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Abstract:

Spherical Harmonic Transforms (SHTs) which are non-commutative Fourier transforms on the sphere are critical in global geopotential
and related applications. Among the best known global strategies for discrete SHTs of band-limited spherical functions are Chebychev
quadratures and least squares for equiangular grids. With proper numerical preconditioning, independent of latitude, reliable analysis
and synthesis results for degrees and orders over 3800 in double precision arithmetic have been achieved and explicitly demonstrated
using white noise simulations. The SHT synthesis and analysis can easily be modified for the ordinary Fourier transform of the data matrix
and the mathematical situation is illustrated in a new functional diagram. Numerical analysis has shown very little differences in the
numerical conditioning and computational efforts required when working with the two-dimensional (2D) Fourier transform of the data
matrix. This can be interpreted as the spectral form of the discrete SHT which can be useful in multiresolution and other applications.
Numerical results corresponding to the latest Earth Geopotential Model EGM 2008 of maximum degree and order 2190 are included with
some discussion of the implications when working with such spectral sequences of fast decreasing magnitude.
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1. Introduction

On the spherical Earth as on the celestial sphere, array computa-
tions can be done for regional and global domains using planar
and spherical formulations. Quadratures and least-squares esti-
mation are used to convert continuous integral formulations into
summations over data lattices. Spherical topologies are quite
different from planar ones and these have important implications

in the computational aspects of array data processing.

Spherical geocomputations for regional domains of even conti-
nental extents can be reduced to planar computations and under
assumptions of stationarity or shift invariance, discrete array com-
putations can be optimized using Fast Fourier Transforms (FFTs).
Specifically, convolution operations for filtering and other data

*E-mail: blais @ucalgary.ca, http://www.ucalgary.ca/"blais

processing applications thereby require only O(NlogN) instead
of O(N?) operations for N data in one dimension, O(N*logN)
instead of O(N*) operations for N x N data in two dimensions,
and so on. Furthermore, open-source FFT software packages such
as FFTW (Frigo and Johnson, 2005) have been fully optimized to
take advantage of multithreading facilities on High Performance
Computing (HPC) platforms.

For global applications, Gaussian, equiangular and other sim-
ilar regular grids can be used for spherical quadratures
and discrete convolutions. Various quadrature strategies are

available in the literature going back to Gauss and Neu-

mann, in addition to least-squares estimation techniques
(e.g.  Swartztrauber (1979), Colombo (1981), Dilts (1985),
Sneeuw (1994), Molenkamp (1999), Holmes and Feather-

stones (2002), Healy et al. (2003), Jekeli et al. (2007)). Other
approaches have also been used for discretization and anal-
ysis of functions on the sphere using triangular and curvilin-
™~
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ear tessellations based on inscribed regular polytopes (see e.g.
Gorski et al. (2005), Blais (2007, 2010)). Depending on the applica-
tions, these strategies may be preferable to the equiangular ones
which will be discussed in the following.

The associated Legendre functions for high degrees and orders
are computationally very challenging. Without any normalization,
one can hardly compute SHTs of degrees and orders over 50 or
so in double precision arithmetic. With proper normalization such
as the geodetic one used in the following computations, one can
achieve degrees and orders to around 1800 in double precision
arithmetic (Blais and Provins 2003) and over 3600 in quadruple
precision arithmetic (i.e. REAL*16) (Blais et al. 2005 and 2006). With
proper numerical preconditioning independent of the latitude,
the Legendre functions can be evaluated reliably for degrees
and orders over 3800 in double precision arithmetic (Blais 2008).
This has been demonstrated explicitly in synthesis and analysis
computations using unit spectral coefficients (i.e. white noise
simulations) with equiangular grids that do not include the poles.
In other words, the previously published results using Chebychev
quadrature and least squares have been extended to degrees and
orders over 3800 working in double precision arithmetic. This is
very important for numerous applications in geocomputations for
ground resolutions of about 5 km. It should be emphasized that
much higher limits in terms of degrees and orders are achievable
when only synthesis is required as often seen in the literature
(e.g. Jekeli et al. 2007). One key objective in this research is to
have spherical harmonic synthesis and analysis fully compatible
in the mathematical sense for band-limited spherical harmonic
functions.

The SHT synthesis has been modified for the ordinary Fourier
transform of the global equiangular data matrix. For band-limited
spherical harmonic functions, these results are also shown to be
applicable to the SHT analysis and the mathematical situation is
illustrated in a functional diagram. This new transform can be
interpreted as the spectral form of the discrete SHT which can
be useful in multiresolution and other applications. Numerical
simulations and analysis have confirmed that there is essentially
no difference in computational efforts and numerical conditioning
between the original and modified SHTs. These results are also
demonstrated with the latest Earth Geopotential Model EGM 2008
of maximum degree and order 2190. Some numerical analysis
has been included with comments of the implications for other
practical applications.

The literature on spherical harmonic transforms is quite extensive
and a number of software packages in different computer lan-
guages for different applications are readily available for research
purposes. Among the best known packages are the following five
with web references:

1. Spherepack from UCAR (http://www.cisl.ucar.edu/css/
software/spherepack);

2. SpharmonicKit from Dartmouth College (http://www.cs.
dartmouth.edu/"geelong/sphere/);
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3. SHTOOLS from the Institut de Physique du Globe de
Paris (http://www.ipgp.fr/"wieczor/SHTOOLS/www/
accuracy.html);

4., HEALPix JPL
healpixSoftwareDocumentation.shtml);

from (http://healpix.jpl.nasa.gov/

5. ccSHT from Lawrence Berkeley National Lab (http://crd.
Ibl.gov/"cme/ccSHTIib/doc).

Obviously these software packages have been developed for differ-
ent applications and the maximum degrees and orders mentioned
are generally about 2800 for synthesis and analysis. Our research
objectives are in terms of numerical efficiency and maximum
degrees and orders in white noise simulations of synthesis and
analysis as demonstrated by error RMS values in the spectral and
spatial domains. General geodetic applications are obviously also
important.

2. Continuous and Discrete Spherical Harmonic Transforms

The Fourier expansion of a function f(6, A) on the sphere S2 s

f(6,2) = i Y fom Y204

n=0 |m|<n

given by

ey

using colatitude 6 and longitude A, where the orthogonal basis
functions Y, (6, A) are called the spherical harmonics of degree
n and order m. In particular, the Fourier or spherical harmonic
coefficients appearing in the preceding expansion are obtained as
inner products

Fom = / £(0,2) Y"(0,) do )
S2

with the overbar denoting the complex conjugate with do de-
noting the standard rotation invariant measure do = sin 6 d@
dA on S2. In most practical applications, the functions f(8,A) are
(spherically) band-limited in the sense that only a finite number of
those coefficients are nonzero, i.e. f, , = 0 for all degrees n > N
and orders |m| < n. Hence, using the regular equiangular grid 0;
=jn/Jand Ay = k27/K,j=0,...,/J—1,k=0,...,K -1,
with J and K to be specified later on, spherical harmonic synthesis
can be formulated as

N-1
O, A) =) D fam V(6 A) 3)

n=0 |m|<n

and using some appropriate spherical quadrature, the correspond-
ing spherical harmonic analysis can be formulated as

-
L
=
L

q; 1(6;, Ak)
0

Y (6, A) )

fn,m =
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for quadrature weights g; as discussed by various authors e.g.
Driscoll and Healy (1994); Sneeuw (1994); Blais and Provins (2002).
The usual geodetic spherical harmonic formulation is given as

Z Z [Cam €OS MA + 5, Sin MA] an(cos )]

f(6,4) =
n=0 m=0
&)
where
{ Com } Y ) { cos mA } Pon(cos 6) do
Som 4 Js2 sinmA
(0)
with the geodetically normalized Legendre functions

Pn,n(cos O)expressed in terms of the usual spherical harmon-
ics Y7(6, A) (see e.g. (Heiskanen and Moritz, 1967) and (Blais and
Provins 2002) for details). The tilde “~" will be used to indicate
geodetic normalization in the following.

Explicitly, using the geodetic formulation and convention, one has
for synthesis,

i
3

£(0, 1) =

n

[Em €OS MA + 3,y Sin mA] P, ,y(cos 6)

m=0
@)

Il
o

and for analysis, using complex analysis,

E‘nm + ignm ==
= 417, 02” foﬂ (6, A) (cos mA + isin m)\)
[ [Um(6) + iVin(0)] Pom(cos 6) sin 0d0

where

®)

21
(6, A) (cos mA + isin mA) dA

&)

which is simply the parallel-wise Fourier transform of the spatial

. 1
U (6) + ivy(0) = o A

array data.

Hence using data equispaced in longitude and the corresponding
Discrete Fourier Transform (DFT) and Inverse DFT, one can write
for each parallel,

DFT,

{£(6, )} {un(0)+ivn(6)}

per parallel per parallel

(10)
and more generally, for complex data,

DFT,

{f(6, A) + ig(0, M)}

—1
DFT;

{un(6) + iv,(6)}
per parallel

{7(6, M) + ig(6, A)}

per parallel

which will be seen to be important when experimenting with arbi-
trary spectral coefficients C,,, and S,,,. Furthermore, the ordinary

m(C0s 6) sin 6dOd A

-1 /_\
L, (A6, 2}
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discrete Fourier transform implies that Eq. (10} is valid and exact
in exact arithmetic for complex data f(6, Ax) which may not be
common in geophysical applications but can arise in simulations
with arbitrary spectral coefficients ¢, and S,

Correspondingly, for each meridian, with some appropriate Cheby-
chev Quadrature (CQ) or Least Squares (LS) to be described explic-
itly below,

SYNTHESIS
S

{Zom + Bom} {un(6) + iva(6)}

CQorlS . ——
LOorts {Eom + B}

an
in which the synthesis is only partial, i.e. in the Fourier domain.
Notice that in general for (spherical) band limit N, N rows of
isolatitude data are required with LS while 2N rows of equispaced
isolatitude data are required with the CQ,and at least N equispaced
data are required (although 2N or even 4N data are common in
practice) for DFT per parallel. Explicitly,

N—
( + le(Q Z Cnm + lsnm nm(coS 9) (12)

for 2N isolatitudes with A@ = st/2N for CQ and N isolatitudes
with A = st/N for LS. In longitude, only N equispaced points
with AA = 27t/ N for both CQ and LS in the following experimenta-
tion. In practice, it is often desirable to have AG = AAsothat 4N
equispaced isolongitudes are used with CQ and 2N are used with
LS. This is achieved with appropriate zero padding of the {um(Qj)
+1v,(0))} for each parallel. A shift in latitude of the grids by
half A8 is also often implemented to exclude the poles and allow
the use of hemispherical symmetries in the associated Legendre
functions P, ,(cos (7t — 0)) = (-1)"*" P, ,(cos 6). These choices
of equiangular grids and other options are discussed explicitly in
e.g. Blais et al. (2005 and 2006).

Hence, for equiangular (complex) data {f(

0;, A) + ig(6;, Ak},

SHT is a two-step analysis transformation

. DFT,

SHT : {£(6;, A) + ig(6;, M) A
CQorlLS
—_

per parallel
{Eom + 5om)}

with the inverse being the synthesis transformation for {um(Qj) +
iv,(6))} followed by the inverse DFT per parallel or row. More
discussion of the data arrays will be included in the simulation
examples.

Now, in some applications with equiangular data f(6;, Ac), it is
important to consider the corresponding 2D Fourier transform,
that is,

DFT, .
{10 W)} —Zs {un(6) + iva(0))}
DFT-G. {f(ejr/\k)}/\ (13)
per meridian
~
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in which {f(6;, Ac)}" denotes the 2D Fourier transform of the
array {f(6;, A«)}. Notice that in general, for complex spatial data,

— L, fu,(6)) + iva(6))}

{f(6;, A) + ig(6;, Ak) per parallel

— 20, {1(6), ) + ig(6;, )}

per meridian

which is also exact in exact arithmetic. Hence the functional
diagram in Figure 1 which summarizes the mathematical situation
with the separability of latitude and longitude formulations as well
as the commutativity of the ordinary Fourier transforms.

It therefore follows that a modification of SHT for the Fourier trans-
form of equiangular (complex) data {f(6;, A«) + ig(6;, A«)} " can
be defined as follows:

4
FHT : {£(0), &) + ig(6,, A)} ——2

{um(Qj) + ivm(Qj)}

per meridian
CQorlS . i~
{€m + i5,m)}

with the inverse being the synthesis transformation for {u,,(6,)
+iv,(6))} followed by the DFT per meridian or column. More
discussion of the data arrays will be included in the simulation
examples.

{€m + 5pm}

T
{um(6)) + ivin(6))}
/DFT, NDFT,
{£(6, A) + ig(6;, Ak)} % {1(6, A) + ig(6), A)}

Figure 1. Functional diagram relating spherical harmonic coefficients
and global array data.

Explicitly, the Chebychev Quadrature (CQ) is as follows

2N-1

5, = Z qj(Ujm + Vi) Pom(cos 6)) (14)
j=0

with U, = u,(6;) and Vi = vi»(6)), and CQ weights

a; =
e o C
xsin ((7+ 3)3%) f;) s sin (2h+1)(j + 3)5%)

) (15)
with gon—; = ¢q; for j=0,1,...,N =1 by hemispherical
symmetry. These computations are roughly O(N?3) for degree
N. A brief overview of the derivation of these Chebychev weights

can be found in Appendix A of Driscoll and Healy (1994).

e
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The Least-Squares (LS) formulation per degree m is as follows

N-1

n

Pon(cos 6)) (€1, + i30,) = un(6) + iva(6))  (16)

m

with (shifted) isolatitudes 6, = (j + )& = (2j + 1)7/2N
for j = 0,1,..., N — 1. The least-squares computations for

6//

nn + i85, per degree m are obviously very demanding and

roughly O(N*). The elements in the corresponding normal
matrices could be evaluated using the Christoffel-Darboux formula
as shown in {(Swarztrauber and Spotz 2000, Appendix B) based on
(Hildebrand 1956) for more computational efficiency. More details
of the LS formulation can be found in Blais et al. (2005, 2006).

3. Numerical Experimentation

The previous definitions of SHTs and FHT's are for band-limited
spherical functions and these correspond to finite sequences of
spherical harmonic coefficients. In practice, numerical experi-
mentation and analysis are done using simulations for spectral
coefficients of different degrees and orders. After spherical har-
monic synthesis and analysis, an RMS of the spectral differences
can be obtained and subsequently using a second synthesis of the
computed coefficients, an RMS of the spatial differences results.
The RMS quantities for both SHT and FHT have been analyzed for
maximum degrees and orders. The analysis of their magnitudes
and stability characteristics confirm the appropriateness of the
mathematical formulations and computer code.

Most of the experimentation has been done using unit spectral
coefficients which correspond to white noise. Such white noise
spectrum may not be physically meaningful but the objective
here is the numerical reproducibility after synthesis/analysis in the
spectral domain, and following a second synthesis, in the spatial
domain. With more physically realizable spectrasuchas 1, ..., 1/n?
for degrees n > 0, ..., the RMS values are orders of magnitude
smaller than for unit spectral coefficients. For the EGM 2008
and other similar models, the RMS values after synthesis/analysis
and second synthesis are much smaller as those spectra generally
decrease rapidly for large degrees n.

Starting with simulated unit spectral coefficients, the reconstructed
coefficients using CQ and LS formulations are compared with
the input coefficients and RMS values are computed for various
degrees and orders. Similarly, after a second synthesis, RMS values
are computed in the spatial domain. Schematically, using the
Chebychev Quadrature (CQ),

- . SHT! - SHT
{Cnm + ‘Srrm}/\/x/\/ — fik + LGk —
using CQ 2NxN  using CQ
. —= SHT =
{Cnm + lSnm} ; {f/k + Lgjk
NxN using CQ INXN



and correspondingly using Least Squares (LS),

B - SHT—! - _SHT
¢ + (g —_ {fk + 'k}
{&m nm Y NxN using LS j Gik [ en using LS

SHT—!
_—

{Enln + l’énm} R
NxN using LS

{f,ﬁTg,-k}
NxN

The key results, all obtained in double precision arithmetic, are
shown in Table 1 for degrees and orders to 3900. The results for
degrees and orders to 1800 or so agree exactly with those double
precision results published in (Blais et al, 2005 and 2006). For higher
degrees and orders to 3900, these results also generally agree with
the synthesis/analysis results in (Blais, 2008) corresponding to
Eq. (11). The numerical stability in the full spherical harmonic
synthesis and analysis is very good for simulations using unit
spectral coefficients. Again, with physically realizable spectral
coefficients decreasing in magnitude with increasing order, the
corresponding RMS would be smaller.

The same synthesis/analysis and second synthesis simulations
have also been done using the modified SHT, herein called FHT,
for the ordinary Fourier transform of the data matrix, i.e. using the
Chebychev Quadrature (CQ),

. " FHT- — " FHT
{Com + Bomtnany ———= 10k +igi —_—
using CQ 2NxN using CQ
— A
. T FHT! —
{Cnm + lsnm} — {f/k + lgfk}
NxN using cQ INXN
and correspondingly using Least Squares (LS),
. . FHT! — " FHT
{Com + Bambneny —— 1fic +igj —
using LS NxN using LS
— A
. T FHT! —
{Cnm + lsnm} , {ffk + ‘gfk]’
NxN using LS NxN

The differences in the corresponding RMS values in Tables 1
and 2 show a small improvement for the Fourier domain over
the spatial domain which would be somewhat insignificant for
practical applications.

In comparison with the corresponding SHT results for Table 1 in
(Blais, 2008}, the small differences are attributable to the fact that
the latter are for the reproducibility of the spectral coefficients
following Eq. (11) above using CQ and LS using unit spectral
coefficients. The following Tables 1 and 2 are the RMS results
for full synthesis/analysis and second synthesis with unit spectral
coefficients. The resulting accuracies and numerical stability char-
acteristics are essentially the same as the numerical properties of
the DFTs are well known and documented in the literature. The DFT
software used hereinis the FFTW (the “Fastest Fourier Transformin
the West”) from M. Frigo and S.G. Johnson (2005), (www.fftw.org),
on Linux Operating Systems and IMSL FFT (www.vni.com) on
Microsoft Operating Systems.
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Using the latest Earth Geopotential Model EGM 2008 of maximum
degree and order 2190, available from http://earth-info.nima.
mil/GandG/, is the most complete geopotential model for ter-
restrial applications such as geoid undulations, deflections of the
vertical, etc. (see Pavlis et al., 2008 for details). The EGM 2008 spec-
trum is well known to decrease rapidly with increasing degrees
implying much smaller RMS in the synthesis/analysis and second
synthesis corresponding to the preceding white noise simulations.
The following experimentation with EGM 2008 confirms the com-
putational efficiency and reliability of the above described soft-
ware:

{ Com + (Spm } SHT! —
— {fik+‘9ik
of EGM2008 51902190 usmgCQ/\
SHT 6nm + l.gnm
of EGM 2008 51902190

(=

}4380><2‘I90

—_—
using CQ

SHT—! .
fik + gk

using CQ }4380><2190

with RMS in the spectral domain of

RMS I:{Z‘nm + [gnm} - {6nm + l§nm}:| =
2190x2190
3.25706991E — 022
and the corresponding RMS in the spatial domain (on the unit
sphere) is

o —

RMS [{f/k/+i\9fk} — {fu + igu}

2.14335602E — 021

] 4380%2190

Using the modified SHT (herein called FHT) for the 2D DFT of the
spatial dataie. {(6;, A«)}", one obtains

E‘nm + l'gnm FHT! _ A
fEGM2008 ing C TS -
0 2190x2100 YS9 CQ *

FHT { En,,,/-i-T_"snm }
of EGM 2008 2190x2190

— A
—
{fjk + lgl-k}
4380%2190

_—
using CQ
FHT—!
using CQ

with RMS in the spectral domain of

RMS [{Eon + Bun} = {Con + Bun}], =
3.25722469E — 022

and the corresponding RMS in the spatial domain is

—

RMS [{f,-k +igp}" — {fi + igu}"
6.92374626E — 025

] 4380x%2190
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Table 1. Numerical CQ and LS SHT Results for Synthesis/Analysis and Second Synthesis with Unit Spectral Coefficients on a PC Desktop in
Double Precision Arithmetic.

Degrees N CQ SHT RMS of Synthesis/Analysis LS SHT RMS of Synthesis/Analysis
and Second Synthesis (grid: 2Nx/N) and Second Synthesis (grid: N xN)

1000 0.12463916E-012 7.73103474E-012 3.93281287E-014 2.52035513E-011
2000  3.16718363E-012 3.29685442E-011 8.08325307E-014 1.02379555E-010
3000  6.72948908E-012 7.47029579E-011 1.16240398E-013 2.23369947E-010
3200  2.60215965E-012 1.41240416E-011 1.19171640E-013 2.43384839E-010
3400  3.86495948E-012 4.04349665E-011 1.15282097E-013 2.50333725E-010
3600  3.54526184E-012 3.00488397E-011 1.16869701E-013 2.68849687E-010
3700  3.59012376E-011 6.09252567E-011 1.20727075E-013 2.84276107E-010
3800  3.86992724E-004 1.72661284E-004 1.46767720E-013 3.54453854E-010
3900  8.92525237E-002 1.13286540E-002 1.56210407E-013 3.86462663E-010

Table 2. Numerical CQ and LS FHT Results for Synthesis/Analysis and Second Synthesis with Unit Spectral Coefficients on a PC Desktop in
Double Precision Arithmetic.

Degrees N CQ FHT RMS of Synthesis/Analysis LS FHT RMS of Synthesis/Analysis
and Second Synthesis (grid: 2Nx/N) and Second Synthesis (grid: N xN)

1000 1.24639700E-012 5.85214418E-015 3.92230629E-014 2.08092327E-014
2000  3.16718392E-012 1.17631266E-014 8.08980689E-013 4.12514658E-014
3000  6.72948833E-012 1.83162980E-014 1.16478400E-013 6.26858711E-014
3200  2.60215900E-012 4.13440121E-015 1.19336843E-013 6.48340211E-014
3400  3.86495292E-012 9.89864372E-015 1.15266963E-013 6.28269357E-014
3600  3.54526145E-012 6.99588177E-015 1.17272526E-013 6.49750224E-014
3700  3.59012377E-011 1.37156046E-014 1.20281259E-013 6.66999748E-014
3800  3.86992724E-004 4.54371799E-008 1.46264987E-013 7.52423113E-014
3900  8.92525237E-002 2.90478307E-006 1.55443019E-013 7.96237119E-014

Using least squares, the same numerical experimentation can be For the white noise simulations, the computer times are essentially

done and the corresponding four RMS values are respectively as discussed in Blais (2008) when simply implementing Eq. (11} in
the spectral domain only while the preceding results refer to the

RMS I:{Enm + %) — {5"”1/_,_\[5”}] = full spherical harmonic syntheses and analyses. For the experi-

2190x2190 . . ) .

mentation using EGM 2008, the desktop PC computer times (usin
1.45227398F — 023 9 Jesiiop T comp s using
a COMPAQ FORTRAN 95 compiler under Microsoft XP with IMSL
FFT)are giveninTable 3. The computational efforts are respectively

_ O(N?) with €Q and O(N*) with LS. Some optimization of the LS

—

RMS [{f,-k +igi} — {fi + igp}
2.00437035E — 020

]2190x2190 analysis code could be done as previously mentioned in Section 2.

Table 3. Computer Times Using CQ and LS SHT and FHT for Syn-
thesis/Analysis and Second Synthesis with EGM 2008 Co-
efficients on a PC Desktop.

RMS [{E"'" + Son} = {Cum + ig"'"}]zwoxzwo -
1.49249170E — 023

USING Grid Synthesis/Analysis ~ Second
rms | — . ‘ p— N Size Synthesis
ik +igp " — {fix + ig; =
[{ it 19} = U+ igin} LWOXMO SHT with CQ 4380x2190  1028.297 sec.  523.188 sec.
8.39844042E — 024 FHT with CQ 4380x2190  1043.750 sec. ~ 534.141 sec.
These results confirm the accuracy and numerical stability of SHT SHT with LS 2190x2190 91583.73 sec. 257.828 sec.
and FHT when using the current EGM 2008. FHT with LS 2190x2190  91753.97 sec. ~ 259.250 sec.
~
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4. Concluding Remarks

For general applications, considerable work has been done on solv-
ing the computational complexities, and enhancing the speed of
calculation of spherical harmonic transforms for different equian-
gular grids. The numerical problems of evaluating the associated
Legendre functions for very high degrees and orders have been re-
solved using numerical preconditioning as detailed in Blais (2008).
Explicitly, using simulated unit spectral coefficients for degrees and
orders over 3800, full synthesis and analysis lead to numerically
stable RMS errors. For more physically realizable spectra such as
in geodetic applications, these simulation results can be expected
to improve by at least a couple of orders of magnitude, as experi-
enced in previous experimental work. Such results would perhaps
be moreindicative of the expected numerical accuracies in practice
as exemplified by the results using the Earth Geopotential Model
EGM 2008 of maximum degree and order 2190.

A new functional diagram shows the mathematical relationship
between the discrete spherical harmonic transform and the corre-
sponding 2D Fourier transform of equiangular grids of data on the
sphere. Using the separability of the 2D Fourier transform, a mod-
ification of the conventional SHT, called FHT above, has been
introduced to handle the 2D Fourier transform of equiangular data
matrices. Experimentation has shown that the numerical accuracy
and conditioning are not really different with FHT and SHT as the
modification really consists in replacing the row wise (or parallel
wise) Fourier transform by a column wise (or meridian wise) one.
The implications can be very interesting for applications where
the Fourier transform of the data matrix is more appropriate or
convenient.

As enormous quantities of data are involved the gravity field and
other (e.g. the Cosmic Microwave Background) applications, par-
allel and grid computations are imperative for these applications.
Preliminary experimentation with parallel processing has already
been done (Soofi and Blais, 2005) and these double precision
results can readily be duplicated in parallel environments.
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