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Abstract:

Levelling is the most precise technique for height difference measurements in geomatics engineering. Various systematic errors affect
precise levelling observations and reduce the precision of the observed height differences. This study investigates digital levels residual
compensator error and observational method for its elimination. For this purpose the levelling data, which was collected with Zeiss
DiNi 12 digital levels, was analysed. There are different statistical and spectral methods that can reveal the presence of systematic
errors in levelling results. In this study, the Least Squares Spectral Analysis (LSSA) method is used. The analysis confirmed that using
alternating pointing method (BFFB, FBBF) instead of usual observation routine (BFFB) will eliminate the Zeiss DiNi 12 digital levels residual
compensator error from section height differences and discrepancies. In this way, it does not matter using different instruments in the
forward and backward section runs and the discrepancies can be used to investigate other systematic errors.
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Hence, the precision of the measured height differences is de-
creased (Rouhiainen and Takalo 2008). The scale of the code is a
function of temperature and a constant, both of which are deter-

1. Introduction

mined by the staff calibration. To check the behaviour of the whole
During the last two decades, the geodetic instruments have be- system, a “system calibration” procedure is used, where the staff

come more automatic and electronic; finely constructed and readings are taken from different sectors on the bar code staff and

compared with the true values obtained by a laser interferometer

externally well operating systems. The software has replaced
(Takalo and Rouhiainen 2004). The simultaneous calibration of the

more and more observer’s task. Also the levelling experienced the

similar development. The discovery of the digital levelling in the digital levelling system Zeiss DiNi12 and the bar code staff (system

beginning of the 90's really conduced the leveling into the new calibration) showed that even large graduation errors of the staff

era (Takalo and Rouhiainen 2004). A digital levelling system con-
sists of: two bar code staffs, the optical components of the level,
the compensator and the electro-optical linear array. Systematic
errors of each component affect the digital levelling observations.
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have only a small effect on the staff readings (Takalo et al. 2001).

Digital levels can be regarded as a fusion of a digital camera and
an automatic level (Figure 1). The optical components of digital
level are the same as those of an automatic level. It has a telescope
with upright image and a compensator to stabilise the line-of-
sight. Additionally, a position sensor coupled with the focus lens
may supply rough distance information. A tilt sensor observes
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the compensator position and a beam-splitter guides part of the
light to the Charge Coupled Device (CCD) sensor. The CCD array
converts the bar code staff optical image to a digital image (data)
such as a digital camera (Ingensand 2001).

Beam Splitter

Compensator

Focusing
Lens

Figure 1. Basic optical design of a digital level.

2. Residual Compensator Error

The collimation axis or line of sight is the line that connects the
centre of the cross hairs to the focal point of objective lens. The
spot bubble is not very sensitive and is not the sole means of
levelling the level. Older levels will have tubular bubbles attached
to the side of the telescope, and a tilting crew is used to level
this bubble, which then provides a horizontal line of sight in the
direction of the collimation axis. Automatic levels use an automatic
compensator, which allows the user to level the instrument with
the spot bubble only. Any small departures are compensated by
the compensator (Figure 2).
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mirror wires .
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suspended prism

Figure 2. Schematic illustration of one type of compensator.

In this device the image of the object is deflected by a fixed mirror
to pass through a prism, after which it is deflected by another
mirror to the eyepiece. The prism is suspended by wires and its
orientation changes as the telescope tube is tilted. The geometry
of the device is designed so that any tilt of the telescope tube is
compensated by a tilt of the prism and the collimation axis remains
horizontal. The compensator has a limited range (a few minutes
of an arc) and the level must be levelled reasonably well using the
spot bubble before the compensator will work correctly (Merry
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1988).
The problem to be always considered in precise levels is the com-

pensator error. The pendulum movements in precise levels are
almost linear in the range in which the pendulum is to correct the
instrument’s inclination. Manufacturers take every effort to make
the pendulum set to the horizontal as precisely as possible. Despite
adjustment to a pendulum and despite meticulous care in design-
ing and assembling the pendulum and the vertical axis system,
a tiny angular error may occur between foresight and backsight.
Provided that lines of levels are run with consistent procedures,
this angle constitutes a systematic error. The advantages of the
digital level (fast measurement, no subjective errors) help identify
this error better than ever before. In the past, these errors were
part of the random error and could not be ascertained, while now
they can be found out even if they are very small (Menzel 1998).
Precise Levelling is done in closed paths that are called loops, in
forward and backward directions. The joint component of two
adjacent loops is called levelling line. The levelling lines consist
of some sections. The section starts and ends on bench mark and
consists of some setups. In precise levelling, a levelling section
is always measured forward, i.e., in A-direction, and backward,
in B-direction. Therefore, dH is measured twice, in opposite
directions A and B. Assuming that the observations are unbiased,
the following equations are valid:

dHy=—dHg , dHx+dHg =0 ,dH = (dHs— dHB)/Z
M
where dHj is the section height difference in forward levelling,
dHgp is the section height difference in backward levelling and dH
is the section’s mean height difference.
The horizontal level as given by the compensator of the Zeiss
DiNi12 can be changed when turning the instrument from the
back staff to the fore staff. Thus, the observed height difference is
biased. While measuring the height difference, BSqg — FSy = 0,
in A-direction the back staff reading BS 4 is assumed to be correct,
but the foresight reading FS, includes the error v, (Figure 3).
The length of the sighting distances are taken as being equal.
In B-direction (Figure 4), the corresponding error is vg. Thus,
the forward and backward height difference will be obtained
according to Egs. (2) and (3). Assuming that the tilt effect in both
directions is equal (|va| = |vg| = V) then according to Eq. (4) the
difference between forward and backward measurement includes
the error (—2v). If the number of setups in forward and backward
levelling section is equal and the tilt effect is assumed equal in the
forward and backward section levelling, the section mean height
difference will be free of tilt effect (Eq. (5)) (Takalo et al. 2002).

dHAZ BSA—FSAZBSQ—(FSO-‘FVA):—VA (2)

dHg = BSg — FSg = BSy — (FSo + vg) = —vs 3)

dHs+ dHg = —(va + vg) = —2v 4
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Figure 3. Levelling in A-direction.
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Figure 4. Levelling in B-direction.

dH = (dHa—dHp)[2 = [(—va)—(—VvB)][2 = (—v+V)/2=0

(5)
Since different levels may be used in the forward and backward
runs of sections, this assumption (|va| = |vg| = v) may not
true and Eq. (5) will not be equal to zero. Therefore, the residual
compensator error (residual tilt effect) (vg-va) affects section
mean height difference.

3. Least Squares Spectral Analysis

A set of observations or results obtained from a physical process,
arranged in a specific manner, is called a data series. A data
series is called time series if the data is ordered chronologically. A
single time history representing a random phenomenon is called
a sample function (or a sample record when observed over a finite
time interval). The collection of all possible sample functions (also
called ensemble) which the random phenomenon might have
produced is called a random process or a stochastic process. If the
statistical properties (i.e., the statistical moments describing the
mean, variance . . .) of the data series defined over the ensembles
are independent of the value of the argument(s), the random
process is stationary. Otherwise, the stochastic process is non-
stationary (Bendat et al. 1971), (Blais 1988) and (Craymer 1988).
There are different statistical and spectral methods to detect the
presence of systematic errors in levelling results. In this paper,
the Least Squares Spectral Analysis (LSSA) method is used, the
efficiency of which was confirmed by many researchers (Vosoghi
1994). The least squares spectral analysis is the only method which
is able to adequately deal with non-equidistant and non-stationary
data series of geodetic levelling. The problem is as follow:
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1. Vector of observation time orargument: t = { t;} ; i
1,2,...n

2. Vector of observed values or functional values: f7 =

[f(t1) f(t2) ... f(ts)]

3. Vector of frequencies for which spectral values are desired:
w={w}t,j=12..m

The S(w;) vector is sought where the S(w) are the spectral
values of the w; frequency. The least squares spectral analysis
is an application of least squares approximation. Least squares
approximation is a case of best interval approximation. The least
squares spectral analysis is explained as follows (Vanicek and Wells
1972): in Hilbert space with L, norm with independent vector
¢ = (@1, @2, ..., ) the problem is finding the polynomial p in
subspace M that is spanned by the base vectors {1, @2, ..., @ }
as the best approximation of the vector f in Hilbert space:

df.p)=|fp|| — min (6)

m

If p = Y &, the unknown vector € and the residual vector ¥
i=1
are:

TP T
] @)

In the least squares spectral analysis the independent vector ¢ is
made of base functions: ¢ = (cos w;t, sin w;t)

p =& cosw;t+ & sinw;t ®)

where w; is known and the vector CT = [¢4, &] is evaluated by
Eq. (7) for each w;.

cos w;ty sinw;ty
coswjty sinw;t

cos w;t, sinw;t,

If the functional values (f) are discrete, the ® matrix in Eq. (7) will
be a Vandermond matrix (Eq. (9)). According to the projection
theorem, the p vector is an orthogonal projection of the vector f in
subspace M and the vector ¥ € H hasa minimum norm between
all of the vectors v which satisfies the equation f = p + v (Wells et
al. 1985). S(w;) shows the harmonic base functions sin(w;t) and
cos(w;t) ability to approximate the data series f (t). The aim of
LSSA is to minimise the norm of the residuals vector (I|v|l). When
p is the best approximation of f this norm (H \7”) will be minimum.
Therefore:

10)
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where C;! is the observation (f) weight matrix. If we rewrite the
Eq. (10} as follows, the vertical scale of all frequencies spectra will
be the same.

S(wy) = 1= {0/ G} (1n

In this case the spectral values S(w;) will be limited to the
range [0, 1] and form a normalized least squares spectrum. The
systematic effects have an accumulative behaviour and appear in
the data series as a trend with a long period and low frequency.
Therefore the significant low frequency peak in the spectrums
means that there are the systematic errors in the data series. The
null hypothesis Hy : S(w;) = 0is used to test the significance of
this decision function:

accept Hy

S(wy) { S (12)

> (1+ (ofT2 -1 reject Hy

where vis the degree of freedom (U = n — 2), nis the data length
and « is the significance level (usually 5%).

The circuit misclosures and the discrepancies between forward
and backward runs of the section height differences can be used
as functional values to construct the data series in precise leveling.
In levelling networks, the section discrepancies are invariably more
numerous than the circuit misclosures. Investigations have shown
that traces of different types of systematic errors can be found
in the discrepancies whereas some types of systematic errors
tend to cancel in the circuit misclosures. In this paper, the section
discrepancies are used as functional values of the data series. Many
parameters such as observed mean height difference of section
(H), section average slope and total number of turning points (TP)
(staff setups) in forward and backward runs can be used as data
series argument.

4. Levelling Data Analysis

This study investigates digital levels residual compensator error
and observational method for its elimination. For this purpose, the
two levelling test data sets, which were done with Zeiss DiNi 12
digital levels, were analysed. In the first data set, the observation
method for the height difference at each setup is routine (BFFB,
BFFB, BFFB, BFFB ...). The underscored B indicates that the
telescope always points to the backsight when the spot bubble is
adjusted at each station. The height difference at each setup will
be the average of two height differences (B — F1) and (B, — ).
Where (By) is the first reading backwards, (F1) is the first reading
forwards, (F2) is the second reading forwards and (B,) is the
second reading backwards. In precise levelling, the discrepancy
between these two heights difference should not exceed 0.25 mm.
Otherwise, the readings at the setup should be repeated (Figure 5).
The data of many lines were analysed. Here, the result of one of
them will be discussed as example. The results of the other ones
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BFFB alternating with FBBF

Figure 5. Measurement methods and the effect of the obliquity of
horizon.

are the same. Figure 6 shows the accumulated discrepancies of this
line. A linear trend (of about 0.84 mm/km) is considered significant.
These figures show that the discrepancies in this levelling line
accumulate and exhibit a systematic behaviour. Figure 7 shows
the normalised least squares spectrum of the section discrepancies
of this line with argument H. The low frequency significant peak
in the spectrums indicates systematic behaviour in the functional
values (discrepancies) of the data.

40
“
0.‘
E30 oo _____, ®___
= ot
P *
> .
€ 2p o oo e s e . A
g o*
o o*
o .
@ oo
5 10 ”***;;;“. *******************
i
*
0e T ‘ ‘ ‘
0 10 20 30 40
Length(km)

Figure 6. Accumulated discrepancy of a first data set sample levelling
line.

The second data set is performed by the alternating pointing
method (BFFB, FBBF) for each two sequential setups of sec-
tion (Menzel 1998). The(BFFB) method in odd setups, and the
(EBBF) method in even setups, respectively. The underscored B
or F indicates that the spot bubble of the instrument is adjusted
when the telescope is pointing at the staff indicated by the un-
derscore. The number of setups is even and often sight lengths
of two sequential setups are equal (Figure 5). Many lines of the
second data set were analysed. Here, the result of one of them
will be discussed as example. Figures 8 and 9 show the accu-
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Figure 7. Normalised least squares spectrum of a first data set sam-
ple levelling line discrepancies with Argument H.

mulated discrepancies behavior and the normalised least squares
spectrum of the discrepancies of the levelling line, respectively.
The accumulated discrepancies have a random behaviour. A very
small apparent linear trend (of about 0.08 mm/km) is considered
insignificant and not considered further. There is no significant
low frequency peak in the normalised least squares spectrum of
the line discrepancies with H as argument. This demonstrates the
random behaviour of the data series.
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Figure 8. Accumulated discrepancy of a second data set sample lev-
elling line.

In first order levelling, the maximum acceptable misclosure of a
levelling loop with L km length is 3mmvV/L. Fora levelling line it
will be the maximum acceptable discrepancy (the summation of
the line height differences in forward and backward runs) of the
levelling line. Table 1 includes the maximum acceptable errors
and line discrepancies of the First and Second levelling lines. The
results confirm the previous result.
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Figure 9. Normalised least squares spectrum of a second data set
sample levelling line discrepancies with argument H.

Table 1. Maximum acceptable error and discrepancy of the test lev-
elling lines.

first second

Maximum acceptable error (mm) 19.83 38.28
37.18 9.45
437 162.8

Discrepancy of line (mm)

One way length of line (km)

5. Conclusions

In the observation routine (BFFB), when using different levels in
the forward and backward section runs, the residual compensator
error affects the section mean height differences. If the same
instrument is used in the forward and backward runs, this error is
zero in section mean height difference, but it affects the sections
discrepancy and any investigations about other systematic errors
will be impossible using spectral analysis. By alternating pointing
method (BFFB, FBBF) for each two sequential setups of section,
residual compensator error will eliminate from two sequential
setup height differences and eliminated from the sections mean
height differences and discrepancies. Discrepancies can be used to
investigate other systematic errors. By alternating pointing method
(BFFB, FBBF), it does not matter to use different instruments in
the forward and backward section runs.
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