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Abstract:

N-dimensional surfaces are defined by the tensor product of B-spline basis functions. To estimate the unknown control points of these
B-spline surfaces, the lofting method also called skinning method by cross-sectional curve fits is applied. It is shown by an analytical
proof and numerically confirmed by the example of a four-dimensional surface that the results of the lofting method agree with the
ones of the simultaneous estimation of the unknown control points. The numerical complexity for estimating v control points by the
lofting method is O(v"*") while it results in O(v3") for the simultaneous estimation. It is also shown that a B-spline surface estimated by
a simultaneous estimation can be extended to higher dimensions by the lofting method, thus saving computer time.

An application of this method is the local improvement of the International Reference lonosphere (IRl), e.g. by the slant total electron
content (STEC) obtained by dual-frequency observations of the Global Navigation Satellite System (GNSS). Three-dimensional B-spline
surfaces at different time epochs have to be determined by the simultaneous estimation of the control points for this improvement. A
four-dimensional representation in space and time of the electron density of the ionosphere is desirable. It can be obtained by the lofting
method. This takes less computer time than determining the four-dimensional surface solely by a simultaneous estimation.
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1. Introduction

The electron density of the ionosphere causes a delay in the
electromagnetic signals emitted by a satellite and received at an
observation site, e.g. on the surface of the Earth. Knowledge
of the electron density is therefore mandatory for correcting the
delays. Dual-frequency observations of the Global Navigation
Satellite System (GNSS), like the Global Positioning System (GPS),
can be used to determine the slant total electron content (STEC),
which is the integral of the electron density along the path of
the signal between the transmitter and the receiver. Other space-
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geodetic observation techniques provide further information on
ionospheric parameters. Satellite altimetry, for instance, yields the
vertical total electron content (VTEC) over the oceans (Brunini et al.,
2005).

To calculate ionospheric parameters such as the electron density or
VTEC from space-geodetic observations, an appropriate parame-
terization has to be chosen. Today the existing ionospheric models,
e.g. the VTEC models of the International GNSS Service (IGS) (Dow
et al.,, 2009), are generally reported globally by spherical harmonic
expansions with a temporal resolution of 2 hours (Hernédndez-
Pajarez et al.,, 2009). The International Reference lonosphere (IRI)
is an empirical climatological ionospheric model which allows the
calculation of ionospheric parameters at any point at any time (Bil-
itza and Reinisch, 2008). Since at present IRl does not consider
space-geodetic observations, it can be used as a reference model
for improving ionospheric parameters from GNSS dual-frequency
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observations. However, the ground stations with satellite receivers
are not evenly distributed over the surface of the Earth. Some
parts are densely covered by receivers. A local representation of
the electron density or the VTEC by localizing base functions with
compact support is therefore appropriate.

Schmidt (2007) proposed a regional B-spline modelling. The tensor
product of the B-splines is used for a three-dimensional represen-
tation of the electron desity of the ionosphere at different time
epochs. STEC observations are applied to determine corrections
to the electron density of IRl at different time epochs for points
in a spatial grid defined by latitude, longitude and height. Nu-
merical studies using simulated STEC data computed by IRI are
presented by Zeilhofer et al. (2009). The unknown parameters
are simultaneously estimated by least-squares adjustment. Gaps
exist in the data and to avoid a singular matrix of normal equa-
tions, prior information by IRl data is introduced. Instead of
the three-dimensional B-spline surface at different time epochs,
a four-dimensional representation in space and time has been
suggested, Schmidt et al. (2008).

A two-dimensional representation of a surface by the tensor prod-
uct of two B-splines is a well known task of reverse engineering.
Generally, nonuniform rational B-splines (NURBS) are applied, Pieg!
and Tiller (1997), Farin and Hansford (2000), Rogers (2001). Three-
dimensional coordinates of points on the surface of manufactured
objects are measured and approximated by a NURBS surface for
computer aided design, cf. Varady et al. (1997). A nonrational
B-spline surface includes the representation of a NURBS surface
by introducing homogeneous coordinates. We will therefore work
in the following only with B-spline surfaces. The representation
of a B-spline surface by the tensor product leads to a linear re-
lation between the given coordinates and the unknown control
points, after the knots of the B-spline basis functions have been
selected and the location parameters of the measured points
have been determined. The linear relation gives the observa-
tion equations of a linear model where the control points are
simultaneously estimated by least-squares adjustment, Farin and
Hansford (2000) p. 186, Rogers (2001} p. 193.

A large number of given points generally requires a large number
of unknown control points which have to be estimated. If v X v
control points of a two-dimensional surface are simultaneously
estimated, the Cholesky factorization of the v? x v? matrix of
normal equations leads to a computational complexity of O(v®),
Koch (2009a). The computational burden for a simultaneous
estimation is therefore quite heavy. Nevertheles, Sarkar and
Menq (1991) and Lai and Lu (1996), for instance, use it as a part of a
nonlinear adjustment in order to estimate the location parameters
of the measured points in addition to the control points. Ma and
Kruth (1998) determine the weights of the control points first and
then simultaneously estimate the control points.

To avoid the computational load of the simultaneous estimation
of the control points, the lofting also called skinning method
has been proposed, Tiller (1983), Piegl (1991).
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It consists of

interpolating cross-sectional isoparametric curves for determining

the control points of a B-spline surface. Instead of interpolating
the cross-sectional curves, the curves can also approximate the
measured points by a least-squares fit. This approach has been
called approximate lofting by Park (2001). First lofting by curve fits
and then as a final step the simultaneous estimation of the control
points have been used for a surface reconstruction from direct
slicing of point clouds, Yuwen et al. (2006). Yang and Qian (2007)
introduced heterogeneous lofting to represent surfaces of objects
which are composed of different materials.

The lofting method by cross-sectional curve fits reduces the nu-
merical complexity from O(v®) for the simultaneos estimation to
O(v?) (Koch ,2009a). However, the lofting method is considered
to be an approximation of the simultaneous estimation of the
control points of B-spline surfaces, Piegl and Tiller (1997) p. 419.
But Koch (2009a) proved that the estimates of the control points
by the lofting method using cross-sectional curve fits and by the
simultaneous estimation give identical results.

The tensor product for a two-dimensional B-spline surface is readily
generalized to three or higher dimensions by adding additional
summations and B-spline basis functions. A three-dimensional
B-spline surface is needed not only for representing quantities
depending on three coordinates, like the electron density men-
tioned above, but also for deformation analysis or for dynamical
problems of reverse engineering where surfaces vary with time
(Koch ,2010a). The equivalence of estimating the control points
by the lofting method and by the simultaneous estimation also
exists for three-dimensional B-spline surfaces (Koch ,2010a). If v3
unknown parameters have to be estimated, the numerical com-
plexity becomes O(v*) which computationally is still manageable.
This is important if the accuracy of fitting B-spline surfaces is inves-
tigated by Monte Carlo simulations (Koch ,2009b). The complexity
for the simultaneous estimation increases to O(v°) which is more
than the square of the one of the lofting method. If possible, the
simultaneous estimation should be avoided.

For a general appoach, B-spline surfaces of n dimensions are
introduced here. An analytical proof is given and confirmed by a
numerical example of afour-dimensional surface that the estimates
of the unknown control points by the lofting method using cross-
sectional curve fits are identical with the simultaneous estimates
of the control points. The numerical complexity becomes O(v"*1)
for estimating v" control points by the lofting method and O(v>")
in case of the simultaneous estimation. The lofting method needs
compatible isoparametric curves of the surface representation
with respect to an identical number of given points, an identical
number of knots and an identical degree for the B-spline basis
functions. Thus, n coordinates of points in an n-dimensional grid
have to be given together with the quantity to be represented
by the B-spline surface. Otherwise, the lofting method cannot be
applied.

Asmentioned above, Schmidt (2007) and Zeilhofer et al. (2009) took
STEC data and prior information to determine the control points of



three-dimensional B-spline surfaces at different time epochs. The

simultaneous estimation therefore has to be applied. However, it
will be shown that the lofting method can be used to extend a
lower dimensional surface obtained by a simultaneous estimation
to a higher dimensional one, for instance a three-dimensional
surface to a four-dimensional one, which is needed for a local
representation of the electron density of the ionosphere. This
takes less computational effort than applying the simultaneous
estimation only.

The paper is organized as follows: Section 2 defines the B-spline
surface in n dimensions. Section 3 presents the estimation of
the unknown control points by the lofting method, Section 4
the simultaneous estimation and the proof of the equivalence of
both methods. Section 5 shows the extension of a simultaneously
estimated B-spline surface of lower dimensions to higher dimen-
sions by the lofting method. Section 6 gives the example of a
four-dimensional surface to numerically confirm the identity of the
results by the lofting method and the simultaneous estimation.
The paper finishes with conclusions.

2. B-spline surface in n dimensions

A B-spline surface in n dimensions depends on the n parameters,
say &, &, ..., &, and is expressed by the tensor product of n
B-spline basis functions Ni ¢, (&1), Niyg,(€2)s - -+ Niyg, (€n) of

degrees g1, g2, ..., q, with

mq - my

s(& &L &)=Y Y Z Niyg (61)Niyg, (&)

i1=0i=0  i,=0

- Niwga ($a)Pi i, i1 (H
and
X1(E‘Ir62:---rén)
x2(&1, 82, -+ &n)
(&G, &, &)= 2)
(&, &, &)
H(&, &, .00 )

wheres(&y, &, ..
dimensional rectangular or curvilinear coordinates x1, X2, . . ., X,

, &p. The (n + 1)st
coordinate H is the quantity, like the electron density in the

., &;) denotes a point on the surface with the n-

depending on the n parameters &, &, . ..

ionosphere, to be represented by the B-spline surface. The points
Piiy.iy = |X1i1:X2i2: cea Xnigs H11 12...i,,|,

with i1 €{0,...,m}, i e{0,...,m},...,

ine{0,....m,} 3)

are the unknown control points. The B-spline surface approxi-
mately follows these points.

The B-spline basis functions are efficiently computed by a recursion
formula due to Cox (1972) and de Boor (1972) for the half-open
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interval for & € [&;, &1i41) where &;; denotes a knot. The
number m4 in (1) depends on the number of knots chosen for &
and on the degree g¢. The same holds true for the parameters

52:'~'r<.'(n-

leads to nonuniform B-splines in contrast to uniform ones which

Generally, the knots are not equally spaced which

are equally spaced. We will work with knot vectors which have
the property of endpoint interpolation. The points s(&p, & =

const, ..., &, = const) with & variable and &, ..., &, fixed
define an isoparametric curve as a function of & on the B-spline
surface. Accordingly, s(& = const, &, & = const, ..., &, =
const), ..., s(& = const, & = const, . . ., &,) are isoparametric

curves depending on &, ..., &,. The isoparametric curve for &
shall point along the x;-axis, the one for & along the x;-axis and
so on and for &, along the x),-axis.

Introducing weights for the control points leads to a nonuniform
rational B-spline (NURBS) surface. However, a NURBS surface can be
represented by the nonrational B-spline surface (1) if homogeneous
coordinates are introduced. Thus, the B-spline surface includes
the representation of a NURBS surface so that we will work with
B-spline surfaces.

A B-spline surface shall be applied for a local representation of
the electron density of the ionosphere. The density is denoted
by N, and depends on a three-dimensional position and on the
time. The position is given in a geographical geocentric coordinate
system. The longitude is linearly transformed into the interval
[0, 1] to obtain x, the transformation of the latitude gives y, the
height above the Earth’s surface leads to z, thus x; = x, x, = y,
x3 = z in (2). The fourth coordinate follows with x4 = t from
the transformation of the time t and the fifth one with H = N,
from the electron density N. A four-dimensional B-spline surface
is therefore introduced to represent the density N, (x, y, z, t). For
a graphical depiction of the surface, N, may be computed with
respect to x and y for fixed values of z and t.

3. Estimation by lofting method

Let the n-dimensional rectangular or curvilinear coordinates

X1, X2, ..., X, together with H of e; X e; X ... X e, points
$(&1ay, $2050 - - -1 &na,) be given, where &g, with a1 €
{1,...,6‘1}, 5202 with a, &€ {1,...,6‘2}, e Enan with
a, € {1,..., ey} denote the location parameters. Let the points
$(&1ay0 €20y - - -+ €nay,) be arranged in an n-dimensional grid. It

means that the quantity H is given, for instance, by measurements
at the points in the grid. An n-dimensional B-spline surface shall
befitted to the given points so that the control points p; ;, ;. with
ihe{0,....m}, i €{0,...,m}, ... i, €{0,...,m,}
have to be estimated for ey > my + 1, e, > my + 1, ...,
e, >m,+1.

If the given points 5(&14,, 24y, -+ - €na,) are equally spaced,
the location parameters & q,, $2a,, - - - €na, May also be equally
spaced. If not, the location parameters can be determined by the
chord lengths of the given points, cf. Koch (2010a). It means

v
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that for computing &4, with a1 € {1,..., e} the distances
between the points at the surface defined by H in the direction of
the xq axis of the grid are determined for fixed valuesof x2, . . ., X,.
This is repeated for all values of x3, . . ., x,, and the mean of these
values gives &, . Correspondingly, &, , - . ., pq, are computed.
Eq. (1) then gives a linear relation between the unknown control
points p;,;, ;, and the given points 5(&1a11 €2ay1 - - -1 €nay, ) SO that
the observation equations for estimating p; ;, ;, inalinear model

are obtained

mi  my mn

D D Y Nigr(E10)Niygy (E20,) - - Niyg, (na,) -

1=05=0  in=0
Piiy.iy = S($1ay1 S20ys -+ -+ Spay) +
e(&ayr S2ayr - -1 Snay)s
ae{l,....ei},axe{1,..., e},
aa,€{1,...,e,} ()

where e(&14,, €24y, - - -+ &na,) denotes the vector of errors of
S(&1ay0 E2050 - -1 &nay ) - Ea. W resultsineq X e X ... X e, linear
equations for determining (my + 1) x (my +1) x ... x (m, +1)
unknown control points.

The lofting method by cross-sectional curve fits is applied for the
estimation. Eq. (4) is therefore rewritten by

mq
(1 —
Z Ni1 q1 (5101 )bi1 aya3..ap — 5(51(11 , 52021 ceey 5nu,,) +
i1=0
6(5101 ’ EZuzv ey Enan) (5)
with
m3
@ (1)
Z NizQZ(EZUZ)bH ipaz...ap = b[1aza3..,a” (6)
ir=0
and so on, with finally
mp
-1
Z Ningo ($nan)Piyiyis.cin = bg:izi;,.a" @)
in=0
where bE:LZU?,---Un denotes the control points of the isoparametric
curves s(&1, & = const, ..., & = const), bf—f),-za}_u“ the con-

trol points of the isoparametric curves s(& = const, &, & =
const, ..., §, = const) and so on, finally p;;,;, ; the con-
trol points of the isoparametric curves s(&; = const, & =
const, ..., &,).

(1)

i1a>03...a, are estimated first by means of the

The control points b
observation equations (5). They read in matrix notation

N@E)B" =S+ E ®)
—
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where the ey x (mq + 1) matrix N(&;) of the B-spline basis

functions is defined by

N0q1(511) Nm1q1(<-.(11)

NO‘M (5191) Nm1q1 (5191)

the (my + 1) x (e2 X e3 X ... X e,) matrix B of control points
by

(1) (1) (1)
0 by 4 b0921 1 b01e3 1
Bl = |
(1) (1) (1)
bm111...1 bm1ez1 1 miles..1
M M (1)
bOeze3 1 b011, en bOez1. en
(1) (1) W]
bm19283 1 bm111 en bm1ez1 en
(1) (1)
b01e3. en bOeze3...e,,
............................. ) (10)
Mm 1
bm1193. en s bgn:eze}..e”
and with

5(5101 ’ 52:12: 53113: cee Ena") = Sayasa3...ap (11)

the ey X (e2 X e3 X ... X e,) matrix S of given points by

S =
S111..1 Stey1..1 S1te3..1 Stejes..1
Seq11..1 Sejert..1 Seqles..1 Sejejes..1
S111..en 51e21 en 51193 en 519293 en
56111 en 591821 en 591193 en 5919293...en
(12)

Finally,the e x (e2 X e3 X ... X e,,) matrix E of errors is obtained
with replacing s by e in (11) and (12).

Eq.(8) represents the observation equations of a multivariate linear
M)

i1azas...ap
curves s(&, & = const, . . ., &, = const) are estimated e, times

model by which the control points b of the isoparametric

for each value of & up to e, times for each value of &,. The
A (1
estimate 8" of B follows by, cf. Koch (1999) p. 241,

BY = (N(&YN(E)TN(&)'S . (13)

The matrix N(&) has full column rank so that the matrix
N(&)'N(&) of normal equations is regular and gives a unique
solution if the given points are evenly distributed like on grids.



In the next step, (6) is used as observation equations for estimating
the unknown control points bfﬁz),‘za}_an of the isoparametric curves

s(& = const, &, & = const, . . ., &, = const). Applying matrix

notation we find

A

N(&)BY =BY + Ey, (14)

where the e; x (my + 1) matrix N(&) of the B-spline basis
functions is defined by

Nog, (§21) Ninyq,(821)

the (my + 1) x ((m1 + 1) X e3 x ... e,) matrix B®) of control

points by

) @) (2)
bgor..1 bm101 1 b0093 1 Nog, (¢m) Ninog,(S1)
B = | NE) =1 o . 0)
() () (2)
b0m21 1 bm1m21 1 bOsz3 1 NOQn(énE‘n) Nann(Enen)
@ @ 2
mq0e3...1 b001,, en bm101. en
.................................................... the (m, +1) x ((my +1) x (my+1) X ... x (m,_1 + 1)) matrix
(2) 2 (2) e
mimyes...1 b0m21 en mymy1...ep Pby
2 @)
bOOe3, en bm1Oe3. en
............................. y (16) pOOO..AO Pm100 0 pOsz 0
(2) 2 p—
b e e, by e e P=|
Pooo...m, P ,00...m, Pomy0...m,
the e2 X ((m1 + 1) x e3 X ... x e,) matrix B") of estimated Pmimy0..0 Poom; .0 Pimyom;..0
controlpointsby
pm1m20...m,7 pOOM3 mp pm1OM3 mp
~(1) (1) ~(1) pOm m3...0 Pnimym .0
A boys.. bm111 1 b0193...1 o 1
Bl = | '
~(1) (1) ~(1) Pomyms...m, Punymyms...mp
bOez1...1 ce bm1 ex1..1 bOeze3...1
5(1) 6(1) [7(1) .
miles... 011...en mi...en the e, X (M1 +1) X (ma+1) x ... % (my_1 + 1)) matrix B"~
: i1') ................ A .(.1 ) .............. : (.1.) ............ by
bm1 eyes.. 1 b0e21 en bm1 exl...ep
~(1) A(1)
b0193 en bm11e3 en ~(n—1) ~(n—1) ~(n—1)
............................ A7) Bn-1 0001 mo0-1 0ma0-.1
B T e o e
€263+ M1€283-€n 000...ep m100...ep 0my0...ep
B("—U B(n_1) B("—U
andthe e; x ((my + 1) X e3 X ... x e,) matrix E ;) of errors mym30..1 00ms3...1 m10m3..1
N e PP
of B by replacing b( ) in (17) by eV, 2 (n=1) 2~ (n=1) 2 (n=1)
. ! 5 . mymy0...ep 00ms3...ep m10m3...ep
Eq. (14) represents the observation equations of a multivariate A R
linear model by which the control points bg)izg}_an of the isopara- b0m2m3 1 mymyms3...1
metric curves s(& = const, &, & = const, . . ., &, = const) are PIRETIARRILERERR e e ,
estimated m1 4 1 times for each value of &, e3 times for each IAJE)’:"_Z,,)B en bf::mzlm}..e,,
—~
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value of & up to e, times for each value of &,. The estimate B(z)
of B follows by

BY = (N(&)N(&)) ' N(&) B . (18)

Correspondingly, the estimates of the control points of the
isoparametric curves continue, until in the nth and final step,
(7) is used as observation equations for estimating the un-
known control points p; ;. ; ©of the isoparametric curves
s(& = const, & = const, . .., &,). The observation equations

are given in matrix notation by

NP =B"Y 4+ Ey, (19)

wherethe e, x (m, + 1) matrix N(&,) of B-spline basis functions

is given by
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andthe e, x ((m T1) X (my +1) X ... x (m,_q + 1)) matrix
Eéln_” of errors of B~ by replacing B(n_” in (22) by eln=1),
Eq. (19) represents the observation equations of a multivariate lin-
ear model by which the control points p; ;. of theisoparametric
curves s(&; = const, & = const, . . ., &,) are estimated my + 1
times for each value of &, m, + 1 times for each value oii & up
to m,_1 + 1 times for each value of &,_1. The estimate P of P
follows by

P = (N(&)N(&)) " N(&) B | 23)

The matrix E of residuals follows from (19) and with the estimate
P from (23) by

B = N(&,)P @4)

and so on, from (14) by
B = N(&)B? (25)

and finally from (8) by
E=N@EB"—s. 26)

The matrix E of residuals, i.e. of the estimated errors E of the
coordinates of the given points is needed to compute the variance
factor of the estimation which leads to the estimated variance of
the measurements, cf. Koch (2007) p. 85. The standard deviation
of the measurements gives an indication about the quality of the
fit of the B-spline surface to the given points. A minimum standard
deviation should be searched for by selecting a minimum number
of control points and minimum degrees for the B-spline basis

functions.
If points $(&1w, » Sy - - -+ Enw, ) With given location parameters
Eiwyr €owye o Snw, shall be computed on the estimated B-

spline surface, the matrices N(&1w,), N(&w,), - N(&aw,)
corresponding to (9), (15) and (20) have to be computed. Egs. (24)
to (26) then give

B = N(&,, )P, @7
Bl = N(&,,)B? 28)
5, = N(&., B 29)

Any points SW on the estimated surface may be computed by
these equations.
The estimates (13) are efficiently computed by one Cholesky
factorization of the (my + 1) x (mq + 1) matrix N(& ) N(&) of
normal equations followed by e; X e3 X ... x e, back solutions,
cf. Koch (1999) p. 30. Correspondingly, the estimates (18) and (23)
are obtained.

—~
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We assume for an approximate assessment of the numerical

complexity of the computations in case of a large number of given
points

errRexN...xe,xm+Tam+1x~. ..

xm,+1xv. 30)

The complexity of the Cholesky factorization is O(v>) and of one
back solution O(v2). By repeating the back solutions v~ times,

the numerical complexity O(v"*")

is obtained for estimating
the v" control points of an n-dimensional surface by the lofting
method. Under the assumption of (30), the complexity of esti-
mating the control points of a three-dimensional surface by the
lofting method is O(v*) and of a two-dimensional surface O(v3),
Koch (2009a) and Koch (2010b).

Conditions have to be fulfilled to apply the lofting method. Eq. (2}
introduces the coordinates xy, x2, ..
parameters &, &, ..., &,.
parameters as functions of all coordinates. However, the depen-

., Xp as functions of the
Inverting these relations gives the

dency of the parameters has to be restricted to one coordinate,
i.e. &(x1), &(x2), ..., &i(xn), to use the observation equations
(4). Furthermore, each isoparametric curve gets an identical knot
vector and an identical degree for the B-spline basis functions, and
the coordinates of the e1 X e, X ... X e, given points have to
be ordered in an n-dimensional grid.

4. Simultaneous estimate of control points and proof of equivalence

By generalizing the result of Koch (2010b) for expressing the tensor
product by Kronecker products, we conclude that the observation
equations

(N(E) ® ... ® N(&) ® N(&))vecP = vecS + vecE (31)

are equivalent to the ones of (4) with the (my + 1) x ((m2 + 1) X
(m3+1) x...x (m, + 1)) matrix P of unknown control points
defined by

Pooo..0 Pom,0...0 Pooms..0
P o=
pm100.“0 pm1/n20...0 pm10m3...0
Pomyms...0 Pooo...m, Pom;0...m,
pm1m2m3...0 pm100 mp pm1m20 mp
P00m3 mp . p01n2m3...mn
............................... . (32)
Pm10m3...mn pm1m2m3...mn
To show the equivalence, we set a1 = a, = -+ = a, =

1 and obtain with the definition of the Kronecker product, cf.



Koch (1999) p. 18,

Nog, (Sn1) - - - Nog;(¢31) Z Niyq,(621)

ir=0

my
Z Niygi ($11)Psy 1000+

i1=0

+Nog, (€1) - - Ninygs (§31) D Niyg, (&21)

ir=0

my
Z Niygi (E11)Pimy 0 T

i1=0

FNomygu () - Nogs (E31) D Niyg, (E21)

ir=0

my
Z Niygr (E1)Psy0my T

iy =0

+ N (E1) - Ninygy (1) D Nig, (1)

ir=0

m
Z Niyq,($11)p, Hmy..mp,

i1=0

S11.1 + e (33)
which is the first observation equation of (4). By setting a1 €
{1....,e1}, a2 € {1,....e2},..., a, € {1,...,e,}, all
observation equations are obtained.
The simultaneous estimate vec P of vecP of the (m1 +1) x (m +
1) x ... x (m, + 1) unknown control points results from (31) with

veeP = [(N(&) ® ... ® N(&) ® N(&))
(N(E) ® ... ® N(&) @ N(&))T
(N(&) ® ... ® N(&) ® N(&)) vecS . (34)
For an assessment of the numerical complexity of solving (34), we
assume again like in (30)
m+lasm+lx...om+1=xv (35)
and obtain the complexity of O(v3”)forsimultaneouslyestimating
the v" control points of an n-dimensional surface. The complexityis
O(v) for simultaneously estimating the control points of a three-
dimensional surface and O(v®) for a two-dimensional surface,
Koch (2009a) and Koch (2010b). As mentioned in the previous
section, the corresponding values for the lofting method are
O(v") and O(V3). If possible, the simultaneous estimate should
therefore be avoided in case of many unknown control points
because the lofting method gives identical results not only for
two- or three-dimensional surfaces but also for n-dimensional
ones.
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To show it, we expand (34) by the rules of the Kronecker product,
cf. Koch (1999) p. 18, and obtain

vecP = (M(&,) ® ... @ M(&) @ M(&))vecS  (36)
where the (m, + 1) x e, matrix M(&,) is given by
M(&) = (N(&)N(E) TN
Mo+ (&n) Moe, (&)
= N EY))
Mmlﬂ(én) MInnEn(En)
the (my + 1) x e, matrix M(&) by
M(&) = (N(&)IN(&)N(&)
Moi1(<2) Moe,($2)
= . (38)
Miy1(&2) Moz, (§2)
and the (my + 1) x ey matrix M(&) by
M(&) = (N(&)N(&))IN&)
Mo1(&1) Moe, (1)
= 39)
Mii1(&1) Moy eq (&1)

The first equation of (34) gives with (13), (18) and (23) the estimate

Pooo...o

Mo1(&n) - . - Mor (E3)Mor ($2)(Mor (1) s111.0 + -
+Moe, ($1)Seq11..1) + - ...

+Mp1(&n) - . Mo1(&3)Moe, ($2)(Mo1(&1)S1e,1.0 + -+ -
+Moe, ($1)Serert.n) + -

FMp1(&n) - .. Moesy (83)Mo1 (§2)(Mo1(&1)S11e5.0 + -+ -
+Moe, ($1)Seqre5.0) + - - -

+Mo1(&n) - . Moey ($3)Moe, (£2)(Mo1(&1)S1epe5.0 + - - -
+Moe, (§1)Se eres..1) + - - -

+Moe, (&n) - .. Mo1(&3)Mo1(E2) (Mo1 (1) 51116y + - -
+Moe, ($1)Sei11.ep) + - - -

+Moe, (&) - - - Mo1(E3)Moe, (&) (Mo1(&1)S1ey1. ey + - - -
+Moe, (€1)Serex1.00) + - - -

+Moe, (8n) - - - Moe; (§3)Mo1(&2)(Mo1(&1)S11e5.e + - - -
+Moe, ($1)Ser1e5..00) + - -

+Moe, (S) - - - Moes (83)Moe, (82)(Mo1(§1)S1ese5...ep + - - -

+MOe1 (E‘] )591 9293...en) =
\\//
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Mor(Z,) - - - Mot (&) (Mor (&)Bory ¢ + ..

~(1)
+Moe, (82)bge1.1) + - -

+Mor(&3) - - Mo, (&)(Mor (£)Bgre, 1+ .

+M0e2(52)i’£)2293...1) +.

+Moe, (&) -+ Mot (&) (Mot (£)Boy_a, + -
+M092(62)Bge)21men) t

+Moe, (&) - Moey (&) (Mor (&)Bore, o) + -

~(1)
+M0e2 (EZ)bOeze}..en ) =

Mot (&) . (Mor (&)bogy 4+
+Moes (&)Boge, 1) + -

Moo (&) (Mor (E)Bigy o + -
+Moe, (&)boge, ,) =

A~ (n—1) ~(n—1)

Mo1($n)bogo. 1 + - - - + Moe, (§1)Dooo. e, = Pooo.o-  (40)

By writing down in addition the equations for Pyog 1, - - f,OOO.“m”'

1 Piny00..0r -+ Pmy0o..mpe -0 Pomy0..00 - = Pom,0...m, UP 1O
f)m1 mym3...my» ONE reCOgnizes that P is obtained in agreement with

(23) of the lofting method so that both estimations are equivalent.
The residuals follow with (31) from

vecE = (N(&) ®. .. @ N(&) @ N(&))vecP —vecS . (41)

The obser\iation equations (4) and (31) are equivalent and the
estimates P of the control points agree. The matrix E of residuals
from the simultaneous estimation must therefore be identical with
the one obtained by the lofting method from (24) to (26). The
same holds true for computing the points vecgw with the location

parameters &1y, , oy -
They follow from (41) by

., &ow, onthe estimated B-spline surface.

veeS, = (N(&,) ® ... ® N(&,) ® N(&1,,))vecP (42)
and agree with the points from (27) to (29) by the lofting method.

5. Extending B-spline surfaces from simultaneous estimates to
higher dimensions by the lofting method

Leta k-dimensional B-spline surface be depending on the k param-
eters &1(x1), &2(x2), - - ., &(xk). Let the conditions mentioned at
the end of Section 3 be fulfilled so that the lofting method can be
applied to fit a k-dimensonal B-spline surface to the quantities H.

v
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We will again assume that the conditions for applying the lofting

method are fulfilled. The quantities H, however, shall not be given
atthe eq X e, X ... X e, points but at different positions or given
by functions of different positions. Thus, the observation equations
(4) cannot be formed so that the simultaneous estimation of the
control points is needed.

The lofting method gives a unique solution as mentioned in con-
nection with (13). The solution of the simultaneous estimation is
also unique if its matrix of normal equations is regular. It then
agrees because of the uniqueness with the solution of the loft-
ing method. The solution can therefore be assumed as being
computed by the lofting method. If we want to extend the repre-
sentation of the quantity H from the k-dimensional surface to the
(k 4+ 1)-dimensional one, we only have to repeat the simultaneous
estimation my¢ times and apply the lofting method. To assess
the numerical complexity of this method, the approximations (30)
and (35) are assumed again. The numerical complexity of simul-
taneously estimating v¥ control points is O(v3¥). By repeating
the estimates v times, the complexity O(v3¥*1) is obtained. The
complexity does not increase by applying the lofting method be-

cause it is only O(v<*1)

. The numerical complexity of increasing
a k-dimensional surface obtained by the simultaneous estimation
toa (k + 1)-dimensional surface using the lofting method is there-

k+1

fore O(v3**1). simultaneously estimating v¥*! control points for

a (k + 1)-dimensional surface gives a complexity of O(v3*3).
Computational time is therefore saved by the lofting method. This
holds also true when increasing a k-dimensional surface to k + 2,

k + 3, ..., ndimensions,

The method of increasing dimensions will be applied to locally
improving IRl. As mentioned in the introduction, Schmidt (2007)
and Zeilhofer et al. (2009) estimated three-dimensional B-spline
surfaces to represent the electron densities of points in identical
spatial grids at different time epochs. They used STEC data and
prior information to avoid a singular matrix of normal equations
in a simultaneous adjustment. This kind of data does not allow to
apply the lofting method. Instead of a three-dimensional B-spline
surface at different time epochs, a four-dimensional surface is
more appropriate. As explained above, it can be obtained by the
lofting method. This requires a numerical complexity of O(v'?)
in comparison to O(v'?) for a complete simultaneous estimation.
The simultaneous estimation first and then the lofting method
will therefore be applied for future analysis of STEC data to locally
improve IRl

6. Example

The identity of the control points of a four-dimensional B-spline
surface computed by the lofting method and the simultaneous
estimation shall be confirmed by a simple example. It will show
the potential of a four-dimensional B-spline surface to represent
data, but it is not intended to set up a model for IRI. The electron
density N, with dimension [electrons/m3] of the ionosphere from



IRI, version 2007, Bilitza and Reinisch (2008), is calculated for 10
points of longitudes 270°, 275° to 315°, for 10 points of latitudes
-25°,-20° to 20°, for 10 points of heights 100 km, 150 km to 550 km
and for 12 points of times 0 h, 2 h to 22 h UT for June 21, 2007. The
data include the equatorial anomaly with maximum variations of
Ne between the longitudes 280° to 300°, at the height around
300 km and at the time around 18 h. As an example of large

variations of I, the height z=300 km and time t=18 h are chosen.
The global variations of N, at that time and height are shown in
Figure 1. The 10% 10 points with given densities N, from IRI lie
within the white box and are depicted in black in Figure 2 with
respect to the x, y plane, where x is expressed by longitude and y
by latitude. The 10X 10 points in black with height z=350 km and
and time t=20 h are shown in Figure 3 as a second example with
large variations of N.

latitude
@
g
[ electrons/m? x 10'0]

longitude

Figure 1. Global distribution of the electron density N, calculated
from IRI for June 21, 2007 for height z=300 km at time
t=18 h UT. The points with given densities N, within the
white box are shown as black points in Figure 2.

-20
-25 270

Figure 2. Electron densities N, of given points in black and isopara-
metric curves from points computed on the surface in blue
for height z=300 km and time t=18 h.
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Figure 3. Electron densities N, of given points in black and isopara-
metric curves from points computed on the surface in blue
for height z=350 km and time t=20 h.

Afour-dimensional B-spline surface is fitted to the 10X 10x 10X 12
given points of the spatial and temporal grid first by the lofting
method with (13), (18), (23) and then by the simultaneous es-
timation with (34). The points are equally spaced, the location
parameters are therefore also chosen to be equally spaced. The
quality of the fit is judged by the square root of the variance factor
of the electron density, i.e. by the standard deviation with which
the electron densities of the given points are approximated by the
B-spline surface. It is computed with (24) to (26) by the residuals
of the lofting method and with (41) by the residuals of the simul-
taneous estimation. A small standard deviation with few unknown
control points is desirable for a good fit to avoid oscillations of
the B-spline surface between the given points. It has been found
with m1=5, my=7, m3=8 and m4=10, i.e. with 2 800 unknown
control points, and with the orders g1 = ... = g4 = 3 in (4).
The maximum value N, of the 10x10x 10X 12 given points is
1.11x10'?, the minimum 5.27 x 108, The standard deviation of the
fitis 1.43x10'" which is large in comparison to the maximum and
minimum value of N,. It is caused by the large spacing between
the positions of the given points along the longitude, latitude,
height and time. A denser grid of points reduces the standard
deviation of the fit. Such a grid has to be chosen for modeling IRI.

To get an impression of the shape of the four-dimensional surface,
a spatial and temporal grid of 26 X 26 X 19X 23 points is computed
by (27) to (29) of the lofting method and by (42) of the simultaneous
estimation on thefitted surface. Itis represented with respectto the
X, Y plane by isoparametric curves for the parameter &; obtained
by connecting the points on the surface with equal values of y by
straight lines. The grid in the x, y plane for the computed points
differs from the grid of the given points. The isoparametric curves
are depicted in blue in Figure 2 for the height z=300 km and time
t=18 h and in Figure 3 for the height z=350 km and time t=20h, i.e.

v
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for the values of z and t for which the given points are shown in
Figure 2 and Figure 3. The results indicate that the B-spline surface
is smooth and does not oscillate between the points with given
densities. Figure 4 depicts the isoparametric curves for the height
z=325 km and time t=17 h in red as well as t=21 h in blue, which
means at a height and a time for which no points with electron
densities are given. Figure 4 shows how the density at height
z=325 km is changing between t=17 h and t=21 h. The surface
in red lies close to the surface of Figure 2 and the surface in blue
close to the surface of Figure 3. It should be mentioned that points
on the four-dimensional B-spline surface may be computed at any
position and time.

Figure 4. lsoparametric curves from points computed on the surface
for height =325 km, time t=17 h in red and t=21 h in blue.

Using double precision for the computations, the electron densities
of the control points and of the points on the surface obtained by
the lofting method and the simultaneous estimation agree with at
least 12 significant digits. The standard deviation of the electron
densities agrees with 15 digits. This confirms the analytical proof
that the lofting method and the simultaneous estimation give
identical results.

7. Conclusions

Estimating the unknown control points of an n-dimensional B-
spline surface by the lofting method using cross-sectional curve
fits is much faster than the simultaneous estimation. It is shown
by an analytical proof and confirmed by an example of a four-
dimensional surface that the results of both methods are identical.
The simultaneos estimation should therefore be avoided if it
is possible. If not, the results of simultaneously estimated B-
spline surfaces of lower dimensions can be extended to higher
dimensions by the lofting method, thus getting more efficient
algorithms. An application is the simultaneous estimate of the
control points of three-dimensional B-spline surfaces for a local

e
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representation of the electron density of theionosphere at different

time epochs. The representation can be extended to a four-
dimensional surface by the lofting method. This method takes less
computational time than solely using the simultaneous estimation.
It will be used for future analysis of STEC data to locally improve
IRI.
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