations are almost located along a longitudinal line.

Sensitivity analysis of deformation tensors shows that the vertical

parameters of deformation are more sensitive to perturbations of

inputs. Therefore, depending on the number of singular values to

be rejected these parameters will loose more resolution than the

other parameters in regularized deformation tensors.

The optimum number of singular values to be rejected was ob-

tained using themethod in Section 3.1.3 of this paper. Regularized

deformation tensors were then computed in the geocentric Carte-

sian coordinate system. Computed deformation tensorswere then

transformed to the spherical coordinate system. Spherical approx-

imation of the principal strains (eI , eII , eIII ) and their orientation

with respect to the curvilinear coordinate axes of the Spherical

coordinate system are computed by eigenvalue-eigenvector de-

compositionof the transformeddeformation tensors. Theaccuracy

of random eigenspectra was first given by Agelier at al. (1982),

and later independently derived by Soler and van Gelder (1991)

and further extended to second order approximation by Xu and

Grafarend (1996), Xu (1999) and Han (2010). In this study, com-

putation of the variance-covariance matrices of principal strains is

based on Soler and van Gelder (1991).

Tovisualize thehorizontalpatternofdeformation, thecross section

of thedeformationquadratic (expressed inthesphericalcoordinate

system) and the horizontal spherical coordinate system is set up.

This quadratic polynomial is then transformed to its principal

axes. The horizontal principal strains and their orientation in the

spherical coordinate system are the corresponding eigenvalues

and eigenvectors of this transformation. To illustrate the vertical

deformations, principal strain parameters in the third dimension

(vertical component) are interpolated using a biharmonic spline

interpolation technique (Sandwell 1987). Figure 11 illustrates the

3D pattern of deformations.

Figure 11. 3D Isoparametric representation of deformations in the
Kenai Peninsula.

In the two-dimensional approach to the analysis of deformation,

the projection of vector lengths onto the surface of the horizon-

tal reference datum accounts for the effect of vertical deforma-

tions on the horizontal elements of deformation tensor. For the

centimeter-level vertical deformations in this area, theeffect of ver-

ticaldeformationson thehorizontalparametersof strain is ignored.

Therefore, first-order differences are the result of the regulariza-

tion error in the 3D horizontal parameters of strain. The statistical

significance of these differences, as well as the redundancy of

observation in estimating both the two- and three-dimensional

deformation tensors should be carefully taken into consideration.

To see if the differencesmentioned above are stochastically signif-
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icant their confidence intervals were computed. Table 2 provides

the numerical details. In this table parameters |∆eI | and |∆eII | are
the differences of the corresponding horizontal principal strains

obtained from the 2D and 3D analysis approaches. σI and σII are
the corresponding confidence intervals of these parameters that

were derived by error propagation using the errors of the 2D and

3D horizontal principal strains.

Table 2. Regularization errors in the 3D horizontal principal strains of
the isoparametric representation of deformation versus the
corresponding confidence intervals.

Station
3D Isoparametric

|∆eI | σI |∆eII | σII
KEN1 0.1580 0.1295 0.1460 0.2030
C85G 0.2540 0.2572 0.4490 0.3556
CPRD 0.0920 0.2106 0.2590 0.1773
CROS 0.1220 0.2482 0.1650 0.2379
DAHL 0.1740 0.1931 0.2750 0.1849
GRAV 0.2410 0.2945 0.3820 0.3750
H81D 0.1530 0.3687 0.1490 0.4319

HOMA 0.0360 0.1812 0.0420 0.4220
K76D 0.1450 0.2893 0.2180 0.2958
KIRT 0.0420 0.2208 0.0350 0.3159
M78D 0.0250 0.3940 0.2480 0.4582
NIK2 0.1260 0.1791 0.1240 0.2158
S79R 0.0370 0.4074 0.0170 0.4737
T19D 0.0050 0.2469 0.0060 0.2712
TRLK 0.0150 0.1673 0.0250 0.1796
Z82A 0.0170 0.3611 0.0170 0.6583

Table 2 shows the differences of the horizontal principal strains

of the 3D Isoparametric and the 2D Isoparametric approaches

are stochastically meaningful for stations KEN1, DAHL and C85G.

Since the redundancies of observations for estimating the 2D and

3D isoparametric deformation tensor at these stations are small

(Hossainali, 2006), it is not possible to assign the abovementioned

differences only to regularization errors. The results of the sen-

sitivity analysis of the deformation tensor show that for the GPS

network of this study the vertical parameters of deformation are

more sensitive to perturbations of inputs. Smaller resolution of

these parameters in the corresponding resolutionmatrices of both

approaches also supports this argument. Therefore, regularization

errors of the vertical elements of the deformation tensor are larger

than the horizontal ones. Nevertheless, the poor redundancy

of observations in the GPS network in this study makes the as-

sessment of the regularization error of the vertical parameters of

deformation impossible. Based on regularization errors of the hor-

izontal parameters of deformation and comparing the resolutions

of the vertical and horizontal parameters, estimating an upper

bound or a lower bound limit for the regularization error of the

vertical parameters of deformationwould have been possible. The

obtained features in vertical deformation in this study confirm the

independent results of the other studies. That show regularization

errors do not dominate the results of the vertical deformations of

this study.

The computed pattern of vertical deformation is in a good agree-

ment with Cohen and Freymueller (1997) (Figure 2). Both are

consistent with the trend of tectonic features including the Alaska

Aleutian trench, the orientation of major terranes, the strike of the

Border Range Fault, the orientation of Cook Inlet and the strike of

the Alaska range volcanoes to the west. Cohen and Freymueller

(1997) acknowledged that not all parts of their pattern are well

constrained by the data but they suggest that the dome pattern

of uplift trending SW to NE and the location of maximum uplift

were robust. These deformation features are also visible in the

computed pattern of vertical deformation in this study.

5. Conclusions

The 3D pattern of deformation obtained for the Kenai Peninsula

represents an inhomogeneous deformation field. Estimated hor-

izontal and vertical velocity fields confirm the spatial pattern of

variability in the deformation of this area. Inhomogeneity of de-

formation is a characteristic feature of many deformation fields.

The degree of the misfit of the functional models in 3D isopara-

metric and 3D Lagrangian representations of deformation is also a

function of the inhomogeneity of the deformation.

The nature of the inhomogeneity of the deformation may change

from one area to another. When no a priori information is

available for setting up an advanced mathematical model the

analysis of inhomogeneous deformation fields is likely confined to

the application of the mathematical models that are tailored to

homogeneous deformation. The conditioning of the problem will

worsen when an inhomogeneous deformation field is analyzed.

According to Corollary 2, the conditioning of the problem is

proportional to the power of two of the condition number of the

system of simultaneous equations.

The adequacyof the functionalmodels in the3D Isoparametric and

Lagrangian representations of deformation for analyzing a defor-

mation is assured through the Global Model Test. Using the Global

Model Test, the list of contribution points is determined when the

parameters of deformation are calculated at a computation point.

Realistic analysis of regularization errors requires adequate obser-

vational redundancy. The observational redundancy is controlled

by the number of contribution points to be used for estimating the

parameters of deformation at a certain point of a deformable body.

Therefore, in complex deformation fields increasing the density

of the network can assist the better assessment of regularization

errors. The GPS network in Kenai is too sparse. Nevertheless,

the conformance of the obtained pattern of deformation to the

previously obtained results proves that estimated parameters of

deformation are not dominated by regularization errors.



Journal of Geodetic Science 71

Acknowledgments

The GPS data from the Kenai Peninsula were obtained from UN-

AVCO (University NAVSTAR Consortium) Boulder facility to this

study. The Geodesy Lab at the University of Alaska had provided

the data to UNAVCO. Hereby, their cooperation as well as the cor-

responding sponsors is appreciated. The fault trace coordinates

in South-Central Alaska was also provided by the Geodesy Lab at

the University of Alaska. Their cooperation in this respect is also

appreciable. We are also thankful to Dr. Yüksel Altiner from BKG

(Bundesamt für Kartographie und Geodäsie) for the programs he

kindly provided us for checking the programs which were written

for the 2D analysis of deformation. Source of the developed com-

puter codes are available to interested readers via the Institute of

Physical Geodesy, TU-Darmstadt.

References

Altiner Y., 1999, Analytical Surface Deformation Theory for

Detection of the Earth's Crust Movements, Springer.

Aster R.C., Borchers B., et al., 2005, Parameter Estimation and

Inverse Problems, Elsevier Academic Press.

Becker M., Bruyninx C., et al., 2002, Processing and Submission

Guidelines for GPS Solutions to be Integrated to a WEGENER Data

Base. Proceedings of WEGENER 2002, Jun 12-14, NTUA Athen.

Berber M., Dare P.J., et al., 2003, On the application of robustness

analysis to geodetic networks. Annual Conference of the Canadian

Society for Civil Engineering.

Beutler G., Bock H., et al., 2001, Bernese GPS software version 4.2,

Astronomical Institute of Bern.

Bibby H.M., 1982, "Unbiased estimate of strain from triangulation

data using the method of simultaneous reduction." Tectono-

physics 82:161-174.

Brown L.D., Reilinger R.E., et al., 1977, "Post- seismic crustal uplift

near Anchorage, Alaska." J. Geophys. Res. 82:3369-3378.

Brunner F.K., 1979, "On the analysis of geodetic networks for the

determination of the incremental strain tensor." Survey Review

XXV 192:56-67.

Chen R., 1991, On the horizontal crustal deformations in Finland.

Helsinki, Finish Geodetic Institute.

Cohen S.C. and Freymueller J.T., 1997, "Deformation on the Kenai

Peninsula, Alaska." J. Geophys. Res. 102:20,479-20,487.

Cohen S.C., Holdahl S., et al., 1995, "Uplift of the Kenai Peninsula

Alaska since the 1964 Prince William Sound Earthquake." J.

Geophys. Res. 100:2031-2038.

Crosilla F., 2003, Procrustes Analysis and Geodetic Science.

Geodesy The Challenge of the 3rd Millennium. W. Friedrich,

Krumm, Volker and S. Schwarze, Springer Verlag, 287-292.

Dermanis A., 1981, "Geodetic estimability of crustal deformation

parameters." Quaterniones Geod. 2:159-169.

Dermanis A., 1985, "The role of frame definitions in the geodetic

determination of crustal deformation parameters." Bull., Geod.,

59:247-274.

Dermanis A. and Grafarend E., 1981, "Estimability analysis of

geodetic, astronomic and geodynamical quantities in very long

baseline interferometry." Geophys. J. R. Astr. Soc., 64:31-64.

Dermanis A. and Grafarend E.W., 1992, The finite element

approach to geodetic computation of two- and three-dimensional

deformation parameters: A study of frame invariance and param-

eter estimability. Cartography-Geodesy, Maracaibo/Venezuela,

Institute de Astronomia y Geodesia, Madrid.

Dief A., 1986, Sensitivity analysis in linear systems, Springer.

Dryden, I. L. and K. V. Mardia (2002). Statistical Shape Analysis,

John Wiley & Sons.

Flügge W., 1972, Tensor analysis and continuum mechanics,

Springer.

Frank F.C., 1966, " Deduction of earth strains from survey data."

Bull. Seismol. Soc. Am. 56:35-42.

Gutenberg B. and Richter C.F., 1949, Seismicity of the earth and

associated phenomena, Princeton Univ. Press.

Hansen P.C., 1990, "The Discrete Picard Condition for Discrete

Ill-Posed Problems." BIT 30:658-672.

Hansen P.C., 1992, "Analysis of Discrete Ill-Posed Problems by

Means of the L-Curve." SIAM Review 34(4):561-580.

Hansen P.V., 1987, "The Truncated SVD as a Method for

Regularization." BIT 27:534-553.

Hansen W.R. and Eckel E.B., 1966, A summary description of the

Alaska earthquake- its setting and effects. The Alaska earthquake

of March 27, 1964: Field investigations and reconstruction efforts.



Journal of Geodetic Science72

E. Hansen, and others, US Geological Survey Prof. Paper 541:1-37.

Hanson R.J., 1971, "A Numerical Method for Solving Fredholm

Integral Equations of the First Kind Using Singular Vlaues." SIAM

Journal on Numerical Analysis 8(3):616-622.

Han J.Y., 2010, Non-iterative approach for solving the indirect

problems of linear reference frame transformations, J. Surv. Eng.,

ASCE, 136(4):150-156, DOI:10.1061/(ASCE)SU.1943-5428.0000026.

Higham N.J., 2002, Accuracy and stability of numerical algorithms.

Philadelphia, SIAM.

Holdahl S.R. and Sauber J., 1994, "Coseismic slip in the 1964 Prince

William Sound earthquake: A new geodetic inversion." Pure Appl.

Geophys. 142:55-82.

Hossainali M.M., 2006, A Comprehensive Approach to the Analysis

of the 3D Kinemaics of Deformation. Institute of Physical Geodesy.

Darmstadt, Darmstadt University of Technology: 152, PhD Thesis.

Jaeger J.C., 1969, Elasticity Fracture and Flow with Engineering

and Geological Applications, Methuen & Co. LTD.

Jain M.K., Iyengar S.R.K., et al., 2003, Numerical methods for

scientific and engineering computation, New Age International

(P) Limited, Publishers.

Johnson R.A. and Wichern D.W., 2002, Applied multivariate

statistical analysis, Prentice Hall, Upper Saddle River.

Kanamori H., 1997, "The energy release in great earthquakes." J.

Geophys. Res. 82:2981-2987.

Krumm F. and Grafarend E., 2002, "Datum-free Deformation

Analysis of ITRF networks." Artificial Satellites 37:75-84.

Lambeck K., 1988, Geophysical Geodesy: The Slow Deformation of

the Earth, Clarendon Press: Oxford.

Leinen S., Groten E., et al., 1999, Deformation monitoring of

Karasu Viaduct with GPS and levelling. Proceeding of the third

Turkish-German joint geodetic days, Istanbul, Istanbul.

Lichtenegger H. and Sünkel H., 1989, "Mathematische-

Geophysikalische Model, in Österreichische Beträge zum

Wegener-Medals-Projekt, Mitteilungen der geodätischen Institute

der Technischen Universität Graz." 65:61-80.

Love A.E.H., 1944, A treatise on the mathematical theory of

elasticity, Dover publications.

Mervart L., 1995, Ambiguity resolution techniques in Geodetic

and Geodynamic applications of Global Positioning System.

Astronomical Institute. Bern, University of Bern. Ph.D.

Parkin E., 1972, Horizontal crustal movements, in The Great Alaska

Earthquake of 1964. Washington D.C., National Academy of

Sciences.

Philips D.L., 1962, "A technique for the numerical solution of

certain integral equations of the first kind." J. ACM 9:84-97.

Plafker G., 1971, "Tectonics, in The Great Alaska Earthquake of

1964." Geology, National Academy of Sciences, Washington, D.C.:

47-122.

Press H.W., Flannery B.P., et al., 1992, Numerical Recipes in

FORTRAN Example Book: The Art of Scientific Computing,

Cambridge University Press.

Rothacher M., Gurtner W., et al., 1995, Azimuth and

elevation¬dependent phase center corrections for geode-

tic gps antennas estimated from GPS Calibration campaigns.

Paper presented at the XXI General Assembly of IUGG, Boulder,

Colorado.

Rothacher M., Springer T.A., et al., Eds., 1998, Processing strategies

for regional GPS Networks. Advances in Positioning and Reference

Frames, Int. Assoc. of Geodesy Symposia, Berlin Heidelberg, p.

93-100.

Sandwell D.T., 1987, "Biharmonic spline interpolation of GEOS-3

and SEASAT altimeter data." Geophys. Res. Let. 14:139-142.

Savage J.C. and Plafker G., 1991, "Tide gauge measurements

of uplift along the south coast of Alaska." J. Geophys. Res.

96:4325-4335.

Schaer S., Beutler G. et al., 1999, The Impact of Atmospheric and

Other Systematic Errors on Permanent GPS Networks. paper

presented at IAG Symposium on Positioning, July 21, Birmingham,

UK.

Segall P., and Matthews M.V., 1988, "Displacement calculations

from geodetic data and the testing of geophysical deformation

models." J. Geophys. Res. 93:14954-14966.

Sokolnikoff I.S., 1956, Mathematical Theory of Elasticity, McGraw-

Hill Book Company Inc.

Soler T., Boudewijn H. et al., 1991, "On covariances of eigenvalues

and eigenvectors of second-rank symmetric tensors." Geophys. J.

Int. 105:537-546.



Journal of Geodetic Science 73

Stacy F.D., 1977, Physics of The Earth, John Wiley and Sons.

Terada T. and Miyabe N., 1929, "Deformation of the Earth Crust in

Kwansai District and its Relation to the Orographic Features." Bull.

Earthquake Res. Ins. U. of Tokyo 7, Part 2.: 223-241.

Tikhonov A.N., 1963, "Solution of incorrectly formulated problems

and the regularization method." Soviet Math. Dokl 4: 1035-1038.

Tikhonov A.N. and Arsenin V.Y., 1977, Solutions of Ill-Posed

Problems. Washington, D.C., V. H. Winston & Sons.

Varah J.M., 1973, "On the Numerical Solution of Ill-Conditioned

Linear Systems with Applications to Ill-Posed Problems." SIAM

Journal on Numerical Analysis 10(2):257-267.

Watkins D.S., 2002, Fundamentals of Matrix Computations, John

Wiley & Sons.

Welsch W., 1979, "A review of the adjustment of free networks."

Surv. Rev. 194(25):167-180.

Wild U., 1994, Ionosphere and Ambiguity Resolution. Proceedings

of the 1993 IGS Workshop, University of Berne.

WittenburgR., 2003, Geodetic descriptionof 3Dbodydeformation.

Geodesy The Challenge of the 3rd Millennium. F. W. Krumm and

V. S. Schwarze, Springer Verlag: 401-404.

Xu P., 1994, "Testability and adjustment in free net models." J.

Geod. Soc. Japan Supplement issue: 315-320.

Xu P., 1995, "Testing the hypotheses of non-estimable functions in

free net adjustment models." Manuscripta Geodetica 20:73-81.

Xu P., 1997, "A general solution in geodetic nonlinear rank-defect

models." Bollettino di Geodesia e Scienze Affini 1:1-25.

Xu P.L., 1998, Truncated SVD Methods for Linear Discrete Ill-posed

Problems, Geophys. J. Int., 135, 505-514.

Xu P., Shimada S., Fujii Y., Tanaka T., 2000, "Invariant geodynamic

information in geometric geodetic measurements." Geophys. J.

Int. 142:586-602.


	Introduction
	Test Area
	Methodology
	GPS Data, Analysis and Results
	Conclusions
	Acknowledgments
	References

