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Abstract:

This study provides new estimates for the orientation of a geometrically best fitting lunar triaxial ellipsoid with respect to the mean
Earth/polar axis reference frame calculated from the footprint positions of the Chang’E-1 (CE-1), SELenological and ENgineering Explorer
(SELENE) laser altimetry measurements and Unified Lunar Control Networks 2005, (ULCN 2005) station coordinates. The semi-principal
axes of the triaxial ellipsoid and the coordinates of its geometric center are also calculated simultaneously. All the estimated parameters
from all three data sets are found to be consistent. In particular, the RMS differences of the semi-principal axes of the triaxial ellipsoids
and the locations of their geometric centers from solutions with and without modeling Euler angles (orientation of the triaxial ellipsoid)
using uniformly distributed laser altimetry (LAL) footprints are 29 and 31 m respectively. The misclosures of all the solutions indicate a
better fit for the triaxial ellipsoid to the footprint and station coordinates if the Euler angles are included in the models.
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1. Introduction

The parameters of various lunar figures are of interest to the
scientific community working on lunar exploration. Improved
quantification of the geometric and dynamic figure of the Moon
allows one to study the origin of the Moon, its interior structure,
and composition. A mathematical reference surfaceis also required
for horizontal lunar control networks for lunar mapping as in the
case of the Earth. To achieve these ends, improved estimates of
the size of the lunar figures, and their geometric centers (center of
figure) with respect to the center of mass of the Moon, are needed.

In 2009, Iz published the most recent semi-principal axes of a triaxial
ellipsoid and its geometric center, at that time, using a geometric
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model of a triaxial ellipsoid from the ULCN lunar control station
positions (Archinal et al., 2005). Since then, two of the recent lunar
missions, namely, Chang’E-1 (China) and SELENE (Japan), where a
major goal has beento map the surface of the Moon, produced over
17 million laser altimetry (LAL) measurements of the lunar surface.
Most recently, Ping (2009) and Araki (2009) estimated the semi-
principal axes of a triaxial ellipsoid from the spherical harmonic
models of the lunar topography derived from the Chang’E-1 (CE-1)
and SELENE LAL data. Iz et al. (2010b) updated these estimates
using the footprint coordinates of the LAL measurements from
the CE-1 and SELENE missions for spherical, biaxial, and triaxial
ellipsoidal representations of the lunar figure. In all these solutions,
the principal axes of the lunar figures were assumed to be parallel
to the axes of the mean Earth/polar axis reference frame but their
geometric centers were allowed to get adjusted with respect to
the origin of the reference frame, which coincides with the center



of mass of the Moon. An earlier solution by Smith et al. (1996) using

Clementine mission’s LAL measurement revealed that the polar
axis of the triaxial lunar ellipsoid is tilted toward the Earth by 24
degrees in the mean Earth / polar axis reference frame, evidently
caused by the uneven distribution of large lunar topographical
features, mainly South Pole-Aitken basin (ibid).

This study provides new estimates for the orientation parameters
of the lunar triaxial ellipsoid (Euler angles), solved together with
the shape parameters of the triaxial ellipsoid (its semi-principal
axes) and the position of its geometric center with respect to the
mean Earth/polar axis reference frame using three contemporary
data sets; ULCN 2005 station coordinates, and CE-1and SELENE
LAL footprint positions.

2. Data Sources

ULCN 2005 is a unified three dimensional photogrammetrically
determined network, which consists of 272,931 control points
realized in the mean Earth/polar axis reference system with an
average of one point approximately 46 km? (Archinal et al., 2005).
The accuracy of the ULCN 2005 control points is reported to be a
few hundred meters (Iz et al. 2009).

CE-1 is the first lunar exploration mission of China, which was
launched on October 24" 2007. The onboard LAL system produced
measurements with a surface spot size of 120 m when satellite
altitude was about 200 km. The distance/ranging resolution of
LAL measurements was estimated to be less than =5 m (Ping et
al. 2009). The along-track shot spacing was about 1.4 km, and
the minimum foot spacing along the equator is about 7.5 km
after two months of measurements. In this study, over 8.5 million
selenocentric distances (after removing over 300,000 outliers)
and their latitudes and longitudes of CE-1 LAL measurements’
footprints, provided by the China Lunar Exploration Center are
used. The radial distances of the LAL footprints were calibrated
by comparing them against the radial distances of the Lunar Laser
Ranging (LLR) sites (Iz, et al. 2010b).

Japan Aerospace Exploration Agency (JAXA) launched SELENE on
14 September 2007. The main satellite KAGUYA, orbited the Moon
100 km =30 km above the lunar surface with an inclination of
9041 degrees and a period of two hours. The footprint size of
the laser spot produced by the onboard LAL system was typically
40 m, and the data spacing is about 1.6 km in along-track direction.
The range resolution was 1 m with 5 m accuracy (Araki et al. 2009).
JAXA (2009) provided over 8.8 million selenocentric SELENE
LAL measurements and their subsatellite locations (latitudes and
longitudes of the LAL measurement footprints). Statistical analysis
of the LAL footprint positions nearby the LLR station coordinates
did not show any statistically significant differences (ibid), hence
no calibration correction was applied to the SELENE LAL footprint
radial distances.
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3. Mathematical and Statistical Models

Earlier approaches in computing the orientation of the lunar figure
involved spherical harmonic models of the lunar topography.
Through the analysis of their spherical harmonic coefficients, the
lunar orientation parameters were estimated (Smith et al. 1996).
Alternatively, as early as 1968, Gavrilov used the least squares
method, to estimate the coefficients of an ellipsoidal quadric
from which he calculated the lunar orientation parameters using
the eigenvectors of the estimated coefficients of the quadric.
What is common to both approaches is that the orientation
angles are estimated using a two-step procedure. In this study, a
direct formulation is developed, which is equivalent to the second
approach under proper conditions.

Consider the following representation of the lunar shape by a
triaxial ellipsoid whose equatorial semi-major axis is denoted by
a, semi-minor axis by b, and polar axis by c. The coordinates of
its geometric center in the mean Earth/polar axis reference frame,
are denoted by X, Y, Z.. The triaxial ellipsoid’s orientation with
respect to the x, y, z axes of the mean Earth/polar axis reference
system (whose origin is at the center of mass of the Moon) is given
by the three Eulerian angles @, B, and y respectively;

;
X — X¢ a? 0 0 X — X
y—y. | RT{0 b20 |R|ly—y |-1=
z—2z 0 0 c? zZ— 2z
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In the statistical context, thisis a non-linear conditioned equations
with unknown parameters, which contain the Cartesian coordi-
nates x, Y, z, that refer to the locations of the laser altimetry
footprints (as observations) to be adjusted, and the semi-principal
axes of the triaxial ellipsoid (a, b, ¢), and its geometric center
(Xc) Ye, Z¢), are the unknown parameters to be estimated.

As far as the statistical properties of the Cartesian coordinate
components of the footprints are concerned, their standard errors
are assumed to be the same and not correlated with each other
(i.e. the weight matrix is equal to identity). Note that, the standard
errors of the estimates may need to be scaled by the a posteriori
variance of unit weight (variance factor) after the adjustment.
However, because the residuals always include unmodeled and
non-stochastic lunar topography, the a priori variance of unit
weight cannot be replaced by its a posteriori variance. Hence,
a conservative 100 m standard error, a conservative estimate
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inferred from a parallel study by Iz et al. (2010a), was assumed for
each component of the CE-1 and the SELENE footprint Cartesian
coordinate errors and an a priori variance of unit weight equal to
one in evaluating the standard errors of the estimates. The above
condition equations with unknown parameters are solved using
the iterative algorithm given by Pope (1972), (cf. Iz, 2009 for a
partitioned computational counterpart).

Two different solution scenarios were considered to assess the
impact of modeling the orientation on the triaxial ellipsoid and the
location of its geometric center. Under the first scenario, labeled,
solutions without Euler angles, the lunar figure is represented by
a triaxial ellipsoid whose semi-principal axes are parallel to the
mean Earth/polar axis reference frame (i.e. Euler angles are set to
zero), together with its geometric center. Alternative solutions,
labeled solutions with Euler angles, included the three Eulerian
angles in addition to the semi-principle axes and the coordinates
of the geometric center of the triaxial ellipsoid to be estimated.

4. Solution Comparisons

Table 1 lists the estimated triaxial ellipsoid’s shape and its geo-
metric center parameters without considering its orientation in
the solution model (without Euler angles) using different data
sets. The standard errors of the estimates are less than 1m for the
semi-principal axes and the geometric center of the triaxial ellip-
soid. The standard errors of all the estimates are found to be less
than 10 m for the solution using ULCN 2005 station coordinates.
The estimated parameters reported by Smith et al. (1996) that
were calculated from the spherical harmonic models of the lunar
topography using Clementine mission LAL measurements are also
included in this table in order to establish a baseline for the solu-
tions with and without triaxial ellipsoid orientation parameters.
Note that this is the only recent solution for the orientation of
a triaxial ellipsoid but unfortunately the geometric center of the
triaxial ellipsoid was not modeled.

Two additional solutions using downsampled CE-1 and SELENE
data are also reported because, initially, the solutions with the
Euler angles using all the available data had convergence problems
caused by the high density of the data at polar regions as a result of
the polar orbits of the CE-1 and SELENE missions and the presence
of multiple local minima in minimizing the target function of the
least squares solution of the conditioned equations with unknown
parameters. Instead of down weighting the LAL data at the polar
regions, the LAL data from both missions were downsampled using
randomly generated two sets of 250,000 uniformly distributed
points on a unit sphere (Appendix A). Fortuitously, it turned out
that, the global convergence for the nonlinear solutions with the
lunar orientation parameters can also be achieved if the estimated
parameters from solutions with the downsampled data are used
as approximate values {(nominal values) to start the iterations
overcoming the convergence problem to the global minimum.
Table 1 results show that there are large differences in the semi-
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principal axes of the ellipsoids from Clementine (Smith et al., 1996)

and the other solutions mainly because of the limited distribution
of the LAL measurements (not available towards the poles) and the
omission of the geometric center of triaxial ellipsoid parameters in
the Clementine solution model.

As far as the differences of the estimated parameters among
the remaining solutions are concerned, different solutions agree
well with each other especially between the solutions with the
downsampled data for which 48 m is the largest difference in the
equatorial semi-major axes, and a minimum difference of 5min the
polar axes, with 29 m RMS difference in the estimated parameters.
Part of the improved agreement between the parameters of the
solutions using the downsampled data can be attributed to the
uniform distribution (in statistical sense) of the data used in the
solutions (down-sampling also removes some of the erroneous
CE-1 data at polar regions as will be discussed in the following
paragraphs) and the successful calibration of the CE-1 data.

Table 2 lists the solutions with Euler angles. The standard errors
of the estimated parameters are again less than 1m for the lunar
shape and for the center of the triaxial ellipsoid parameters and less
than 0.001 degrees for the Euler angles. In all these solutions, the
standard errors are more precision statements than representative
of the accuracies of the estimated parameters because of the
unmodeled lunar topography in the mathematical models. The
latitudes and longitudes of the lunar North Pole (NP) position of
the polar axis of the triaxial ellipsoid in the mean Earth/polar axis
coordinate frame calculated from the estimated Euler angles are
also included in this table. The Euler angles for the Clementine
solution were not reported by Smith at al. (1996).

Some of the results are in better agreement across the solutions as
revealed by the parameter differences from solutions with Euler
angles. The differences in the estimated parameters in some cases
can be as small as a few meters. Although the ULCN 2005 data
are not completely independent from the Clementine LAL data
(the latter is included in the former), CE-1 and SELENE LAL data
are completely independent. These two data sets are the product
of different instruments on board of the satellites at different
altitudes, and processed by different software, yet producing
measurements that enable solutions in some cases, which are in
agreement down to 3 meters (in b and ¢, in Table 2).

Table 2 estimates also reveal that the CE-1 solutions using all
available data deviate systematically from the other solutions
significantly in the polar axis and the estimated x. component of
the geometric center of the triaxial ellipsoid. The closer agreement
between the CE-1 and SELENE solutions estimates (29 m RMS
difference) from the downsampled data suggests that the solutions
that are based on all available data are influenced by the dense
LAL data at the polar regions (near polar orbits) that are reduced
in number after down-sampling. An earlier study by Shum et al.
(2010) revealed large cross over differences in the CE-1 orbits over
the poles thereby adversely influencing the solutions using all the
available LAL data.



Journal of Geodetic Science 55

Table 1. Solutions without Euler angles. All units for all the estimates are in meters. The standard errors of the estimates are less than 1m for the
semi-principal axes of the triaxial ellipsoids and the coordinates of their geometric centers based on 100 m a priori standard deviation in the
Cartesian coordinates. The radial distances of the LAL footprints were calibrated at nearby LLR sites (Iz et al., 2010b). The Clementine
solution did not include center of figure parameters (Smith et al., 1996). N/A: Not available. RMS refers to the RMS misclosures.
Clementine* ULCN 2005 CE-1 All Data SELENE All Data CE-1 Sampled SELENE Sampled
1738056 1737899 1737810 1737953 1738022 1738070
b 1737843 1737570 1737597 1737594 1737615 1737661
c 1735485 1735742 1735947 1735996 1735686 1735691
X¢ 0 -1658 -1485 -1671 -1718 -1736
Ye 0 -681 -695 -698 -710 -721
Ze 0 133 269 207 217 230
RMS N/A 3507 3931 4528 3759 3786
*Smith et al., 1996.
Table 2. Solutions with Euler angles. The standard errors of the estimates for the semi-principal axes of the triaxial ellipsoids and the coordinates

of their geometric centers are less than 1m and less than 0.001 degrees for the Euler angles based on 100 m a priori standard deviation
in the Cartesian coordinates. The values listed in the last row are the latitudes and longitudes of the lunar North Pole (NP) position of the

triaxial ellipsoid in the mean Earth/polar axis coordinate system.

Clementine* ULCN 2005 CE-1 All Data SELENE All Data CE-1 Sampled SELENE Sampled

a 1739020 1739001 1739057 1739115 1739024 1739088

b 1737567 1737249 1737323 1737335 1737338 1737370

c 1734840 1734960 1734998 1735158 1734963 1734969

X¢ 0 -1628 -1451 -1567 -1718 -1736

Ve 0 -695 -676 -686 <714 -723

Ze 0 182 262 205 220 226

o N/A 19.200 18.75 19.18 17.530 17.390

B N/A 21.620 25.52 23.75 21.350 21.240

1% N/A 29.590 27.95 27.59 27.190 27.330

NP 66.00N 10.40E 61.440N 13.860W 58.750N 10.340W 59.870N 13.300W 62.690N 13.850W 62.850N 13.600W

RMS N/A 3075 3077

2896 3367 3391

*Smith et al., 1996.

Meanwhile, there is a considerable difference in the orientation
of the lunar figures, mainly between those from the Clementine
solution and the others (NP values in Table 2). The Clementine data
is also included in the ULCN 2005 solution, and their estimated
semi-principal axes of triaxial ellipsoids are in close agreement;
however, their NP positions are different suggesting that the
difference in the orientation is likely due to the center of figure
parameters not being included in the Clementine model. The
global distribution of the Clementine data is also limited, not
covering the North and South poles, as compared to the other
data sets. In any case, the end point of the south polar axis still
remains within the boundaries of the South Pole-Aitken basin in
all other solutions demonstrating the dominant role played by this
extraordinary topographical feature in the solutions. At this point,
it isimportant to note that the prevalence of the South Pole-Aitken
basin in the orientation of the triaxial ellipsoid in the Clementine
solution evidence that the solutions from the coefficients of the

spherical harmonic models of the lunar topography are not robust
to the lunar topography as expected.

The RMS difference of the semi-principal axes of the triaxial ellipsoid
and the estimates of its geometric center between the solutions
using the downsampled CE-1 and SELENE data is 31 m; a solid
performance of the downsampled data sets and a validation of
the calibration for the CE-1 LAL radial footprints. The differences
in the Euler angles estimated from the downsampled data sets are
less than 4.3 km along the lunar equator. Evidently, the estimates
for the Euler angles are more sensitive to the data sets when
compared to the other parameters. This sensitivity is more due
to the nature of the parameters (small variations in the angles
lead to large displacements on the surface of the Moon) since the
correlation matrix of the estimates for the downsampled data is
nearly an identity matrix, exhibiting negligible correlations among
the parameters.

The misclosures that are calculated using Equation (1) and (2) for
\//
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the different solutions are also informative (the RMS misclosures
are listed in the last rows of Table 1 and 2). The misclosures
were calculated using the estimated parameters and the observed
footprint Cartesian coordinates, rather than the adjusted Cartesian
coordinates which will result in zero misclosures if used. Although
the misclosures are dominated by the differences between the
radial distances of the footprints and the radial distances of their
projected points on the ellipsoid (lunar topography), they are also
influenced by the effect of errors in the horizontal LAL footprint
positions, hence making them better statistics to assess the best
fit.

The RMS misclosures (Table 2) from the solutions with Euler angles
are consistently smaller compared to those from the solutions
without Euler angles simply due to the freedom of the triaxial
ellipsoid to orient itself in the solutions and the presence of
large topographical features, mainly, South Pole-Aitken basin that
dominate the orientation of the triaxial ellipsoids (Figure 1). Hence,
it is evident that a triaxial ellipsoid representing the lunar shape,
will not be aligned with the underlying lunar reference frame in
these solutions. Note that the fit provided by the ULCN 2005
solution without the Euler angles is consistently smaller than the
others. However, this is not the case for the solutions with the
Euler angles for which the RMS misclosures of the solution with
the downsampled SELENE data are improved by 10 percent over
the RMS misclosures of the ULCN 2005 solution with Euler angles.
Meanwhile, the RMS misclosures from the CE-1 and SELENE solu-
tions with and without Euler angles both based on the downsam-
pled data do not deviate much from each other (the difference
in the RMS misclosures is only 2 m) when compared with the
solutions with all data solutions RMS misclosures.

The consistent positive differences of the RMS misclosures with
and without Euler angles, suggest that Euler angles must be
included in the geometric model of a lunar figure, but unfor-
tunately, we cannot support this conclusion statistically using a
null-hypothesis test because of the presence of the unmodeled
and non-stochasticlunar topography in the residuals, which makes
all the statistical comparisons meaningless. Yet, the differences in
the misclosures from without and with Euler angle solutions eval-
uated at each footprint locations and displayed in Figure 1 show
unambiguously the impact of the inclusion of the Euler angles in
the solutions, especially in the South Pole-Aitken basin region and
on the highlands on the far side of the moon.

5. Conclusion

The lunar figure and center of figure parameters estimated from
all three data sets, namely ULCN 2005, CE-1, and SELENE are con-
sistent. In particular, the RMS differences between the estimated
semi-principal axes of the triaxial ellipsoids and their locations are
as small as 29 and 31 m for the solutions with and without Euler
angles respectively, based on the downsampled LAL footprints
from the CE-1 and SELENE missions over the lunar surface.
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Figure 1. First, misclosures for solutions with and without Euler an-
gles are calculated using Equation (2), as deviations from
unity and scaled by 1737 km from the CE-1 down-sampled
data. Their differences (without minus with Euler angles)
for the near side (top) and far side are then plotted. The fig-
ure shows the locations and the magnitude of the changes
in the misclosures as a result of considering Euler angles
in the solution on an orthographic projection.

Meanwhile, smaller misclosures and better agreement between
the solution parameters using the downsampled CE-1 and SELENE
data suggest that CE-1 orbits above polar regions need further
attention, possibly in modeling along-track satellite accelerations.
The magnitudes of the estimated Euler angles and the differences
in the misclosures between solutions with and without Euler
angles confirm a better fit if the triaxial ellipsoid is allowed to
adjust its orientation. The estimated location of the polar axis is



within the boundaries of the South Pole-Aitken basin in all solutions

but deviates from the earlier Clementine solution in magnitude.

It is also desirable to remove the contribution of the South Pole-
Aitken basin, (the largest, deepest and oldest basin recognized
on the Moon, and the biggest hole in the Solar System), in the
solutions in order to better assess the shape and the orientation
of the Moon. Nonetheless, additional runs with the Euler angles
using an iteratively weighted scheme, where the weights are
proportional to the topography to down-weight its influence, do
not converge. Also, the solutions with the LAL data excluded from
the South Pole-Aitken basin are ill-conditioned because of the poor
geometry. The location of the pole axis of the triaxial ellipsoid (in
the South Pole-Aitken basin region) inferred from the coefficients
of the spherical harmonics of the lunar topography in an earlier
solution shows that this approach is also unduly influenced by
the lunar topography. It is therefore necessary to investigate and
devise alternative models that are more robust to the effects of the
large-scale lunar topography.

Appendix A

Two sets of 250,000 uniformly distributed points were generated
ona lunar sphere, first by generating x, y, zindependent standard
normal variates, i.e., N(0,1), and then calculating

( E % g ) wheres::m
foreach variate. The generated triplets are uniformly distributed on
a sphere (Marsaglia, 1972). The random points were rescaled with
an average radius of the Moon to generate uniformly distributed
footprint positions on the lunar surface. Each lunar data set (CE-1
and SELENE) were then downsampled by choosing the nearest
footprint for each uniformly distributed point.
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