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Abstract:

Planar, spherical, and ellipsoidal approximations of Poisson’s integral for downward continuation (DWC) of gravity anomalies are
discussed in this study. The planar approximation of Poisson integral is assessed versus the spherical and ellipsoidal approximations by
examining the outcomes of DWC and finally the geoidal heights. We present the analytical solution of Poisson’s kernel in the point-mean
discretization model that speed up computation time 500 times faster than spherical Poisson kernel while preserving a good numerical
accuracy. The new formulas are very simple and stable even for regions with very low height. It is shown that the maximum differences
between spherical and planar DWC as well as planar and ellipsoidal DWC are about 6 mm and 18 mm respectively in the geoidal heights

for a rough mountainous area such as Iran.
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1. Introduction

The gravimetric determination of the geoid by Stokes formula
requires that the gravity anomalies to be known on the geoid
and in addition, the disturbing potential being a harmonic above
the geoid. To fulfill these conditions, all mass outside the geoid
(topography and atmosphere) must be removed or transformed
inside/on the geoid. Then, the gravity anomalies are harmoni-
cally reduced from Earth’s surface downward to the geoid. This
reduction is the so-called downward continuation (DWC).

In geophysical applications, the planar approximation of Poisson
integral is frequently used to reduce the observed gravity on the
Earth's surface to a lower level inside the Earth (Grant and West,
1965; Roy, 1966; Meyer, 1974; Fogarty, 1981; Guspi, 1987; Morgan
and Blackman, 1993; Blakely, 1995; Cooper, 2004; Fedi, et al., 2005;
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Hwang, et al., 2006; Xu, et al., 2007; Prutkin and Saleh, 2009).

In geodesy, the spherical Poisson integral is widely used to perform
the DWC of the gravity anomalies for gravimetric geoid determina-
tion and the reduction of airborne data (Moritz, 1966; Bjerhammar,
1969, 1975, 1987; Martinec, 1996; Vanicek et al., 1996; Sun and
VaniCek, 1998; Sjoberg, 2001, 2003; Huang 2002; Novak, et al.,
2001; Sun, 2003; Huang et al., 2003; Huang and Veronneau, 2005).
The ellipsoidal approximation of Poisson’s integral was formulated
and applied by Feistritzer (1997), Martinec and Grafarend (1997),
Brovar et al.(2001), and Yu et al.(2003).

An unavoidable problem with DWCis the discretization of Poisson’s
integral. Different discretization models, point-point, mean-mean,
and point-mean have been proposed by researchers: VaniCek et
al., 1996, Martinec, 1996, Sun and VaniCek, 1998, Huang, 2002,
2005, Sun, 2003, Goli, et al., 2010. In the point-point model, point
surface anomalies are downward continued to the point anomalies
on the geoid. In the mean-mean model, mean gravity anomalies
on the surface are transformed to the corresponding mean values
on the geoid by a doubly averaged Poisson kernel (VaniCek et al.,
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1996). Finally, the point-mean model transforms the point surface
anomalies to mean anomalies on the geoid.

In this study, the computation of the Poisson planar integral is
compared against the spherical and ellipsoidal approximations of
the integral. Since the Poisson kernel tapers off rapidly with the
increasing distance from the computation point, we expect the
planar approximation of the DWC could produce equivalent results
to those obtained by spherical and ellipsoidal approximations. If
the expectations come true, the planar approximation would be
much preferred for its much shorter computation time and simple
formulas.

2. Spherical and planar Poisson’s integral

By the spherical Poisson’s integral, a harmonic function V[r(Q)]
outside the spherical boundary (with radius R) is determined from
the functional values V/(R, (0’) given on the boundary (Heiskanen
and Moritz, 1967) as

VQEQy,r(Q) =R: V[r(Q)]=

;—H/V(R, Q) K[ry(Q,Q) Rl d0, (1)

where Q) is total solid angle, Q=(6, A), (6, A) denotes the horizon-
tal position in co-latitude and longitude, r is the radial distance.
The spherical Poisson kernel K[r(Q), (€Y, QO), R1is (ibid.)

K[r(Q),y(.Q),R]=
r(Q)’ — R?
B(r(Q), ¢ (@, Q),R)’

VO € Qo r(Q) >R

@

where ¢/ and d is the angular and spatial distance between the
computation point r(Q) and the integration running point on
sphere R. The point gravity anomaly multiplied by the geocentric
radius at the point is a harmonic function (Heiskanen and Moritz,
1967). By applying the spherical Poisson integral for DWC of gravity
anomalies, we have (VaniCek, et al., 1996):

vQ e Qp,r (Q) >
/Ag(R,Q’) [y (Q,0),R] 4, (3)

Qo

R: Aglr (Q)] =
R
47t 1y

where ry (Q) is the geocentric radius of the anomaly Aglr{(Q)] on
the Earth surface, and Ag(R, 0’} is the gravity anomalies on the
geoid.

The planar approximation of Poisson integral can be derived
directly using a Dirichlet boundary value problem in a Cartesian
coordinate system (Grant and West, 1965; Blakely, 1995):

Ag(x', y) -y
Ag(h) = //(X’2+y’2+h2)3/2dX dy’. 4
e
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where Ag(h), Ag(x’, y’) are gravity anomalies on the terrain

and the geoid points and h is the orthometric height of the
computation point. In a 3-D local Cartesian coordinate system
with its origin at the sub-computation point (¢o, Ag) on the geoid,
the relations between the spherical curvilinear and the Cartesian
coordinates can be expressed as:

x = R(¢ =),
= R(A — Ap) cos ¢q. (5)

The Xy coordinates of computation point are (0, 0, h), see Figure 1.
By changing the variables ¢, A into x, y, integral (3) becomes

X2 Y2

47Tl’t//d3 ’R;)) R)

X1 U1

Ag(X, y)dx'dy’, dx'dy’ = R? cos ¢'dg'dX . (6)

Finally, the planar spherical reduced Poisson’s integral reads:

Q) - RZ Ag X y) T
4nr, // (X% + y? + h2)pR dx'dy’. (7)

X1 U1

Ag(h) =

By assuming r; + R = 2r, the integral (7) is reduced to the
integral (4):

B (re— R)(re + R) Ag(x', y") ;o
Ag(h) = 471r, (x2 + y2 + h2)32 dxdy.

X1 Y1

2[} Ag(X,' U’) / ’
~ anr, // X2+ y? 4 h2)32 edy

X1 Y1

Ag(¥'.y) iy
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27r// W2t y7+hpr - ©®
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Our numerical computations show that the differences between
the integrals (7) and (4) in computing the gravity anomaly reach
up to a maximum of 60 pGal and in terms of geoidal height
differences itis up to 3 mm in a mountainous area with height h >
3900 meters.

3. Ellipsoidal approximation of Poisson integral

In this section, we deal with the ellipsoidal Poisson integral in
the form of ellipsoidal correction to the spherical approximation.
We put into practice the methods presented by Martinec and
Grafarend (1997) and by Yu, et al. (2003). The ellipsoidalcoordinates



Figure 1. Local Cartesian coordinate system applied in planar DWC.

(B, A,u) and their relations with the Cartesian coordinates (x, y, z)
(Heiskanen and Moritz, 1967) are

x = Vu?+ E2cos Bcos A
y = Vu?+ E?cosBsin i
z=usinpB, &)

where B is the reduced latitude, A is the geocentric longitude and
E?=(a? - b?) is the linear eccentricity. Analogous to the spherical
case, the solution to Dirichlet boundary value problem can be
written in terms of the ellipsoidal Poisson'’s integral (Martinec and
Grafarend, 1997) as:

VQe Qo,u>b: T(u,Q)=

%/T(o') K (B, A u, B, X) dY, (10)
Qo

where b is the semi-minor axis of the ellipsoid, dQ)' = cosB” dA’
dB’ and KeUYB, Au, B, X’)is the ellipsoidal Poisson kernel (ibid.):

oo n

k=3 y Qolit) e )y @),

11
Oun (12) ™ v

n=0 m=—n

where Q,, (l% ) are Legendre function of thesecond kind, Y;,,, ()
are spherical harmonics of degree n and order m (Hobson, 1955)
and the asterisk denotes a complex conjugation. For practical
purposes the spectral form (11) must be transformed to the closed
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form. Martinec and Grafarend (1997) and Yu, et al. (2003) offered
two different closed forms for K¢/, with an error e*, They have
also shown that the ellipsoidal Poisson kernel can be written as
the sum of the spherical Poisson kernel plus the corrections due
to the ellipticity of the boundary. Also Brovar, et al. (2001) applied
the effect of ellipticity on the boundary, boundary values, and on
the spherical kernel. Here we implement only the two methods
presented by Martinec and Grafarend (1997) and Yu, et al. (2003).

4. Discretization model

Geoid computation using the Stokes integral needs the mean grav-
ity anomalies on the geoid. Thus, the DWC has to be implemented
to transform the point anomalies measured on the Earth’s surface
to the corresponding mean anomalies on the geoid, Ag (R, Q).
For this transformation, a single averaged kernel on the geoid,
K, is required to substitute for the original kernel in the Poisson
integral. For example, in the integral (5) can be written in discrete
form as (Huang, 2002):

M
Ag' =) By Ag;S;+ ep, (12)
j=1

where S; is the j-th surface discretization area, £ is the discretiza-
tion error, Ag; is the mean anomaly of the geoid cell ¢; and Kj; is
average of Poisson’s kernel for the geoid cell C; computed as

R

Y Anr,

/K[r,,t/J(Q’,Q),R]dQ’. (13)
AQ}

Since there is no analytical solution for the formula above, the
results of DWC depend on the numerical method employed for
the evaluation of K . One simple method is based on the mid-
point quadrature method (Davis and Rabinowitz, 1984) where the
domain of integration needs to be broken down to tiny small cells.
However, the integral {(13) can be analytically treated if the planar
Poisson’s kernel is assumed. Assume that (0,0,h), (x’,y’} are the
Cartesian coordinates of terrain and geoid points in the local
Cartesian system (5), see Figure 1. The integral (13) in planar
approximation can be written as:

dx'dy’

— h
Kj=-— —_— . 14
/ 27.[ /C/ (X/2+y/2+h2)3/2 ( )
The integral (14) can be expressed analytically as
K; = i arctan Xy (15)
YT 2w h.d c,.

The analytical formula for the averaged kernel facilitates the speed
of computation even in the high resolution DWC.
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Evaluation of Poisson’s kernel at epicenter, i.e, ¢y — 0, is difficult
as the value of the kernel increases fast. In addition, when the
height of computation point approaches zero the kernel goes to
infinity (Martinec, 1996; Martinec and Grafarend, 1997). Therefore
the Poisson kernel, at epicenter with almost zero height, will have
an extremely large value. The use of the mean Poisson kernel,
K, is one practical way of solving this problem as it will be more
stable than the Poisson kernel K (Sun and VaniCek, 1998; Sun,
2003, Goli, et al, 2010). It can be evaluated by breaking the cell
of epicenter into very small cells. For a low altitude epicenter, the
numerical value of the mean Poisson kernel is extremely sensitive
to the choice of the cell breaking size. Therefore, we can use the
analytical solution (15) at epicenters for solving the instability and
speeding up the computations. By using Eq. (15), the mean planar
Poisson kernel at epicenter becomes (Goli, et. al, 2010)

— 1 R? cos pApAA

Kij = =— arctan
2n 2hin/R2A@? + R2 cos p2AX2 + 4h?

(16)

where h; is the orthometric height of a cell on the terrain, ¢ is the

latitude of the center of cell and Ag,AA denote the size of cell on
the geoid along meridian and parallel, respectively.

To show the stability of solution (16) at epicenter, we compare its
numerical value with those values obtained by the mean spherical
Poisson kernel which is averaged at geoid cell and when is divided
into sub-cells of sizes 10, 5, 1, and 0.2 arc second. Figure 2a shows
these differences for the heights from 0 to 500 meters. To better
focus on behavior of K in low altitudes, the differences are plotted
for the heights from 0 to 50 meters in Figure 2b. As we know,
the value of K must be decrease when increasing the height.
The mean planar kernel follows this rule while the mean spherical
kernel violates it for some low altitudes depending on the size of
sub-cells. We do not select sub-cells with size of less 1 arc second
because of computational delay. Therefore, 1 arc second can be an
optimum size for the sub-cells. According to Figure 2b, since the
contribution of DWC in regions with height less than 30 meters is
very small we neglect doing the DWC in such areas.

5. Numerical results

A mountainous area in Iran bounded by parallels 23° < ¢ <41°
and meridians 42° < A <60° is selected as a test area. The very
detailed global combined gravitational field model, EGMO8 (Pavlis
et al., 2008), up to degree/order 2160/2160 is used for generating
the 5'x5’ gravity anomalies on the terrain. Figure 3 shows the
topography of the test area.

The integration of the Poisson integral can be performed in two
zones: near and far zones. Since the Poisson kernel decreases
rapidly with the distance from a computation point, the effect of
near zone can be generated sufficiently up to 1arc degree (Huang,
2002). The effect of the far zone, amounting to several hundreds
of pGals in extreme cases, can be reliably computed using a global

v
VERSITA

. ra Planar
5 0.8 .
2 , , - 0.2" averaging
] ’ 7 — —1" avermging
g , ' Sooos B averaging
@ u.eJ ;A
E ; ' — -~ 10" averaging
s Ly
L
= :
o 4T K f, 4
i
o2l i
o
0 L L . . L L L L .
1) 100 150 200 280 30 380 400 450 00
Height fveter
a)
15 T
Planar
0.2" awveraging

— — 1" averaging

"""" 3" averaging

— - — 10" averaging
T ! —
£ —
o el
F e
¢ -
E 7
5 /
2 os /

ogE-— - L L L L L L L
5 10 16 20 256 a0 35 40 45 50
Height fveter)
b)

Figure 2. a) the behavior of Kwhen h approaches 0 for height 0 to
500,
b) the behavior of Kwhen h approaches 0 for height 0 to
50.

geopotential model as given by VaniCek et al. (1996).

We first test the consistency of the two ellipsoidal methods given
by Martinec and Grafarend (1997) and Yu, et al. (2003) to select
one for further numerical tests conducted in this section. We call
these method 1 and method 2 respectively. Figure 4 shows the
differences of methods 1 and 2 in computing the ellipsoidal DWC
of gravity anomalies. The differences never exceed 65 pGal in the
test area, but the CPU time spent by method 1 is far less than
method 2. Hence method 1 is chosen for further computations.
The correction kernel (0k) as the difference of the two ellipsoidal
and spherical Poisson kernels is anisotropic. Its dependency on
azimuth is very weak, and it tapers off rapidly (Ardalan, 2000, Fig.
1-1) in spherical distance so that the corresponding corrective
contribution of far zones beyond ¢y > 15" in the DWC of gravity
anomalies is less than 10 pGal. Therefore the ellipsoidal kernel
reduces to a spherical kernel beyond ¢y > 15" and it facilitates
speeding the computations.

For evaluation of differences between the three mentioned mod-
els, the DWC of gravity anomalies using planar, spherical, and



Meter

Figure 3. Topography of the test area. Unit: meter. Min = -30.090,
Max = 3942.520, Mean = 757.878 and STD = 758.749

Figure 4. Differences in ellipsoidal DWC between method 1 and
method 2. Unit: mGal. Min = -0.046, Max = 0.065, Mean
=0.005 and STD = 0.012

ellipsoidal (method1) are carried out in the test area. According to
Figure 5a the differences between spherical and ellipsoidal DWC
are correlated with topography in the area. With some exceptions
(<74 pGal), the differences between spherical and planar solu-
tions are minute with an RMS of 12 pGal, Figure 5b. According to
Figures 5a and 5b the extreme values of differences take place in
the regions of rough topography with low and height altitudes.
This problem is due to the difficulties in computation of the mean
Poisson kernel in spherical and ellipsoidal DWC in these regions. As
mentioned in previous section, in these cases, the mean Poisson
kernel is evaluated by breaking a geoid cell into very small cells.
Different cell sizes: 10", 5”, 1”, and 0.2"” were tested and finally 1”
was selected.
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b)

Figure 5. a) the ellipsoidal DWC minus spherical DWC. Unit: mGal.
Min =-0.206, Max = 0.318, Mean = 0.021 and STD = 0.052
b) the spherical DWC minus planar DWC. Unit: mGal. Min
=-0.027 , Max = 0.074 , Mean = 0.007 and STD = 0.012

6. Effects on geoidal height

To show the effects of different approximations of DWC on the
geoidal height, we conducted the Stokes approach for the geoid
computation using the same surface gravity anomalies but differ-
ent DWC models: planar, spherical, and ellipsoidal for transforma-
tion of the surface data to the geoid level. The geoid computation
is divided into two parts: long-wavelength part up to the harmonic
degree L=70 is achieved from the global geopotential model
EGMOS; the short wavelengths part (>70), i.e., the residual geoid
is computed by the generalized Stokes integration (Vaniek and
Cleusberg, 1987),

N0 = %//570(¢1)Ag70 (rg, Q) dQ,  (17)
Qo

extended over the spherical cap with the radius of 4°. To reduce the
integral truncation error, the Molodenskij modification of Stokes
kernel function, VaniCek and Kleusberg method, was adopted up
7
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to degree L=70. Figure 6a illustrates the differences of geoids
obtained as the result of spherical and ellipsoidal DWC models.
Figures 6b and 6c illustrate the differences of geoids obtained as
the result of planar and spherical DWC models and planar and
ellipsoidal DWC models, respectively.

According to Figure 6a the spherical effect, compared to the planar,
is in order of some millimeters on the geoid and can be ignored if
1 centimeter accuracy is required. Also, according to Figure 6b the
effect of the differences between the ellipsoidal and the spherical
DWC on the geoid does not exceed 2.5 cm at all. Therefore, all
spherical and ellipsoidal solutions of DWC can be substituted by the
planar solution since the planar method is much faster. Based on
our developed software, the planar DWC computation time is 500
and 700 times faster than spherical and ellipsoidal computations
respectively because the planar DWC uses the analytical solution
of the Poisson kernel (Eq. 15) and the two other methods use the
numerical integration.

Additional test can be done by comparing the geoid solutions
computed by the above mentioned methods with the geoid
computed by the EGMO08 directly. We compared the three geoid
models with EGMO8 in Table 1. According to Table 1 applying the
ellipsoidal DWC improves the geoid solution in some mm level
against the planar and spherical DWC. There are no significant
differences between the solutions using planar and spherical DWC
models.

Table 1. Differences between the EGMO8 geoid and the geoid mod-

els computed from different DWC solution. Unit: mm.

difference Min Max Mean STD RMS
Planar -45 32 5 1 13

Spherical -49 32 7 12 14

Ellipsoidal -43 32 3 9 10

7. Conclusions

For the computation of the geoid by Stokes's approach, the
gravity anomalies must be known on the geoid surface. The
gravity anomalies observed on the Earth’ surface are continued
downward by the Poisson’s integral. The Poisson’s integral is
used to transform the point surface gravity anomalies to the mean
anomalies on the geoid. The Poisson’s integral is formulated in the
local planar, spherical, and ellipsoidal coordinates in this study. We
conducted an analytical solution of Poisson integration kernel for
DWC in the planar coordinates for the discrete point-mean model.
The result was tested against the spherical and ellipsoidal solutions
both in terms of DWC values and the geoid values. There are no
significant differences between the planar and spherical models
of DWC in terms of both gravity anomalies and the geoid. The
differences between the spherical and planar DWC, with RMS value
of 12 pGal on 2 mm on geoid, are smaller than the differences
InZd
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Figure 6.

i

i

c)

a) difference between spherical and ellipsoidal DWC in
geoidal height. Unit: mm. Min = -23, Max = 9, Mean =
4 and RMS =6

b) difference between spherical and planar DWC in geoidal
height. Unit: mm. Min = -6, Max = 1, Mean = 1 and RMS
=2

c) difference between ellipsoidal and planar DWC in
geoidal height. Unit: mm. Min = -18, Max = 9, Mean =
-2 and RMS =4




between the ellipsoidal an spherical DWC. In other words, the

spherical correction to planar approximation is smaller than the
ellipsoidal correction to spherical approximation on both DWC of
gravity anomalies and on the final geoid.

The analytical solution of Poisson kernel integration in planar ap-
proximation of DWC of gravity anomalies provides a computation
of spherical and ellipsoidal Poisson’s integral that is from 500 to
700 times faster. Therefore, from Table 1, neglecting the 1 cm
error in the geoidal height, the spherical and ellipsoidall Poisson’s
integral can be replaced by the fast planar approach.
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