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Abstract:

Planar, spherical, and ellipsoidal approximations of Poisson's integral for downward continuation (DWC) of gravity anomalies are

discussed in this study. The planar approximation of Poisson integral is assessed versus the spherical and ellipsoidal approximations by

examining the outcomes of DWC and finally the geoidal heights. We present the analytical solution of Poisson's kernel in the point-mean

discretization model that speed up computation time 500 times faster than spherical Poisson kernel while preserving a good numerical

accuracy. The new formulas are very simple and stable even for regions with very low height. It is shown that the maximum differences

between spherical and planar DWC as well as planar and ellipsoidal DWC are about 6 mm and 18 mm respectively in the geoidal heights

for a rough mountainous area such as Iran.
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1. Introduction

The gravimetric determination of the geoid by Stokes formula

requires that the gravity anomalies to be known on the geoid

and in addition, the disturbing potential being a harmonic above

the geoid. To fulfill these conditions, all mass outside the geoid

(topography and atmosphere) must be removed or transformed

inside/on the geoid. Then, the gravity anomalies are harmoni-

cally reduced from Earth's surface downward to the geoid. This

reduction is the so-called downward continuation (DWC).

In geophysical applications, the planar approximation of Poisson

integral is frequently used to reduce the observed gravity on the

Earth's surface to a lower level inside the Earth (Grant and West,

1965; Roy, 1966; Meyer, 1974; Fogarty, 1981; Guspí, 1987; Morgan

and Blackman, 1993; Blakely, 1995; Cooper, 2004; Fedi, et al., 2005;
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Hwang, et al., 2006; Xu, et al., 2007; Prutkin and Saleh, 2009).

In geodesy, the spherical Poisson integral iswidely used toperform

theDWCof the gravity anomalies for gravimetric geoid determina-

tion and the reduction of airborne data (Moritz, 1966; Bjerhammar,

1969, 1975, 1987; Martinec, 1996; Vaníc̆ek et al., 1996; Sun and

Vaníc̆ek, 1998; Sjoberg, 2001, 2003; Huang 2002; Novak, et al.,

2001; Sun, 2003; Huang et al., 2003; Huang and Veronneau, 2005).

The ellipsoidal approximation of Poisson's integral was formulated

and applied by Feistritzer (1997), Martinec and Grafarend (1997),

Brovar et al.(2001), and Yu et al.(2003).

AnunavoidableproblemwithDWCis thediscretizationofPoisson's

integral. Different discretization models, point-point, mean-mean,

and point-mean have been proposed by researchers: Vaníc̆ek et

al., 1996, Martinec, 1996, Sun and Vaníc̆ek, 1998, Huang, 2002,
2005, Sun, 2003, Goli, et al., 2010. In the point-point model, point

surface anomalies aredownward continued to thepoint anomalies

on the geoid. In the mean-mean model, mean gravity anomalies

on the surface are transformed to the corresponding mean values

on the geoid by a doubly averaged Poisson kernel (Vaníc̆ek et al.,
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1996). Finally, the point-mean model transforms the point surface

anomalies to mean anomalies on the geoid.

In this study, the computation of the Poisson planar integral is

compared against the spherical and ellipsoidal approximations of

the integral. Since the Poisson kernel tapers off rapidly with the

increasing distance from the computation point, we expect the

planar approximationof theDWCcouldproduceequivalent results

to those obtained by spherical and ellipsoidal approximations. If

the expectations come true, the planar approximation would be

much preferred for its much shorter computation time and simple

formulas.

2. Spherical and planar Poisson’s integral

By the spherical Poisson's integral, a harmonic function V [r(Ω)]

outside the spherical boundary (with radiusR ) is determined from

the functional valuesV (R , Ω’) given on the boundary (Heiskanen

and Moritz, 1967) as

∀Ω ∈ Ω0 , r (Ω) > R : V [r (Ω)] =14π
∫
Ω◦
V
(
R,Ω′)K [r, ψ (Ω′,Ω) , R] dΩ′, (1)

whereΩ0 is total solid angle,Ω=(θ, λ), (θ, λ) denotes the horizon-
tal position in co-latitude and longitude, r is the radial distance.

The spherical Poisson kernelK [r(Ω),ψ(Ω',Ω),R ] is (ibid.)

∀Ω ∈ Ω0 , r (Ω) > R : K [r (Ω) , ψ (Ω′,Ω) , R] =
R r (Ω)2 − R2
d3(r (Ω) , ψ (Ω′,Ω) , R ) , (2)

where ψ and d is the angular and spatial distance between the

computation point r(Ω) and the integration running point on

sphereR . The point gravity anomaly multiplied by the geocentric

radius at the point is a harmonic function (Heiskanen and Moritz,

1967). By applying the spherical Poisson integral forDWCofgravity

anomalies, we have (Vaníc̆ek, et al., 1996):

∀Ω ∈ Ω0 , rt (Ω) > R : ∆g [rt (Ω)] =
R4π rt

∫
Ω◦

∆g (R,Ω′)K [rt , ψ (Ω′,Ω) , R] dΩ′, (3)

where rt (Ω) is the geocentric radius of the anomaly∆g[rt (Ω)] on

the Earth surface, and ∆g(R , Ω’) is the gravity anomalies on the

geoid.

The planar approximation of Poisson integral can be derived

directly using a Dirichlet boundary value problem in a Cartesian

coordinate system (Grant and West, 1965; Blakely, 1995):

∆g(h) = h2π
+∞∫
−∞

+∞∫
−∞

∆g(x ′, y′)(x ′2 + y′2 + h2)3/2 dx ′dy′. (4)

where ∆g(h), ∆g(x ′ , y′) are gravity anomalies on the terrain

and the geoid points and h is the orthometric height of the

computation point. In a 3-D local Cartesian coordinate system

with its origin at the sub-computation point (φ0 , λ0) on the geoid,

the relations between the spherical curvilinear and the Cartesian

coordinates can be expressed as:

x = R (φ − φ0),
y = R (λ − λ0) cosφ0. (5)

The xy coordinates of computation point are (0, 0,h), see Figure 1.
By changing the variables φ, λ into x , y, integral (3) becomes

∆g(h) = 14πrt
x2∫

x1

y2∫
y1

r (Ω)2 − R2
d3(r (Ω) , ψ (Ω′,Ω) , R )

∆g(x ′, y′)dx ′dy′, dx ′dy′ = R2 cosφ′dφ′dλ′. (6)

Finally, the planar spherical reduced Poisson's integral reads:

∆g(h) = r (Ω)2 − R24πrt
x2∫

x1

y2∫
y1

∆g(x ′, y′)(x ′2 + y′2 + h2)3/2 dx ′dy′. (7)

By assuming rt + R ≈ 2rt , the integral (7) is reduced to the

integral (4):

∆g(h) = (rt − R )(rt + R )4πrt
x2∫

x1

y2∫
y1

∆g(x ′, y′)(x ′2 + y′2 + h2)3/2 dx ′dy′,
≈ h(2rt)4πrt

x2∫
x1

y2∫
y1

∆g(x ′, y′)(x ′2 + y′2 + h2)3/2 dx ′dy′,
≈ h2π

x2∫
x1

y2∫
y1

∆g(x ′, y′)(x ′2 + y′2 + h2)3/2 dx ′dy′. (8)

Our numerical computations show that the differences between

the integrals (7) and (4) in computing the gravity anomaly reach

up to a maximum of 60 µGal and in terms of geoidal height

differences it is up to 3mm in amountainous areawith heighth >
3900 meters.

3. Ellipsoidal approximation of Poisson integral

In this section, we deal with the ellipsoidal Poisson integral in

the form of ellipsoidal correction to the spherical approximation.

We put into practice the methods presented by Martinec and

Grafarend (1997) andbyYu, et al. (2003). Theellipsoidalcoordinates
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Figure 1. Local Cartesian coordinate system applied in planar DWC.

(β , λ,u) and their relations with the Cartesian coordinates (x , y, z)
(Heiskanen and Moritz, 1967) are

x = √u2 + E2 cosβ cos λ
y = √u2 + E2 cosβ sin λ

z = u sinβ, (9)

where β is the reduced latitude, λ is the geocentric longitude and
E2= (a2 --b2) is the linear eccentricity. Analogous to the spherical

case, the solution to Dirichlet boundary value problem can be

written in terms of the ellipsoidal Poisson's integral (Martinec and

Grafarend, 1997) as:

∀Ω ∈ Ω0 , u > b : T (u,Ω) =14π
∫
Ω◦
T
(Ω′)K ell (β, λ, u, β ′, λ′) dΩ′, (10)

where b is the semi-minor axis of the ellipsoid, dΩ' = cosβ’ dλ’
dβ’ andK ell(β , λ,u,β’, λ’) is the ellipsoidal Poisson kernel (ibid.):

K ell = ∞∑
n=0

n∑
m=−n

Qnm
(
i uE
)

Qinm
(
i bE
)Y ∗nm(Ω′)Ynm(Ω), (11)

whereQnm
(
i uE
)
areLegendre functionof thesecondkind,Ynm(Ω)

are spherical harmonics of degree n and orderm (Hobson, 1955)

and the asterisk denotes a complex conjugation. For practical

purposes the spectral form (11) must be transformed to the closed

form. Martinec and Grafarend (1997) and Yu, et al. (2003) offered

two different closed forms for K ell , with an error e4 . They have

also shown that the ellipsoidal Poisson kernel can be written as

the sum of the spherical Poisson kernel plus the corrections due

to the ellipticity of the boundary. Also Brovar, et al. (2001) applied

the effect of ellipticity on the boundary, boundary values, and on

the spherical kernel. Here we implement only the two methods

presented by Martinec and Grafarend (1997) and Yu, et al. (2003).

4. Discretization model

Geoid computationusing theStokes integral needs themeangrav-

ity anomalies on the geoid. Thus, the DWC has to be implemented

to transform the point anomalies measured on the Earth's surface

to the corresponding mean anomalies on the geoid, ∆g (R,Ω).
For this transformation, a single averaged kernel on the geoid,

K , is required to substitute for the original kernel in the Poisson

integral. For example, in the integral (5) can be written in discrete

form as (Huang, 2002):

∆gi = M∑
j=1 Bij ∆gjSj + εD , (12)

whereSj is the j-th surface discretization area, εD is the discretiza-

tion error, ∆gj is the mean anomaly of the geoid cell cj andKij is
average of Poisson's kernel for the geoid cellCj computed as

Kij = R4πri
∫

∆Ω′jK
[
rt , ψ

(Ω′,Ω) , R]dΩ′. (13)

Since there is no analytical solution for the formula above, the

results of DWC depend on the numerical method employed for

the evaluation of K . One simple method is based on the mid-

point quadrature method (Davis and Rabinowitz, 1984) where the

domain of integration needs to be broken down to tiny small cells.

However, the integral (13) can be analytically treated if the planar

Poisson's kernel is assumed. Assume that (0,0,h), (x ′ ,y′) are the

Cartesian coordinates of terrain and geoid points in the local

Cartesian system (5), see Figure 1. The integral (13) in planar

approximation can be written as:

Kij = hi2π
∫
Cj

dx ′dy′(x ′2 + y′2 + h2)3/2 . (14)

The integral (14) can be expressed analytically as

Kij = 12π
∣∣∣∣arctan(x ′y′hid

)∣∣∣∣
Cj
. (15)

The analytical formula for the averaged kernel facilitates the speed

of computation even in the high resolution DWC.
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Evaluation of Poisson's kernel at epicenter, i.e., ψ → 0, is difficult
as the value of the kernel increases fast. In addition, when the

height of computation point approaches zero the kernel goes to

infinity (Martinec, 1996; Martinec and Grafarend, 1997). Therefore

the Poisson kernel, at epicenter with almost zero height, will have

an extremely large value. The use of the mean Poisson kernel,

K̄ , is one practical way of solving this problem as it will be more

stable than the Poisson kernel K (Sun and Vaníc̆ek, 1998; Sun,
2003, Goli, et al., 2010). It can be evaluated by breaking the cell

of epicenter into very small cells. For a low altitude epicenter, the

numerical value of the mean Poisson kernel is extremely sensitive

to the choice of the cell breaking size. Therefore, we can use the

analytical solution (15) at epicenters for solving the instability and

speeding up the computations. By using Eq. (15), the mean planar

Poisson kernel at epicenter becomes (Goli, et. al, 2010)

Kij = 12π arctan( R2 cosφ∆φ∆λ2hi√R2∆φ2 + R2 cosφ2∆λ2 + 4h2
i

)
(16)

where hi is the orthometric height of a cell on the terrain, φ is the

latitude of the center of cell and ∆φ,∆λ denote the size of cell on

the geoid along meridian and parallel, respectively.

To show the stability of solution (16) at epicenter, we compare its

numerical value with those values obtained by themean spherical

Poisson kernel which is averaged at geoid cell and when is divided

into sub-cells of sizes 10, 5, 1, and 0.2 arc second. Figure 2a shows

these differences for the heights from 0 to 500 meters. To better

focus on behavior of K̄ in low altitudes, the differences are plotted

for the heights from 0 to 50 meters in Figure 2b. As we know,

the value of K̄ must be decrease when increasing the height.

The mean planar kernel follows this rule while the mean spherical

kernel violates it for some low altitudes depending on the size of

sub-cells. We do not select sub-cells with size of less 1 arc second

because of computational delay. Therefore, 1 arc second can be an

optimum size for the sub-cells. According to Figure 2b, since the

contribution of DWC in regions with height less than 30 meters is

very small we neglect doing the DWC in such areas.

5. Numerical results

A mountainous area in Iran bounded by parallels 23◦ < φ <41◦

and meridians 42◦ < λ <60◦ is selected as a test area. The very

detailed global combined gravitational field model, EGM08 (Pavlis

et al., 2008), up to degree/order 2160/2160 is used for generating

the 5'×5' gravity anomalies on the terrain. Figure 3 shows the

topography of the test area.

The integration of the Poisson integral can be performed in two

zones: near and far zones. Since the Poisson kernel decreases

rapidly with the distance from a computation point, the effect of

near zone can be generated sufficiently up to 1arc degree (Huang,

2002). The effect of the far zone, amounting to several hundreds

of µGals in extreme cases, can be reliably computed using a global

a)

b)

Figure 2. a) the behavior of K̄when h approaches 0 for height 0 to
500,
b) the behavior of K̄when h approaches 0 for height 0 to
50.

geopotential model as given by Vaníc̆ek et al. (1996).
We first test the consistency of the two ellipsoidal methods given

by Martinec and Grafarend (1997) and Yu, et al. (2003) to select

one for further numerical tests conducted in this section. We call

these method 1 and method 2 respectively. Figure 4 shows the

differences of methods 1 and 2 in computing the ellipsoidal DWC

of gravity anomalies. The differences never exceed 65 µGal in the

test area, but the CPU time spent by method 1 is far less than

method 2. Hence method 1 is chosen for further computations.

The correction kernel (δk) as the difference of the two ellipsoidal

and spherical Poisson kernels is anisotropic. Its dependency on

azimuth is very weak, and it tapers off rapidly (Ardalan, 2000, Fig.

1-1) in spherical distance so that the corresponding corrective

contribution of far zones beyond ψ > 15' in the DWC of gravity

anomalies is less than 10 µGal. Therefore the ellipsoidal kernel

reduces to a spherical kernel beyond ψ > 15' and it facilitates

speeding the computations.

For evaluation of differences between the three mentioned mod-

els, the DWC of gravity anomalies using planar, spherical, and
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Figure 3. Topography of the test area. Unit: meter. Min = -30.090,
Max = 3942.520, Mean = 757.878 and STD = 758.749

Figure 4. Differences in ellipsoidal DWC between method 1 and
method 2. Unit: mGal. Min = -0.046, Max = 0.065, Mean
= 0.005 and STD = 0.012

ellipsoidal (method1) are carried out in the test area. According to

Figure 5a the differences between spherical and ellipsoidal DWC

are correlated with topography in the area. With some exceptions

(<74 µGal), the differences between spherical and planar solu-

tions are minute with an RMS of 12 µGal, Figure 5b. According to

Figures 5a and 5b the extreme values of differences take place in

the regions of rough topography with low and height altitudes.

This problem is due to the difficulties in computation of the mean

Poisson kernel in spherical and ellipsoidal DWC in these regions. As

mentioned in previous section, in these cases, the mean Poisson

kernel is evaluated by breaking a geoid cell into very small cells.

Different cell sizes: 10'', 5'', 1'', and 0.2'' were tested and finally 1''

was selected.

a)

b)

Figure 5. a) the ellipsoidal DWC minus spherical DWC. Unit: mGal.
Min = -0.206, Max = 0.318, Mean = 0.021 and STD = 0.052
b) the spherical DWC minus planar DWC. Unit: mGal. Min
= -0.027 , Max = 0.074 , Mean = 0.007 and STD = 0.012

6. Effects on geoidal height

To show the effects of different approximations of DWC on the

geoidal height, we conducted the Stokes approach for the geoid

computation using the same surface gravity anomalies but differ-

ent DWC models: planar, spherical, and ellipsoidal for transforma-

tion of the surface data to the geoid level. The geoid computation

is divided into two parts: long-wavelength part up to the harmonic

degree L=70 is achieved from the global geopotential model

EGM08; the short wavelengths part (>70), i.e., the residual geoid

is computed by the generalized Stokes integration (Vaníc̆ek and

Cleusberg, 1987),

N70 = R4πγ
∫∫
Ω◦

S70 (ψ) ∆g70 (rg,Ω) dΩ, (17)

extendedover the spherical capwith the radiusof 4◦ . To reduce the

integral truncation error, the Molodenskij modification of Stokes

kernel function, Vaníc̆ek and Kleusberg method, was adopted up
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to degree L=70. Figure 6a illustrates the differences of geoids

obtained as the result of spherical and ellipsoidal DWC models.

Figures 6b and 6c illustrate the differences of geoids obtained as

the result of planar and spherical DWC models and planar and

ellipsoidal DWCmodels, respectively.

According toFigure6a the spherical effect, compared to theplanar,

is in order of some millimeters on the geoid and can be ignored if

1 centimeter accuracy is required. Also, according to Figure 6b the

effect of the differences between the ellipsoidal and the spherical

DWC on the geoid does not exceed 2.5 cm at all. Therefore, all

spherical andellipsoidal solutionsofDWCcanbesubstitutedby the

planar solution since the planar method is much faster. Based on

our developed software, the planar DWC computation time is 500

and 700 times faster than spherical and ellipsoidal computations

respectively because the planar DWC uses the analytical solution

of the Poisson kernel (Eq. 15) and the two other methods use the

numerical integration.

Additional test can be done by comparing the geoid solutions

computed by the above mentioned methods with the geoid

computed by the EGM08 directly. We compared the three geoid

models with EGM08 in Table 1. According to Table 1 applying the

ellipsoidal DWC improves the geoid solution in some mm level

against the planar and spherical DWC. There are no significant

differences between the solutions using planar and spherical DWC

models.

Table 1. Differences between the EGM08 geoid and the geoid mod-
els computed from different DWC solution. Unit: mm.

difference Min Max Mean STD RMS

Planar -45 32 5 11 13
Spherical -49 32 7 12 14

Ellipsoidal -43 32 3 9 10

7. Conclusions

For the computation of the geoid by Stokes's approach, the

gravity anomalies must be known on the geoid surface. The

gravity anomalies observed on the Earth' surface are continued

downward by the Poisson's integral. The Poisson's integral is

used to transform the point surface gravity anomalies to themean

anomalies on the geoid. The Poisson's integral is formulated in the

local planar, spherical, and ellipsoidal coordinates in this study. We

conducted an analytical solution of Poisson integration kernel for

DWC in the planar coordinates for the discrete point-meanmodel.

The resultwas tested against the spherical andellipsoidal solutions

both in terms of DWC values and the geoid values. There are no

significant differences between the planar and spherical models

of DWC in terms of both gravity anomalies and the geoid. The

differences between the spherical andplanarDWC,with RMSvalue

of 12 µGal on 2 mm on geoid, are smaller than the differences

a)

b)

c)

Figure 6. a) difference between spherical and ellipsoidal DWC in
geoidal height. Unit: mm. Min = -23, Max = 9, Mean =
4 and RMS = 6
b) difference between spherical and planar DWC in geoidal
height. Unit: mm. Min = -6, Max = 1, Mean = 1 and RMS
=2
c) difference between ellipsoidal and planar DWC in
geoidal height. Unit: mm. Min = -18, Max = 9, Mean =
-2 and RMS = 4
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between the ellipsoidal an spherical DWC. In other words, the

spherical correction to planar approximation is smaller than the

ellipsoidal correction to spherical approximation on both DWC of

gravity anomalies and on the final geoid.

The analytical solution of Poisson kernel integration in planar ap-

proximation of DWC of gravity anomalies provides a computation

of spherical and ellipsoidal Poisson's integral that is from 500 to

700 times faster. Therefore, from Table 1, neglecting the 1 cm

error in the geoidal height, the spherical and ellipsoidall Poisson's

integral can be replaced by the fast planar approach.
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