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Abstract:

N-dimensional surfaces are defined by the tensor product of B-spline basis functions. To estimate the unknown control points of these

B-spline surfaces, the lofting method also called skinning method by cross-sectional curve fits is applied. It is shown by an analytical

proof and numerically confirmed by the example of a four-dimensional surface that the results of the lofting method agree with the

ones of the simultaneous estimation of the unknown control points. The numerical complexity for estimating vn control points by the

lofting method isO(vn+1) while it results inO(v3n) for the simultaneous estimation. It is also shown that a B-spline surface estimated by

a simultaneous estimation can be extended to higher dimensions by the lofting method, thus saving computer time.

An application of this method is the local improvement of the International Reference Ionosphere (IRI), e.g. by the slant total electron

content (STEC) obtained by dual-frequency observations of the Global Navigation Satellite System (GNSS). Three-dimensional B-spline

surfaces at different time epochs have to be determined by the simultaneous estimation of the control points for this improvement. A

four-dimensional representation in space and time of the electron density of the ionosphere is desirable. It can be obtained by the lofting

method. This takes less computer time than determining the four-dimensional surface solely by a simultaneous estimation.
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1. Introduction

The electron density of the ionosphere causes a delay in the

electromagnetic signals emitted by a satellite and received at an

observation site, e.g. on the surface of the Earth. Knowledge

of the electron density is therefore mandatory for correcting the

delays. Dual-frequency observations of the Global Navigation

Satellite System (GNSS), like the Global Positioning System (GPS),

can be used to determine the slant total electron content (STEC),

which is the integral of the electron density along the path of

the signal between the transmitter and the receiver. Other space-

∗E-mail: koch@geod.uni-bonn.de
†E-mail: schmidt@dgfi.badw.de

geodetic observation techniques provide further information on

ionospheric parameters. Satellite altimetry, for instance, yields the

vertical total electron content (VTEC) over theoceans (Brunini et al.,

2005).

To calculate ionospheric parameters suchas theelectrondensity or

VTEC from space-geodetic observations, an appropriate parame-

terizationhas tobechosen. Today theexisting ionosphericmodels,

e.g. the VTEC models of the International GNSS Service (IGS) (Dow

et al., 2009), are generally reported globally by spherical harmonic

expansions with a temporal resolution of 2 hours (Hernández-

Pajarez et al., 2009). The International Reference Ionosphere (IRI)

is an empirical climatological ionospheric model which allows the

calculation of ionospheric parameters at any point at any time (Bil-

itza and Reinisch, 2008). Since at present IRI does not consider

space-geodetic observations, it can be used as a reference model

for improving ionospheric parameters from GNSS dual-frequency
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observations. However, the ground stationswith satellite receivers

are not evenly distributed over the surface of the Earth. Some

parts are densely covered by receivers. A local representation of

the electron density or the VTEC by localizing base functions with

compact support is therefore appropriate.

Schmidt (2007) proposed a regional B-splinemodelling. The tensor

product of the B-splines is used for a three-dimensional represen-

tation of the electron desity of the ionosphere at different time

epochs. STEC observations are applied to determine corrections

to the electron density of IRI at different time epochs for points

in a spatial grid defined by latitude, longitude and height. Nu-

merical studies using simulated STEC data computed by IRI are

presented by Zeilhofer et al. (2009). The unknown parameters

are simultaneously estimated by least-squares adjustment. Gaps

exist in the data and to avoid a singular matrix of normal equa-

tions, prior information by IRI data is introduced. Instead of

the three-dimensional B-spline surface at different time epochs,

a four-dimensional representation in space and time has been

suggested, Schmidt et al. (2008).

A two-dimensional representation of a surface by the tensor prod-

uct of two B-splines is a well known task of reverse engineering.

Generally, nonuniform rational B-splines (NURBS) are applied, Piegl

and Tiller (1997), Farin and Hansford (2000), Rogers (2001). Three-

dimensional coordinates of points on the surface of manufactured

objects are measured and approximated by a NURBS surface for

computer aided design, cf. Varady et al. (1997). A nonrational

B-spline surface includes the representation of a NURBS surface

by introducing homogeneous coordinates. We will therefore work

in the following only with B-spline surfaces. The representation

of a B-spline surface by the tensor product leads to a linear re-

lation between the given coordinates and the unknown control

points, after the knots of the B-spline basis functions have been

selected and the location parameters of the measured points

have been determined. The linear relation gives the observa-

tion equations of a linear model where the control points are

simultaneously estimated by least-squares adjustment, Farin and

Hansford (2000) p. 186, Rogers (2001) p. 193.

A large number of given points generally requires a large number

of unknown control points which have to be estimated. If v × v
control points of a two-dimensional surface are simultaneously

estimated, the Cholesky factorization of the v2 × v2 matrix of

normal equations leads to a computational complexity of O(v6),
Koch (2009a). The computational burden for a simultaneous

estimation is therefore quite heavy. Nevertheles, Sarkar and

Menq (1991) and Lai and Lu (1996), for instance, use it as a part of a

nonlinear adjustment in order to estimate the location parameters

of the measured points in addition to the control points. Ma and

Kruth (1998) determine the weights of the control points first and

then simultaneously estimate the control points.

To avoid the computational load of the simultaneous estimation

of the control points, the lofting also called skinning method

has been proposed, Tiller (1983), Piegl (1991). It consists of

interpolating cross-sectional isoparametric curves for determining

the control points of a B-spline surface. Instead of interpolating

the cross-sectional curves, the curves can also approximate the

measured points by a least-squares fit. This approach has been

called approximate lofting by Park (2001). First lofting by curve fits

and then as a final step the simultaneous estimation of the control

points have been used for a surface reconstruction from direct

slicing of point clouds, Yuwen et al. (2006). Yang and Qian (2007)

introduced heterogeneous lofting to represent surfaces of objects

which are composed of different materials.

The lofting method by cross-sectional curve fits reduces the nu-

merical complexity from O(v6) for the simultaneos estimation to

O(v3) (Koch ,2009a). However, the lofting method is considered

to be an approximation of the simultaneous estimation of the

control points of B-spline surfaces, Piegl and Tiller (1997) p. 419.

But Koch (2009a) proved that the estimates of the control points

by the lofting method using cross-sectional curve fits and by the

simultaneous estimation give identical results.

The tensorproduct for a two-dimensional B-spline surface is readily

generalized to three or higher dimensions by adding additional

summations and B-spline basis functions. A three-dimensional

B-spline surface is needed not only for representing quantities

depending on three coordinates, like the electron density men-

tioned above, but also for deformation analysis or for dynamical

problems of reverse engineering where surfaces vary with time

(Koch ,2010a). The equivalence of estimating the control points

by the lofting method and by the simultaneous estimation also

exists for three-dimensional B-spline surfaces (Koch ,2010a). If v3
unknown parameters have to be estimated, the numerical com-

plexity becomesO(v4)which computationally is still manageable.

This is important if the accuracy of fitting B-spline surfaces is inves-

tigated by Monte Carlo simulations (Koch ,2009b). The complexity

for the simultaneous estimation increases toO(v9) which is more

than the square of the one of the lofting method. If possible, the

simultaneous estimation should be avoided.

For a general appoach, B-spline surfaces of n dimensions are

introduced here. An analytical proof is given and confirmed by a

numericalexampleofa four-dimensional surface that theestimates

of the unknown control points by the lofting method using cross-

sectional curve fits are identical with the simultaneous estimates

of the control points. The numerical complexity becomesO(vn+1)
for estimating vn control points by the loftingmethod andO(v3n)
in case of the simultaneous estimation. The lofting method needs

compatible isoparametric curves of the surface representation

with respect to an identical number of given points, an identical

number of knots and an identical degree for the B-spline basis

functions. Thus, n coordinates of points in an n-dimensional grid

have to be given together with the quantity to be represented

by the B-spline surface. Otherwise, the lofting method cannot be

applied.

Asmentionedabove, Schmidt (2007)andZeilhoferetal. (2009) took

STEC data and prior information to determine the control points of
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three-dimensional B-spline surfaces at different time epochs. The

simultaneous estimation therefore has to be applied. However, it

will be shown that the lofting method can be used to extend a

lower dimensional surface obtained by a simultaneous estimation

to a higher dimensional one, for instance a three-dimensional

surface to a four-dimensional one, which is needed for a local

representation of the electron density of the ionosphere. This

takes less computational effort than applying the simultaneous

estimation only.

The paper is organized as follows: Section 2 defines the B-spline

surface in n dimensions. Section 3 presents the estimation of

the unknown control points by the lofting method, Section 4

the simultaneous estimation and the proof of the equivalence of

both methods. Section 5 shows the extension of a simultaneously

estimated B-spline surface of lower dimensions to higher dimen-

sions by the lofting method. Section 6 gives the example of a

four-dimensional surface to numerically confirm the identity of the

results by the lofting method and the simultaneous estimation.

The paper finishes with conclusions.

2. B-spline surface in n dimensions

A B-spline surface in n dimensions depends on the n parameters,

say ξ1, ξ2, . . . , ξn , and is expressed by the tensor product of n
B-spline basis functions Ni1q1 (ξ1), Ni2q2 (ξ2), . . . , Ninqn (ξn) of

degrees q1, q2, . . . , qn with

s(ξ1, ξ2, . . . , ξn) = m1∑
i1=0

m2∑
i2=0 . . .

mn∑
in=0Ni1q1 (ξ1)Ni2q2 (ξ2)
. . . Ninqn (ξn)pi1i2...in (1)

and

s(ξ1, ξ2, . . . , ξn) =
∣∣∣∣∣∣∣∣∣∣∣

x1(ξ1, ξ2, . . . , ξn)
x2(ξ1, ξ2, . . . , ξn)
. . . . . . . . . . . . . . . . .

xn(ξ1, ξ2, . . . , ξn)
H(ξ1, ξ2, . . . , ξn)

∣∣∣∣∣∣∣∣∣∣∣
(2)

wheres(ξ1, ξ2, . . . , ξn)denotes apoint on the surfacewith then-
dimensional rectangular or curvilinear coordinates x1, x2, . . . , xn
depending on the n parameters ξ1, ξ2, . . . , ξn . The (n + 1)st
coordinate H is the quantity, like the electron density in the

ionosphere, to be represented by the B-spline surface. The points

pi1i2...in = |x1i1 , x2i2 , . . . , xnin , Hi1i2...in |′
with i1 ∈ {0, . . . , m1}, i2 ∈ {0, . . . , m2}, . . . ,

in ∈ {0, . . . , mn} (3)

are the unknown control points. The B-spline surface approxi-

mately follows these points.

TheB-splinebasis functions areefficiently computedbya recursion

formula due to Cox (1972) and de Boor (1972) for the half-open

interval for ξ1 ∈ [ξ1i, ξ1,i+1) where ξ1i denotes a knot. The

numberm1 in (1) depends on the number of knots chosen for ξ1
and on the degree q1 . The same holds true for the parameters

ξ2, . . . , ξn . Generally, the knots are not equally spaced which

leads to nonuniform B-splines in contrast to uniform ones which

are equally spaced. We will work with knot vectors which have

the property of endpoint interpolation. The points s(ξ1, ξ2 =
const, . . . , ξn = const) with ξ1 variable and ξ2, . . . , ξn fixed

define an isoparametric curve as a function of ξ1 on the B-spline

surface. Accordingly, s(ξ1 = const, ξ2, ξ3 = const, . . . , ξn =
const), . . ., s(ξ1 = const, ξ2 = const, . . . , ξn) are isoparametric

curves depending on ξ2, . . . , ξn . The isoparametric curve for ξ1
shall point along the x1-axis, the one for ξ2 along the x2-axis and
so on and for ξn along the xn-axis.
Introducing weights for the control points leads to a nonuniform

rationalB-spline (NURBS) surface. However, aNURBSsurfacecanbe

representedbythenonrationalB-splinesurface (1) ifhomogeneous

coordinates are introduced. Thus, the B-spline surface includes

the representation of a NURBS surface so that we will work with

B-spline surfaces.

A B-spline surface shall be applied for a local representation of

the electron density of the ionosphere. The density is denoted

by Ne and depends on a three-dimensional position and on the

time. The position is given in a geographical geocentric coordinate

system. The longitude is linearly transformed into the interval

[0, 1] to obtain x , the transformation of the latitude gives y, the
height above the Earth's surface leads to z, thus x1 = x , x2 = y,
x3 = z in (2). The fourth coordinate follows with x4 = t from
the transformation of the time t and the fifth one with H = Ne

from the electron densityNe . A four-dimensional B-spline surface

is therefore introduced to represent the densityNe(x, y, z, t). For
a graphical depiction of the surface, Ne may be computed with

respect to x and y for fixed values of z and t.

3. Estimation by lofting method

Let the n-dimensional rectangular or curvilinear coordinates

x1, x2, . . . , xn together with H of e1 × e2 × . . . × en points

s(ξ1a1 , ξ2a2 , . . . , ξnan ) be given, where ξ1a1 with a1 ∈
{1, . . . , e1}, ξ2a2 with a2 ∈ {1, . . . , e2}, . . ., ξnan with

an ∈ {1, . . . , en} denote the location parameters. Let the points

s(ξ1a1 , ξ2a2 , . . . , ξnan ) be arranged in an n-dimensional grid. It

means that the quantityH is given, for instance, bymeasurements

at the points in the grid. An n-dimensional B-spline surface shall

be fitted to the given points so that the control pointspi1i2...in with

i1 ∈ {0, . . . , m1}, i2 ∈ {0, . . . , m2}, . . ., in ∈ {0, . . . , mn}
have to be estimated for e1 > m1 + 1, e2 > m2 + 1, . . .,
en > mn + 1.
If the given points s(ξ1a1 , ξ2a2 , . . . , ξnan ) are equally spaced,

the location parameters ξ1a1 , ξ2a2 , . . ., ξnan may also be equally

spaced. If not, the location parameters can be determined by the

chord lengths of the given points, cf. Koch (2010a). It means
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that for computing ξ1a1 with a1 ∈ {1, . . . , e1} the distances

between the points at the surface defined byH in the direction of

the x1 axis of the grid are determined for fixed values of x2, . . . , xn .
This is repeated for all values of x2, . . . , xn and the mean of these

values gives ξ1a1 . Correspondingly, ξ2a2 , . . . , ξnan are computed.

Eq. (1) then gives a linear relation between the unknown control

pointspi1i2 ...in and the given points s(ξ1a1 , ξ2a2 , . . ., ξnan ) so that
the observation equations for estimatingpi1i2...in in a linearmodel

are obtained

m1∑
i1=0

m2∑
i2=0 . . .

mn∑
in=0Ni1q1 (ξ1a1 )Ni2q2 (ξ2a2 ) . . . Ninqn (ξnan ) ·

pi1i2 ...in = s(ξ1a1 , ξ2a2 , . . . , ξnan ) +
e(ξ1a1 , ξ2a2 , . . . , ξnan ),

a1 ∈ {1, . . . , e1}, a2 ∈ {1, . . . , e2},
. . . , an ∈ {1, . . . , en} (4)

where e(ξ1a1 , ξ2a2 , . . . , ξnan ) denotes the vector of errors of

s(ξ1a1 , ξ2a2 , . . . , ξnan ). Eq. (4) results ine1×e2×. . .×en linear
equations for determining (m1 +1)× (m2 +1)×. . .× (mn+1)
unknown control points.

The lofting method by cross-sectional curve fits is applied for the

estimation. Eq. (4) is therefore rewritten by

m1∑
i1=0Ni1q1 (ξ1a1 )b(1)

i1a2a3 ...an = s(ξ1a1 , ξ2a2 , . . . , ξnan ) +
e(ξ1a1 , ξ2a2 , . . . , ξnan ) (5)

with
m2∑
i2=0Ni2q2 (ξ2a2 )b(2)

i1i2a3 ...an = b(1)
i1a2a3 ...an (6)

and so on, with finally

mn∑
in=0Ninqn (ξnan )pi1i2i3...in = b(n−1)

i1i2i3...an (7)

where b(1)
i1a2a3...an denotes the control points of the isoparametric

curves s(ξ1, ξ2 = const, . . . , ξn = const), b(2)
i1i2a3...an the con-

trol points of the isoparametric curves s(ξ1 = const, ξ2, ξ3 =
const, . . . , ξn = const) and so on, finally pi1i2i3...in the con-

trol points of the isoparametric curves s(ξ1 = const, ξ2 =
const, . . . , ξn).
The control points b(1)

i1a2a3...an are estimated first by means of the

observation equations (5). They read in matrix notation

N(ξ1)B(1) = S + E (8)

where the e1 × (m1 + 1) matrix N(ξ1) of the B-spline basis

functions is defined by

N(ξ1) =
∣∣∣∣∣∣∣
N0q1 (ξ11) . . . Nm1q1 (ξ11)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N0q1 (ξ1e1 ) . . . Nm1q1 (ξ1e1 )
∣∣∣∣∣∣∣ , (9)

the (m1 +1)× (e2×e3×. . .×en)matrixB(1)
of control points

by

B(1) =
∣∣∣∣∣∣∣

b(1)011...1 . . . b(1)0e21...1 . . . b(1)01e3...1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(1)
m111...1 . . . b(1)

m1e21...1 . . . b(1)
m11e3 ...1 . . .

b(1)0e2e3...1 . . . b(1)011...en . . . b(1)0e21...en . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(1)
m1e2e3...1 . . . b(1)

m111...en . . . b(1)
m1e21...en . . .

b(1)01e3...en . . . b(1)0e2e3...en
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(1)
m11e3...en . . . b(1)

m1e2e3 ...en

∣∣∣∣∣∣∣ , (10)

and with

s(ξ1a1 , ξ2a2 , ξ3a3 , . . . , ξnan ) = sa1a2a3...an (11)

the e1 × (e2 × e3 × . . . × en)matrix S of given points by

S =∣∣∣∣∣∣∣
s111...1 . . . s1e21...1 . . . s11e3 ...1 . . . s1e2e3...1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

se111...1 . . . se1e21...1 . . . se11e3...1 . . . se1e2e3 ...1 . . .

s111...en . . . s1e21...en . . . s11e3 ...en . . . s1e2e3...en
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

se111...en . . . se1e21...en . . . se11e3...en . . . se1e2e3...en

∣∣∣∣∣∣∣ .(12)
Finally, thee1×(e2×e3×. . .×en)matrixE of errors is obtained

with replacing s by e in (11) and (12).

Eq. (8) represents theobservation equations of amultivariate linear

model bywhich the control pointsb(1)
i1a2a3...an of the isoparametric

curves s(ξ1 , ξ2 = const, . . ., ξn = const) are estimated e2 times

for each value of ξ2 up to en times for each value of ξn . The

estimate B̂(1)
of B(1)

follows by, cf. Koch (1999) p. 241,

B̂(1) = (N(ξ1)′N(ξ1))−1N(ξ1)′S . (13)

The matrix N(ξ1) has full column rank so that the matrix

N(ξ1)′N(ξ1) of normal equations is regular and gives a unique

solution if the given points are evenly distributed like on grids.
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In the next step, (6) is used as observation equations for estimating

the unknown control pointsb(2)
i1i2a3...an of the isoparametric curves

s(ξ1 = const, ξ2 , ξ3 = const, . . ., ξn = const). Applying matrix

notation we find

N(ξ2)B(2) = ˆ̄B(1) + E ˆ̄B(1) (14)

where the e2 × (m2 + 1) matrix N(ξ2) of the B-spline basis

functions is defined by

N(ξ2) =
∣∣∣∣∣∣∣
N0q2 (ξ21) . . . Nm2q2 (ξ21)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N0q2 (ξ2e2 ) . . . Nm2q2 (ξ2e2 )
∣∣∣∣∣∣∣ , (15)

the (m2 + 1)× ((m1 + 1)× e3 × . . . en) matrix B(2)
of control

points by

B(2) =
∣∣∣∣∣∣∣

b(2)001...1 . . . b(2)
m101...1 . . . b(2)00e3...1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(2)0m21...1 . . . b(2)
m1m21...1 . . . b(2)0m2e3...1 . . .

b(2)
m10e3...1 . . . b(2)001...en . . . b(2)

m101...en . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(2)
m1m2e3 ...1 . . . b(2)0m21...en . . . b(2)

m1m21...en . . .

b(2)00e3...en . . . b(2)
m10e3...en

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b(2)0m2e3 ...en . . . b(2)
m1m2e3...en

∣∣∣∣∣∣∣ , (16)

the e2 × ((m1 + 1) × e3 × . . . × en) matrix
ˆ̄B(1)

of estimated

control points by

ˆ̄B(1) =
∣∣∣∣∣∣∣

b̂(1)011...1 . . . b̂(1)
m111...1 . . . b̂(1)01e3...1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(1)0e21...1 . . . b̂(1)
m1e21...1 . . . b̂(1)0e2e3...1 . . .

b̂(1)
m11e3...1 . . . b̂(1)011...en . . . b̂(1)

m111...en . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(1)
m1e2e3 ...1 . . . b̂(1)0e21...en . . . b̂(1)

m1e21...en . . .

b̂(1)01e3 ...en . . . b̂(1)
m11e3...en

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(1)0e2e3...en . . . b̂(1)
m1e2e3 ...en

∣∣∣∣∣∣∣ , (17)

and the e2 × ((m1 + 1)× e3 × . . . × en) matrix E ˆ̄B(1) of errors
of

ˆ̄B(1)
by replacing b̂(1)

in (17) by e(1) .
Eq. (14) represents the observation equations of a multivariate

linearmodel bywhich the control pointsb(2)
i1i2a3...an of the isopara-

metric curves s(ξ1 = const, ξ2, ξ3 = const, . . ., ξn = const) are
estimated m1 + 1 times for each value of ξ1 , e3 times for each

value of ξ3 up to en times for each value of ξn . The estimate B̂(2)
of B(2)

follows by

B̂(2) = (N(ξ2)′N(ξ2))−1N(ξ2)′ ˆ̄B(1) . (18)

Correspondingly, the estimates of the control points of the

isoparametric curves continue, until in the nth and final step,

(7) is used as observation equations for estimating the un-

known control points pi1i2i3...in of the isoparametric curves

s(ξ1 = const, ξ2 = const, . . . , ξn). The observation equations

are given in matrix notation by

N(ξn)P̄ = ˆ̄B(n−1) + E ˆ̄B(n−1) , (19)

where the en× (mn +1)matrixN(ξn) of B-spline basis functions
is given by

N(ξn) =
∣∣∣∣∣∣∣
N0qn (ξn1) . . . Nmnqn (ξn1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N0qn (ξnen ) . . . Nmnqn (ξnen )
∣∣∣∣∣∣∣ , (20)

the (mn+1)× ((m1 +1)× (m2 +1)×. . .× (mn−1 +1))matrix

P̄ by

P̄ =
∣∣∣∣∣∣∣

p000...0 . . . pm100...0 . . . p0m20...0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p000...mn . . . pm100...mn . . . p0m20...mn . . .

pm1m20...0 . . . p00m3...0 . . . pm10m3 ...0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pm1m20...mn . . . p00m3 ...mn . . . pm10m3...mn . . .

p0m2m3...0 . . . pm1m2m3 ...0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p0m2m3 ...mn . . . pm1m2m3...mn

∣∣∣∣∣∣∣ , (21)

theen× ((m1 +1)× (m2 +1)×. . .× (mn−1 +1))matrix
ˆ̄B(n−1)

by

ˆ̄B(n−1) =
∣∣∣∣∣∣∣

b̂(n−1)000...1 . . . b̂(n−1)
m100...1 . . . b̂(n−1)0m20...1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(n−1)000...en . . . b̂(n−1)
m100...en . . . b̂(n−1)0m20...en . . .

b̂(n−1)
m1m20...1 . . . b̂(n−1)00m3...1 . . . b̂(n−1)

m10m3...1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(n−1)
m1m20...en . . . b̂(n−1)00m3...en . . . b̂(n−1)

m10m3 ...en . . .

b̂(n−1)0m2m3 ...1 . . . b̂(n−1)
m1m2m3 ...1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂(n−1)0m2m3...en . . . b̂(n−1)
m1m2m3...en

∣∣∣∣∣∣∣ , (22)
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and the en × ((m1 + 1)× (m2 + 1)× . . . × (mn−1 + 1))matrix

E ˆ̄B(n−1) of errors of ˆ̄B(n−1)
by replacing b̂(n−1)

in (22) by e(n−1) .
Eq. (19) represents the observation equations of a multivariate lin-

earmodel bywhich the control pointspi1i2...in of the isoparametric

curves s(ξ1 = const, ξ2 = const, . . . , ξn) are estimatedm1 + 1
times for each value of ξ1 , m2 + 1 times for each value of ξ2 up

to mn−1 + 1 times for each value of ξn−1 . The estimate
ˆ̄P of P̄

follows by

ˆ̄P = (N(ξn)′N(ξn))−1N(ξn)′ ˆ̄B(n−1) . (23)

The matrix Ê of residuals follows from (19) and with the estimateˆ̄P from (23) by ˆ̄̂
B(n−1) = N(ξn) ˆ̄P , (24)

and so on, from (14) by

ˆ̄̂
B(1) = N(ξ2) ˆ̂B(2) , (25)

and finally from (8) by

Ê = N(ξ1) ˆ̂B(1) − S . (26)

The matrix Ê of residuals, i.e. of the estimated errors E of the

coordinates of the given points is needed to compute the variance

factor of the estimation which leads to the estimated variance of

the measurements, cf. Koch (2007) p. 85. The standard deviation

of the measurements gives an indication about the quality of the

fit of the B-spline surface to the given points. Aminimum standard

deviation should be searched for by selecting a minimum number

of control points and minimum degrees for the B-spline basis

functions.

If points s(ξ1w1 , ξ2w2 , . . . , ξnwn ) with given location parameters

ξ1w1 , ξ2w2 , . . ., ξnwn shall be computed on the estimated B-

spline surface, the matrices N(ξ1w1 ), N(ξ2w2 ), . . ., N(ξnwn )
corresponding to (9), (15) and (20) have to be computed. Eqs. (24)

to (26) then give ˆ̄̂
B(n−1)
w = N(ξnwn ) ˆ̄P , (27)

ˆ̄̂
B(1)
w = N(ξ2w2 ) ˆ̂B(2)

w , (28)

Ŝw = N(ξ1w1 ) ˆ̂B(1)
w . (29)

Any points Ŝw on the estimated surface may be computed by

these equations.

The estimates (13) are efficiently computed by one Cholesky

factorization of the (m1 + 1)× (m1 + 1)matrix N(ξ1)′N(ξ1) of
normal equations followed by e2×e3× . . . × en back solutions,
cf. Koch (1999) p. 30. Correspondingly, the estimates (18) and (23)

are obtained.

We assume for an approximate assessment of the numerical

complexity of the computations in case of a large number of given

points

e1 ≈ e2 ≈ . . . ≈ en ≈ m1 + 1 ≈ m2 + 1 ≈ . . .
≈ mn + 1 ≈ v . (30)

The complexity of the Cholesky factorization is O(v3) and of one

back solution O(v2). By repeating the back solutions vn−1 times,

the numerical complexity O(vn+1) is obtained for estimating

the vn control points of an n-dimensional surface by the lofting

method. Under the assumption of (30), the complexity of esti-

mating the control points of a three-dimensional surface by the

lofting method isO(v4) and of a two-dimensional surfaceO(v3),
Koch (2009a) and Koch (2010b).

Conditions have to be fulfilled to apply the lofting method. Eq. (2)

introduces the coordinates x1 , x2 , . . . , xn as functions of the

parameters ξ1, ξ2, . . . , ξn . Inverting these relations gives the

parameters as functions of all coordinates. However, the depen-

dency of the parameters has to be restricted to one coordinate,

i.e. ξ1(x1), ξ2(x2), . . ., ξn(xn), to use the observation equations

(4). Furthermore, each isoparametric curve gets an identical knot

vector and an identical degree for the B-spline basis functions, and

the coordinates of the e1 × e2 × . . . × en given points have to

be ordered in an n-dimensional grid.

4. Simultaneous estimate of control points and proof of equivalence

Bygeneralizing the result of Koch (2010b) for expressing the tensor

product by Kronecker products, we conclude that the observation

equations

(N(ξn)⊗ . . . ⊗N(ξ2)⊗N(ξ1))vecP = vecS + vecE (31)

are equivalent to the ones of (4) with the (m1 + 1)× ((m2 + 1)×(m3 + 1)× . . . × (mn + 1))matrixP of unknown control points

defined by

P =
∣∣∣∣∣∣∣

p000...0 . . . p0m20...0 . . . p00m3...0 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pm100...0 . . . pm1m20...0 . . . pm10m3...0 . . .

p0m2m3...0 . . . p000...mn . . . p0m20...mn . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pm1m2m3...0 . . . pm100...mn . . . pm1m20...mn . . .

p00m3...mn . . . p0m2m3 ...mn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pm10m3...mn . . . pm1m2m3...mn

∣∣∣∣∣∣∣ . (32)

To show the equivalence, we set a1 = a2 = · · · = an =1 and obtain with the definition of the Kronecker product, cf.
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Koch (1999) p. 18,

N0qn (ξn1) . . . N0q3 (ξ31) m2∑
i2=0Ni2q2 (ξ21)

m1∑
i1=0Ni1q1 (ξ11)pi1i20...0 + . . .

+N0qn (ξn1) . . . Nm3q3 (ξ31) m2∑
i2=0Ni2q2 (ξ21)

m1∑
i1=0Ni1q1 (ξ11)pi1i2m3 ...0 + . . .

+Nmnqn (ξn1) . . . N0q3 (ξ31) m2∑
i2=0Ni2q2 (ξ21)

m1∑
i1=0Ni1q1 (ξ11)pi1i20...mn + . . .

+Nmnqn (ξn1) . . . Nm3q3 (ξ31) m2∑
i2=0Ni2q2 (ξ21)

m1∑
i1=0Ni1q1 (ξ11)pi1i2m3...mn =

s111...1 + e111...1 (33)

which is the first observation equation of (4). By setting a1 ∈
{1, . . . , e1}, a2 ∈ {1, . . . , e2}, . . . , an ∈ {1, . . . , en}, all

observation equations are obtained.

The simultaneous estimatevecP̂ ofvecP of the (m1 +1)×(m2 +1)×. . .× (mn+1) unknown control points results from (31)with

vecP̂ = [(N(ξn)⊗ . . . ⊗N(ξ2)⊗N(ξ1))′(N(ξn)⊗ . . . ⊗N(ξ2)⊗N(ξ1))]−1
(N(ξn)⊗ . . . ⊗N(ξ2)⊗N(ξ1))′vecS . (34)

For an assessment of the numerical complexity of solving (34), we

assume again like in (30)

m1 + 1 ≈ m2 + 1 ≈ . . . ≈ mn + 1 ≈ v (35)

andobtain the complexityofO(v3n) for simultaneously estimating

thevn controlpointsofann-dimensionalsurface. Thecomplexity is

O(v9) for simultaneously estimating the control points of a three-

dimensional surface and O(v6) for a two-dimensional surface,

Koch (2009a) and Koch (2010b). As mentioned in the previous

section, the corresponding values for the lofting method are

O(v4) and O(v3). If possible, the simultaneous estimate should

therefore be avoided in case of many unknown control points

because the lofting method gives identical results not only for

two- or three-dimensional surfaces but also for n-dimensional

ones.

To show it, we expand (34) by the rules of the Kronecker product,

cf. Koch (1999) p. 18, and obtain

vecP̂ = (M(ξn)⊗ . . . ⊗M(ξ2)⊗M(ξ1))vecS (36)

where the (mn + 1)× en matrix M(ξn) is given by

M(ξn) = (N(ξn)′N(ξn))−1N(ξn)′
=

∣∣∣∣∣∣∣
M01(ξn) . . . M0en (ξn)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mmn1(ξn) . . . Mmnen (ξn)
∣∣∣∣∣∣∣ , (37)

the (m2 + 1)× e2 matrix M(ξ2) by
M(ξ2) = (N(ξ2)′N(ξ2))−1N(ξ2)′

=
∣∣∣∣∣∣∣
M01(ξ2) . . . M0e2 (ξ2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mm21(ξ2) . . . Mm2e2 (ξ2)
∣∣∣∣∣∣∣ , (38)

and the (m1 + 1)× e1 matrix M(ξ1) by
M(ξ1) = (N(ξ1)′N(ξ1))−1N(ξ1)′

=
∣∣∣∣∣∣∣
M01(ξ1) . . . M0e1 (ξ1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mm11(ξ1) . . . Mm1e1 (ξ1)
∣∣∣∣∣∣∣ . (39)

The first equation of (34) gives with (13), (18) and (23) the estimate

p̂000...0
M01(ξn) . . .M01(ξ3)M01(ξ2)(M01(ξ1)s111...1 + . . .+M0e1 (ξ1)se111...1) + . . .+M01(ξn) . . .M01(ξ3)M0e2 (ξ2)(M01(ξ1)s1e21...1 + . . .+M0e1 (ξ1)se1e21...1) + . . .+M01(ξn) . . .M0e3 (ξ3)M01(ξ2)(M01(ξ1)s11e3 ...1 + . . .+M0e1 (ξ1)se11e3...1) + . . .+M01(ξn) . . .M0e3 (ξ3)M0e2 (ξ2)(M01(ξ1)s1e2e3 ...1 + . . .+M0e1 (ξ1)se1e2e3...1) + . . .+M0en (ξn) . . .M01(ξ3)M01(ξ2)(M01(ξ1)s111...en + . . .+M0e1 (ξ1)se111...en ) + . . .+M0en (ξn) . . .M01(ξ3)M0e2 (ξ2)(M01(ξ1)s1e21...en + . . .+M0e1 (ξ1)se1e21...en ) + . . .+M0en (ξn) . . .M0e3 (ξ3)M01(ξ2)(M01(ξ1)s11e3...en + . . .+M0e1 (ξ1)se11e3...en ) + . . .+M0en (ξn) . . .M0e3 (ξ3)M0e2 (ξ2)(M01(ξ1)s1e2e3...en + . . .+M0e1 (ξ1)se1e2e3 ...en ) =
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M01(ξn) . . .M01(ξ3)(M01(ξ2)b̂(1)011...1 + . . .+M0e2 (ξ2)b̂(1)0e21...1) + . . .+M01(ξn) . . .M0e3 (ξ3)(M01(ξ2)b̂(1)01e3...1 + . . .+M0e2 (ξ2)b̂(1)0e2e3...1) + . . .+M0en (ξn) . . .M01(ξ3)(M01(ξ2)b̂(1)011...en + . . .+M0e2 (ξ2)b̂(1)0e21...en ) + . . .+M0en (ξn) . . .M0e3 (ξ3)(M01(ξ2)b̂(1)01e3...en + . . .+M0e2 (ξ2)b̂(1)0e2e3...en ) =
M01(ξn) . . . (M01(ξ3)b̂(2)001...1 + . . .+M0e3 (ξ3)b̂(2)00e3 ...1) + . . .+M0en (ξn) . . . (M01(ξ3)b̂(2)001...en + . . .+M0e3 (ξ3)b̂(2)00e3 ...en ) =

M01(ξn)b̂(n−1)000...1 + . . .+M0en (ξn)b̂(n−1)000...en = p̂000...0. (40)

Bywritingdown in addition theequations for p̂000...1 , . . ., p̂000...mn ,
. . ., p̂m100...0 , . . ., p̂m100...mn , . . ., p̂0m20...0 , . . ., p̂0m20...mn up to

p̂m1m2m3...mn , one recognizes that ˆ̄P is obtained in agreementwith

(23) of the loftingmethod so that both estimations are equivalent.

The residuals follow with (31) from

vecÊ = (N(ξn)⊗. . .⊗N(ξ2)⊗N(ξ1))vecP̂− vecS . (41)

The observation equations (4) and (31) are equivalent and the

estimates
ˆ̄P of the control points agree. The matrix Ê of residuals

from the simultaneous estimationmust therefore be identical with

the one obtained by the lofting method from (24) to (26). The

sameholds true for computing the pointsvecŜw with the location

parameters ξ1w1 , ξ2w2 , . . ., ξnwn on the estimated B-spline surface.

They follow from (41) by

vecŜw = (N(ξnwn )⊗ . . . ⊗N(ξ2w2 )⊗N(ξ1w1 ))vecP̂ (42)

and agree with the points from (27) to (29) by the lofting method.

5. Extending B-spline surfaces from simultaneous estimates to
higher dimensions by the lofting method

Letak -dimensionalB-spline surfacebedependingonthek param-

eters ξ1(x1), ξ2(x2), . . . , ξk (xk ). Let the conditions mentioned at

the end of Section 3 be fulfilled so that the lofting method can be

applied to fit a k -dimensonal B-spline surface to the quantitiesH .

We will again assume that the conditions for applying the lofting

method are fulfilled. The quantitiesH , however, shall not be given

at thee1×e2×. . .×ek points but at different positions or given
by functionsofdifferentpositions. Thus, theobservationequations

(4) cannot be formed so that the simultaneous estimation of the

control points is needed.

The lofting method gives a unique solution as mentioned in con-

nection with (13). The solution of the simultaneous estimation is

also unique if its matrix of normal equations is regular. It then

agrees because of the uniqueness with the solution of the loft-

ing method. The solution can therefore be assumed as being

computed by the lofting method. If we want to extend the repre-

sentation of the quantityH from the k -dimensional surface to the(k+1)-dimensional one, we only have to repeat the simultaneous

estimation mk+1 times and apply the lofting method. To assess

the numerical complexity of this method, the approximations (30)

and (35) are assumed again. The numerical complexity of simul-

taneously estimating vk control points is O(v3k ). By repeating

the estimates v times, the complexity O(v3k+1) is obtained. The
complexity does not increase by applying the lofting method be-

cause it is only O(vk+1). The numerical complexity of increasing

a k -dimensional surface obtained by the simultaneous estimation

to a (k+1)-dimensional surface using the loftingmethod is there-

foreO(v3k+1). Simultaneously estimating vk+1 control points for

a (k + 1)-dimensional surface gives a complexity of O(v3k+3).
Computational time is therefore saved by the loftingmethod. This

holds also true when increasing a k -dimensional surface to k + 2,
k + 3, . . ., n dimensions.

The method of increasing dimensions will be applied to locally

improving IRI. As mentioned in the introduction, Schmidt (2007)

and Zeilhofer et al. (2009) estimated three-dimensional B-spline

surfaces to represent the electron densities of points in identical

spatial grids at different time epochs. They used STEC data and

prior information to avoid a singular matrix of normal equations

in a simultaneous adjustment. This kind of data does not allow to

apply the lofting method. Instead of a three-dimensional B-spline

surface at different time epochs, a four-dimensional surface is

more appropriate. As explained above, it can be obtained by the

lofting method. This requires a numerical complexity of O(v10)
in comparison toO(v12) for a complete simultaneous estimation.

The simultaneous estimation first and then the lofting method

will therefore be applied for future analysis of STEC data to locally

improve IRI.

6. Example

The identity of the control points of a four-dimensional B-spline

surface computed by the lofting method and the simultaneous

estimation shall be confirmed by a simple example. It will show

the potential of a four-dimensional B-spline surface to represent

data, but it is not intended to set up a model for IRI. The electron

densityNe with dimension [electrons/m3] of the ionosphere from



Journal of Geodetic Science 49

IRI, version 2007, Bilitza and Reinisch (2008), is calculated for 10

points of longitudes 270o , 275o to 315o , for 10 points of latitudes

-25o , -20o to 20o , for 10 points of heights 100 km, 150 km to 550 km

and for 12 points of times 0 h, 2 h to 22 h UT for June 21, 2007. The

data include the equatorial anomaly with maximum variations of

Ne between the longitudes 280o to 300o , at the height around

300 km and at the time around 18 h. As an example of large

variations ofNe , the height z=300 km and time t=18 h are chosen.

The global variations of Ne at that time and height are shown in

Figure 1. The 10×10 points with given densities Ne from IRI lie

within the white box and are depicted in black in Figure 2 with

respect to the x, y plane, where x is expressed by longitude andy
by latitude. The 10×10 points in black with height z=350 km and

and time t=20 h are shown in Figure 3 as a second example with

large variations ofNe .

Figure 1. Global distribution of the electron density Ne calculated
from IRI for June 21, 2007 for height z=300 km at time
t=18 h UT. The points with given densities Ne within the
white box are shown as black points in Figure 2.
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Figure 2. Electron densities Ne of given points in black and isopara-
metric curves from points computed on the surface in blue
for height z=300 km and time t=18 h.

270
275

280
285

290
295

300
305

310
315

−25
−20

−15
−10

−5
0

5
10

15
20
0
2
4
6
8

10
12

x
y

N
e

x 1011     

Figure 3. Electron densities Ne of given points in black and isopara-
metric curves from points computed on the surface in blue
for height z=350 km and time t=20 h.

A four-dimensional B-spline surface is fitted to the 10×10×10×12
given points of the spatial and temporal grid first by the lofting

method with (13), (18), (23) and then by the simultaneous es-

timation with (34). The points are equally spaced, the location

parameters are therefore also chosen to be equally spaced. The

quality of the fit is judged by the square root of the variance factor

of the electron density, i.e. by the standard deviation with which

the electron densities of the given points are approximated by the

B-spline surface. It is computed with (24) to (26) by the residuals

of the lofting method and with (41) by the residuals of the simul-

taneous estimation. A small standard deviation with few unknown

control points is desirable for a good fit to avoid oscillations of

the B-spline surface between the given points. It has been found

with m1=5, m2=7, m3=8 and m4=10, i.e. with 2 800 unknown

control points, and with the orders q1 = . . . = q4 = 3 in (4).

The maximum value Ne of the 10×10×10×12 given points is

1.11×1012 , theminimum5.27×108 . The standard deviation of the

fit is 1.43×1010 which is large in comparison to the maximum and

minimum value ofNe . It is caused by the large spacing between

the positions of the given points along the longitude, latitude,

height and time. A denser grid of points reduces the standard

deviation of the fit. Such a grid has to be chosen for modeling IRI.

To get an impression of the shape of the four-dimensional surface,

a spatial and temporal grid of 26×26×19× 23 points is computed

by (27) to (29)of the loftingmethodandby (42)of the simultaneous

estimationonthe fittedsurface. It is representedwith respect to the

x, y plane by isoparametric curves for the parameter ξ1 obtained

by connecting the points on the surface with equal values of y by

straight lines. The grid in the x, y plane for the computed points

differs from the grid of the given points. The isoparametric curves

are depicted in blue in Figure 2 for the height z=300 km and time

t=18 h and in Figure 3 for the height z=350 km and time t=20 h, i.e.
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for the values of z and t for which the given points are shown in

Figure 2 and Figure 3. The results indicate that the B-spline surface

is smooth and does not oscillate between the points with given

densities. Figure 4 depicts the isoparametric curves for the height

z=325 km and time t=17 h in red as well as t=21 h in blue, which

means at a height and a time for which no points with electron

densities are given. Figure 4 shows how the density at height

z=325 km is changing between t=17 h and t=21 h. The surface

in red lies close to the surface of Figure 2 and the surface in blue

close to the surface of Figure 3. It should bementioned that points

on the four-dimensional B-spline surface may be computed at any

position and time.
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Figure 4. Isoparametric curves from points computed on the surface
for height z=325 km, time t=17 h in red and t=21 h in blue.

Usingdoubleprecision for thecomputations, theelectrondensities

of the control points and of the points on the surface obtained by

the loftingmethod and the simultaneous estimation agree with at

least 12 significant digits. The standard deviation of the electron

densities agrees with 15 digits. This confirms the analytical proof

that the lofting method and the simultaneous estimation give

identical results.

7. Conclusions

Estimating the unknown control points of an n-dimensional B-

spline surface by the lofting method using cross-sectional curve

fits is much faster than the simultaneous estimation. It is shown

by an analytical proof and confirmed by an example of a four-

dimensional surface that the results of bothmethods are identical.

The simultaneos estimation should therefore be avoided if it

is possible. If not, the results of simultaneously estimated B-

spline surfaces of lower dimensions can be extended to higher

dimensions by the lofting method, thus getting more efficient

algorithms. An application is the simultaneous estimate of the

control points of three-dimensional B-spline surfaces for a local

representationof theelectrondensityof the ionosphereatdifferent

time epochs. The representation can be extended to a four-

dimensional surface by the loftingmethod. This method takes less

computational time than solely using the simultaneousestimation.

It will be used for future analysis of STEC data to locally improve

IRI.
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