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Abstract:

Levelling is the most precise technique for height difference measurements in geomatics engineering. Various systematic errors affect

precise levelling observations and reduce the precision of the observed height differences. This study investigates digital levels residual

compensator error and observational method for its elimination. For this purpose the levelling data, which was collected with Zeiss

DiNi 12 digital levels, was analysed. There are different statistical and spectral methods that can reveal the presence of systematic

errors in levelling results. In this study, the Least Squares Spectral Analysis (LSSA) method is used. The analysis confirmed that using

alternating pointingmethod (BFFB, FBBF) instead of usual observation routine (BFFB)will eliminate the Zeiss DiNi 12 digital levels residual

compensator error from section height differences and discrepancies. In this way, it does not matter using different instruments in the

forward and backward section runs and the discrepancies can be used to investigate other systematic errors.
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1. Introduction

During the last two decades, the geodetic instruments have be-

come more automatic and electronic; finely constructed and

externally well operating systems. The software has replaced

more and more observer's task. Also the levelling experienced the

similar development. The discovery of the digital levelling in the

beginning of the 90's really conduced the leveling into the new

era (Takalo and Rouhiainen 2004). A digital levelling system con-

sists of: two bar code staffs, the optical components of the level,

the compensator and the electro-optical linear array. Systematic

errors of each component affect the digital levelling observations.
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Hence, the precision of the measured height differences is de-

creased (Rouhiainen and Takalo 2008). The scale of the code is a

function of temperature and a constant, both of which are deter-

mined by the staff calibration. To check the behaviour of thewhole

system, a ``system calibration'' procedure is used, where the staff

readings are taken from different sectors on the bar code staff and

compared with the true values obtained by a laser interferometer

(Takalo and Rouhiainen 2004). The simultaneous calibration of the

digital levelling system Zeiss DiNi12 and the bar code staff (system

calibration) showed that even large graduation errors of the staff

have only a small effect on the staff readings (Takalo et al. 2001).

Digital levels can be regarded as a fusion of a digital camera and

an automatic level (Figure 1). The optical components of digital

level are the same as those of an automatic level. It has a telescope

with upright image and a compensator to stabilise the line-of-

sight. Additionally, a position sensor coupled with the focus lens

may supply rough distance information. A tilt sensor observes
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the compensator position and a beam-splitter guides part of the

light to the Charge Coupled Device (CCD) sensor. The CCD array

converts the bar code staff optical image to a digital image (data)

such as a digital camera (Ingensand 2001).

Figure 1. Basic optical design of a digital level.

2. Residual Compensator Error

The collimation axis or line of sight is the line that connects the

centre of the cross hairs to the focal point of objective lens. The

spot bubble is not very sensitive and is not the sole means of

levelling the level. Older levels will have tubular bubbles attached

to the side of the telescope, and a tilting crew is used to level

this bubble, which then provides a horizontal line of sight in the

directionof the collimation axis. Automatic levels use an automatic

compensator, which allows the user to level the instrument with

the spot bubble only. Any small departures are compensated by

the compensator (Figure 2).

Figure 2. Schematic illustration of one type of compensator.

In this device the image of the object is deflected by a fixed mirror

to pass through a prism, after which it is deflected by another

mirror to the eyepiece. The prism is suspended by wires and its

orientation changes as the telescope tube is tilted. The geometry

of the device is designed so that any tilt of the telescope tube is

compensatedby a tilt of the prismand the collimation axis remains

horizontal. The compensator has a limited range (a few minutes

of an arc) and the level must be levelled reasonably well using the

spot bubble before the compensator will work correctly (Merry

1988).

The problem to be always considered in precise levels is the com-

pensator error. The pendulum movements in precise levels are

almost linear in the range in which the pendulum is to correct the

instrument's inclination. Manufacturers take every effort to make

thependulumset to thehorizontal as precisely as possible. Despite

adjustment to a pendulum and despite meticulous care in design-

ing and assembling the pendulum and the vertical axis system,

a tiny angular error may occur between foresight and backsight.

Provided that lines of levels are run with consistent procedures,

this angle constitutes a systematic error. The advantages of the

digital level (fast measurement, no subjective errors) help identify

this error better than ever before. In the past, these errors were

part of the random error and could not be ascertained, while now

they can be found out even if they are very small (Menzel 1998).

Precise Levelling is done in closed paths that are called loops, in

forward and backward directions. The joint component of two

adjacent loops is called levelling line. The levelling lines consist

of some sections. The section starts and ends on bench mark and

consists of some setups. In precise levelling, a levelling section

is always measured forward, i.e., in A-direction, and backward,

in B-direction. Therefore, dH is measured twice, in opposite

directions A and B. Assuming that the observations are unbiased,

the following equations are valid:

dHA = −dHB , dHA+dHB = 0 , dH = (dHA − dHB)/2
(1)

where dHA is the section height difference in forward levelling,

dHB is the section height difference in backward levelling and dH
is the section's mean height difference.

The horizontal level as given by the compensator of the Zeiss

DiNi12 can be changed when turning the instrument from the

back staff to the fore staff. Thus, the observed height difference is

biased. While measuring the height difference, BS0 – FS0 = 0,
in A-direction the back staff reading BSA is assumed to be correct,

but the foresight reading FSA includes the error vA (Figure 3).

The length of the sighting distances are taken as being equal.

In B-direction (Figure 4), the corresponding error is vB . Thus,

the forward and backward height difference will be obtained

according to Eqs. (2) and (3). Assuming that the tilt effect in both

directions is equal (|vA| = |vB| = v) then according to Eq. (4) the

difference between forward and backwardmeasurement includes

the error (−2v ). If the number of setups in forward and backward

levelling section is equal and the tilt effect is assumed equal in the

forward and backward section levelling, the section mean height

difference will be free of tilt effect (Eq. (5)) (Takalo et al. 2002).

dHA = BSA − FSA = BS0 − (FS0 + vA) = −vA (2)

dHB = BSB − FSB = BS0 − (FS0 + vB) = −vB (3)

dHA + dHB = −(vA + vB) = −2v (4)
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Figure 3. Levelling in A-direction.

Figure 4. Levelling in B-direction.

dH = (dHA−dHB)/2 = [(−vA)−(−vB)]/2 = (−v+v )/2 = 0
(5)

Since different levels may be used in the forward and backward

runs of sections, this assumption (|νA| = |νB| = ν) may not

true and Eq. (5) will not be equal to zero. Therefore, the residual

compensator error (residual tilt effect) (νB-νA) affects section

mean height difference.

3. Least Squares Spectral Analysis

A set of observations or results obtained from a physical process,

arranged in a specific manner, is called a data series. A data

series is called time series if the data is ordered chronologically. A

single time history representing a random phenomenon is called

a sample function (or a sample record when observed over a finite

time interval). The collection of all possible sample functions (also

called ensemble) which the random phenomenon might have

produced is called a random process or a stochastic process. If the

statistical properties (i.e., the statistical moments describing the

mean, variance . . .) of the data series defined over the ensembles

are independent of the value of the argument(s), the random

process is stationary. Otherwise, the stochastic process is non-

stationary (Bendat et al. 1971), (Blais 1988) and (Craymer 1988).

There are different statistical and spectral methods to detect the

presence of systematic errors in levelling results. In this paper,

the Least Squares Spectral Analysis (LSSA) method is used, the

efficiency of which was confirmed by many researchers (Vosoghi

1994). The least squares spectral analysis is the onlymethodwhich

is able to adequately dealwith non-equidistant andnon-stationary

data series of geodetic levelling. The problem is as follow:

1. Vector of observation time or argument: t = {ti} ; i =1, 2, ..., n
2. Vector of observed values or functional values: fT =[f (t1) f (t2) ... f (tn)]
3. Vector of frequencies for which spectral values are desired:

ω = {ωj} , j = 1, 2, ..., m
The S(ωj) vector is sought where the S(ωj ) are the spectral

values of the ωj frequency. The least squares spectral analysis

is an application of least squares approximation. Least squares

approximation is a case of best interval approximation. The least

squares spectral analysis is explained as follows (Vanicek andWells

1972): in Hilbert space with L2 norm with independent vector

φ = (φ1, φ2, ..., φn) the problem is finding the polynomial p in

subspaceM that is spanned by the base vectors {φ1, φ2, ..., φm}
as the best approximation of the vector f in Hilbert space:

d(f, p) = ∥∥ f, p
∥∥ → min (6)

If p = m∑
i=1 ĉiφi , the unknown vector ĉ and the residual vector v̂

are:

Ĉ = [ΦTΦ]−1 ΦT f
v = f − p (7)

In the least squares spectral analysis the independent vector φ is

made of base functions:φ = ( cosωj t , sinωj t)
p = ĉ1 cosωj t + ĉ2 sinωj t (8)

where ωj is known and the vector CT = [ĉ1, ĉ2] is evaluated by

Eq. (7) for eachωj .

Φ =


cosωj t1 sinωj t1cosωj t2 sinωj t2
.
.
.

.

.

.cosωj tn sinωj tn

 (9)

If the functional values (f ) are discrete, the Φ matrix in Eq. (7) will

be a Vandermond matrix (Eq. (9)). According to the projection

theorem, thep vector is an orthogonal projection of the vector f in
subspaceM and the vector v̂ ∈ H has aminimumnormbetween

all of the vectors v which satisfies the equation f = p + v (Wells et

al. 1985). S(ωj ) shows the harmonic base functions sin(ωj t) andcos(ωj t) ability to approximate the data series f (t). The aim of

LSSA is to minimise the norm of the residuals vector (
∥v∥). When

p is the best approximation of f this norm (
∥∥v̂∥∥)will beminimum.

Therefore:

S(ωj ) = fTC−1
f f − v̂TC−1

f v̂ (10)
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where C−1
f is the observation (f) weight matrix. If we rewrite the

Eq. (10) as follows, the vertical scale of all frequencies spectra will

be the same.

S(ωj ) = 1− {(v̂TC−1
f v̂)/(fTC−1

f f)} (11)

In this case the spectral values S(ωj ) will be limited to the

range [0, 1] and form a normalized least squares spectrum. The

systematic effects have an accumulative behaviour and appear in

the data series as a trend with a long period and low frequency.

Therefore the significant low frequency peak in the spectrums

means that there are the systematic errors in the data series. The

null hypothesisH0 : S(ωj ) = 0 is used to test the significance of

this decision function:

S(ωj ) { 6 (1 + (α −2
υ − 1)−1)−1 : accept H0

> (1 + (α −2
υ − 1)−1)−1 : reject H0 (12)

whereυ is the degree of freedom (υ = n−2),n is the data length

and α is the significance level (usually 5%).

The circuit misclosures and the discrepancies between forward

and backward runs of the section height differences can be used

as functional values to construct the data series in precise leveling.

In levelling networks, the sectiondiscrepancies are invariablymore

numerous than the circuit misclosures. Investigations have shown

that traces of different types of systematic errors can be found

in the discrepancies whereas some types of systematic errors

tend to cancel in the circuit misclosures. In this paper, the section

discrepancies are used as functional values of the data series. Many

parameters such as observed mean height difference of section

(H), section average slope and total number of turning points (TP)

(staff setups) in forward and backward runs can be used as data

series argument.

4. Levelling Data Analysis

This study investigates digital levels residual compensator error

and observational method for its elimination. For this purpose, the

two levelling test data sets, which were done with Zeiss DiNi 12

digital levels, were analysed. In the first data set, the observation

method for the height difference at each setup is routine (BFFB,
BFFB, BFFB, BFFB ...). The underscored B indicates that the

telescope always points to the backsight when the spot bubble is

adjusted at each station. The height difference at each setup will

be the average of twoheight differences (B1−F1) and (B2−F2).
Where (B1) is the first reading backwards, (F1) is the first reading

forwards, (F2) is the second reading forwards and (B2) is the

second reading backwards. In precise levelling, the discrepancy

between these twoheights difference should not exceed 0.25mm.

Otherwise, the readings at the setup should be repeated (Figure 5).

The data of many lines were analysed. Here, the result of one of

them will be discussed as example. The results of the other ones

Figure 5. Measurement methods and the effect of the obliquity of
horizon.

are the same. Figure 6 shows the accumulateddiscrepancies of this

line. A linear trend (of about 0.84mm/km) is considered significant.

These figures show that the discrepancies in this levelling line

accumulate and exhibit a systematic behaviour. Figure 7 shows

thenormalised least squares spectrumof the sectiondiscrepancies

of this line with argument H. The low frequency significant peak

in the spectrums indicates systematic behaviour in the functional

values (discrepancies) of the data.

Figure 6. Accumulated discrepancy of a first data set sample levelling
line.

The second data set is performed by the alternating pointing

method (BFFB, FBBF) for each two sequential setups of sec-

tion (Menzel 1998). The(BFFB) method in odd setups, and the

(FBBF) method in even setups, respectively. The underscored B

or F indicates that the spot bubble of the instrument is adjusted

when the telescope is pointing at the staff indicated by the un-

derscore. The number of setups is even and often sight lengths

of two sequential setups are equal (Figure 5). Many lines of the

second data set were analysed. Here, the result of one of them

will be discussed as example. Figures 8 and 9 show the accu-
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Figure 7. Normalised least squares spectrum of a first data set sam-
ple levelling line discrepancies with Argument H.

mulated discrepancies behavior and the normalised least squares

spectrum of the discrepancies of the levelling line, respectively.

The accumulated discrepancies have a random behaviour. A very

small apparent linear trend (of about 0.08 mm/km) is considered

insignificant and not considered further. There is no significant

low frequency peak in the normalised least squares spectrum of

the line discrepancies with H as argument. This demonstrates the

random behaviour of the data series.

Figure 8. Accumulated discrepancy of a second data set sample lev-
elling line.

In first order levelling, the maximum acceptable misclosure of a

levelling loop with L km length is 3mm
√

L. For a levelling line it

will be the maximum acceptable discrepancy (the summation of

the line height differences in forward and backward runs) of the

levelling line. Table 1 includes the maximum acceptable errors

and line discrepancies of the First and Second levelling lines. The

results confirm the previous result.

Figure 9. Normalised least squares spectrum of a second data set
sample levelling line discrepancies with argument H.

Table 1. Maximum acceptable error and discrepancy of the test lev-
elling lines.

first second

Maximum acceptable error (mm) 19.83 38.28
Discrepancy of line (mm) 37.18 9.45

One way length of line (km) 43.7 162.8

5. Conclusions

In the observation routine (BFFB), when using different levels in

the forward and backward section runs, the residual compensator

error affects the section mean height differences. If the same

instrument is used in the forward and backward runs, this error is

zero in section mean height difference, but it affects the sections

discrepancy and any investigations about other systematic errors

will be impossible using spectral analysis. By alternating pointing

method (BFFB, FBBF) for each two sequential setups of section,

residual compensator error will eliminate from two sequential

setup height differences and eliminated from the sections mean

height differences anddiscrepancies. Discrepancies canbeused to

investigateothersystematicerrors. Byalternatingpointingmethod

(BFFB, FBBF), it does not matter to use different instruments in

the forward and backward section runs.
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