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Abstract:

Spherical Harmonic Transforms (SHTs) which are non-commutative Fourier transforms on the sphere are critical in global geopotential

and related applications. Among the best known global strategies for discrete SHTs of band-limited spherical functions are Chebychev

quadratures and least squares for equiangular grids. With proper numerical preconditioning, independent of latitude, reliable analysis

and synthesis results for degrees and orders over 3800 in double precision arithmetic have been achieved and explicitly demonstrated

using white noise simulations. The SHT synthesis and analysis can easily bemodified for the ordinary Fourier transform of the datamatrix

and the mathematical situation is illustrated in a new functional diagram. Numerical analysis has shown very little differences in the

numerical conditioning and computational efforts required when working with the two-dimensional (2D) Fourier transform of the data

matrix. This can be interpreted as the spectral form of the discrete SHT which can be useful in multiresolution and other applications.

Numerical results corresponding to the latest Earth Geopotential Model EGM 2008 ofmaximumdegree and order 2190 are includedwith

some discussion of the implications when working with such spectral sequences of fast decreasing magnitude.
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1. Introduction

On the spherical Earth as on the celestial sphere, array computa-

tions can be done for regional and global domains using planar

and spherical formulations. Quadratures and least-squares esti-

mation are used to convert continuous integral formulations into

summations over data lattices. Spherical topologies are quite

different from planar ones and these have important implications

in the computational aspects of array data processing.

Spherical geocomputations for regional domains of even conti-

nental extents can be reduced to planar computations and under

assumptions of stationarity or shift invariance, discrete array com-

putations can be optimized using Fast Fourier Transforms (FFTs).

Specifically, convolution operations for filtering and other data
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processing applications thereby require onlyO(NlogN) instead
of O(N2) operations for N data in one dimension, O(N2logN)
instead ofO(N4) operations forN ×N data in two dimensions,

and so on. Furthermore, open-source FFT software packages such

as FFTW (Frigo and Johnson, 2005) have been fully optimized to

take advantage of multithreading facilities on High Performance

Computing (HPC) platforms.

For global applications, Gaussian, equiangular and other sim-

ilar regular grids can be used for spherical quadratures

and discrete convolutions. Various quadrature strategies are

available in the literature going back to Gauss and Neu-

mann, in addition to least-squares estimation techniques

(e.g. Swartztrauber (1979), Colombo (1981), Dilts (1985),

Sneeuw (1994), Molenkamp (1999), Holmes and Feather-

stones (2002), Healy et al. (2003), Jekeli et al. (2007)). Other

approaches have also been used for discretization and anal-

ysis of functions on the sphere using triangular and curvilin-
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ear tessellations based on inscribed regular polytopes (see e.g.

Gorski et al. (2005), Blais (2007, 2010)). Depending on the applica-

tions, these strategies may be preferable to the equiangular ones

which will be discussed in the following.

The associated Legendre functions for high degrees and orders

are computationally very challenging. Without any normalization,

one can hardly compute SHTs of degrees and orders over 50 or

so in double precision arithmetic. With proper normalization such

as the geodetic one used in the following computations, one can

achieve degrees and orders to around 1800 in double precision

arithmetic (Blais and Provins 2003) and over 3600 in quadruple

precision arithmetic (i.e. REAL*16) (Blais et al. 2005 and 2006). With

proper numerical preconditioning independent of the latitude,

the Legendre functions can be evaluated reliably for degrees

and orders over 3800 in double precision arithmetic (Blais 2008).

This has been demonstrated explicitly in synthesis and analysis

computations using unit spectral coefficients (i.e. white noise

simulations) with equiangular grids that do not include the poles.

In other words, the previously published results using Chebychev

quadrature and least squares have been extended to degrees and

orders over 3800 working in double precision arithmetic. This is

very important for numerous applications in geocomputations for

ground resolutions of about 5 km. It should be emphasized that

much higher limits in terms of degrees and orders are achievable

when only synthesis is required as often seen in the literature

(e.g. Jekeli et al. 2007). One key objective in this research is to

have spherical harmonic synthesis and analysis fully compatible

in the mathematical sense for band-limited spherical harmonic

functions.

The SHT synthesis has been modified for the ordinary Fourier

transform of the global equiangular data matrix. For band-limited

spherical harmonic functions, these results are also shown to be

applicable to the SHT analysis and the mathematical situation is

illustrated in a functional diagram. This new transform can be

interpreted as the spectral form of the discrete SHT which can

be useful in multiresolution and other applications. Numerical

simulations and analysis have confirmed that there is essentially

no difference in computational efforts and numerical conditioning

between the original and modified SHTs. These results are also

demonstrated with the latest Earth Geopotential Model EGM 2008

of maximum degree and order 2190. Some numerical analysis

has been included with comments of the implications for other

practical applications.

The literature on spherical harmonic transforms is quite extensive

and a number of software packages in different computer lan-

guages for different applications are readily available for research

purposes. Among the best known packages are the following five

with web references:

1. Spherepack from UCAR (http://www.cisl.ucar.edu/css/
software/spherepack);

2. SpharmonicKit from Dartmouth College (http://www.cs.
dartmouth.edu/˜geelong/sphere/);

3. SHTOOLS from the Institut de Physique du Globe de

Paris (http://www.ipgp.fr/˜wieczor/SHTOOLS/www/
accuracy.html);

4. HEALPix from JPL (http://healpix.jpl.nasa.gov/
healpixSoftwareDocumentation.shtml);

5. ccSHT from Lawrence Berkeley National Lab (http://crd.
lbl.gov/˜cmc/ccSHTlib/doc).

Obviously these softwarepackageshavebeendeveloped fordiffer-

ent applications and themaximumdegrees and ordersmentioned

are generally about 2800 for synthesis and analysis. Our research

objectives are in terms of numerical efficiency and maximum

degrees and orders in white noise simulations of synthesis and

analysis as demonstrated by error RMS values in the spectral and

spatial domains. General geodetic applications are obviously also

important.

2. Continuous and Discrete Spherical Harmonic Transforms

The Fourier expansion of a function f(θ, λ) on the sphere S2 is

given by

f (θ, λ) = ∞∑
n=0

∑
|m|6n

fn,m Y m
n (θ, λ) (1)

using colatitude θ and longitude λ, where the orthogonal basis

functions Y m
n (θ, λ) are called the spherical harmonics of degree

n and order m. In particular, the Fourier or spherical harmonic

coefficients appearing in the preceding expansion are obtained as

inner products

fn,m = ∫
S2 f (θ, λ) Ȳ m

n (θ, λ) dσ (2)

with the overbar denoting the complex conjugate with dσ de-

noting the standard rotation invariant measure dσ = sin θ dθ
dλ on S2 . In most practical applications, the functions f(θ,λ) are
(spherically) band-limited in the sense that only a finite number of

those coefficients are nonzero, i.e. fn,m ≡ 0 for all degrees n >N
and orders |m| < n. Hence, using the regular equiangular grid θj
= jπ/J and λk = k2π/K , j = 0, . . . , J − 1, k = 0, . . . , K − 1,
with J andK to be specified later on, spherical harmonic synthesis

can be formulated as

f (θj , λk ) = N−1∑
n=0

∑
|m|6n

fn,m Y m
n (θj , λk ) (3)

andusing someappropriate spherical quadrature, the correspond-

ing spherical harmonic analysis can be formulated as

fn,m = J−1∑
j=0

K−1∑
k=0 qj f (θj , λk ) Ȳ m

n (θj , λk ) (4)

http://www.cisl.ucar.edu/css/software/spherepack
http://www.cisl.ucar.edu/css/software/spherepack
http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.cs.dartmouth.edu/~geelong/sphere/
http://www.ipgp.fr/~wieczor/SHTOOLS/www/accuracy.html
http://www.ipgp.fr/~wieczor/SHTOOLS/www/accuracy.html
http://healpix.jpl.nasa.gov/healpixSoftwareDocumentation.shtml
http://healpix.jpl.nasa.gov/healpixSoftwareDocumentation.shtml
http://crd.lbl.gov/~cmc/ccSHTlib/doc
http://crd.lbl.gov/~cmc/ccSHTlib/doc
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for quadrature weights qj as discussed by various authors e.g.

Driscoll and Healy (1994); Sneeuw (1994); Blais and Provins (2002).

The usual geodetic spherical harmonic formulation is given as

f (θ, λ) = ∞∑
n=0

n∑
m=0 [c̃nm cosmλ+ s̃nm sinmλ] P̃nm(cosθ)

(5)
where{

c̃nm
s̃nm

} = 14π
∫
S2 f (θ, λ)

{ cosmλsinmλ
}
P̃nm(cosθ) dσ

(6)
with the geodetically normalized Legendre functions

P̃nm(cosθ)expressed in terms of the usual spherical harmon-

ics Y m
n (θ, λ) (see e.g. (Heiskanen and Moritz, 1967) and (Blais and

Provins 2002) for details). The tilde ``∼'' will be used to indicate

geodetic normalization in the following.

Explicitly, using the geodetic formulation and convention, one has

for synthesis,

f (θ, λ) = N−1∑
n=0

n∑
m=0 [c̃nm cosmλ+ s̃nm sinmλ] P̃nm(cosθ)

(7)
and for analysis, using complex analysis,

c̃nm + is̃nm == 14π ∫ 2π0 ∫ π0 f (θ, λ) (cosmλ+ i sinmλ) P̃nm(cosθ) sinθdθdλ= ∫ π0 [um(θ) + ivm(θ)] P̃nm(cosθ) sinθdθ
(8)

where

um(θ) + ivm(θ) = 14π
∫ 2π

0 f (θ, λ) (cosmλ+ i sinmλ)dλ
(9)

which is simply the parallel-wise Fourier transform of the spatial

array data.

Hence using data equispaced in longitude and the corresponding

Discrete Fourier Transform (DFT) and Inverse DFT, one can write

for each parallel,

{f (θ, λk )} DFTλ−−−−−−→
per parallel

{um(θ)+ivm(θ)} DFT−1
λ−−−−−−→

per parallel
{̂f (θ, λk )}

(10)
and more generally, for complex data,

{f (θ, λk ) + ig(θ, λk )} DFTλ−−−−−−→
per parallel

{um(θ) + ivm(θ)}
DFT−1

λ−−−−−−→
per parallel

{ ̂f (θ, λk ) + ig(θ, λk )}
which will be seen to be important when experimenting with arbi-

trary spectral coefficients c̃nm and s̃nm . Furthermore, the ordinary

discrete Fourier transform implies that Eq. (10) is valid and exact

in exact arithmetic for complex data f (θ, λk ) which may not be

common in geophysical applications but can arise in simulations

with arbitrary spectral coefficients c̃nm and s̃nm .
Correspondingly, for eachmeridian,with someappropriateCheby-

chev Quadrature (CQ) or Least Squares (LS) to be described explic-

itly below,

{c̃nm + is̃nm}
SYNTHESIS−−−−−−−→ {um(θ) + ivm(θ)}

CQ or LS−−−−−→ { ̂c̃nm + is̃nm}
(11)

in which the synthesis is only partial, i.e. in the Fourier domain.

Notice that in general for (spherical) band limit N , N rows of

isolatitude data are required with LS while 2N rows of equispaced

isolatitudedataare requiredwith theCQ,andat leastN equispaced

data are required (although 2N or even 4N data are common in

practice) for DFT per parallel. Explicitly,

um(θ) + ivm(θ) = N−1∑
n=m (c̃nm + is̃nm)P̃nm(cosθ) (12)

for 2N isolatitudes with ∆θ = π/2N for CQ andN isolatitudes

with ∆θ = π/N for LS. In longitude, only N equispaced points

with∆λ = 2π/N for bothCQand LS in the following experimenta-

tion. In practice, it is often desirable to have∆θ = ∆λ so that 4N
equispaced isolongitudes are used with CQ and 2N are used with

LS. This is achieved with appropriate zero padding of the {um(θj )
+ ivm(θj )} for each parallel. A shift in latitude of the grids by

half ∆θ is also often implemented to exclude the poles and allow

the use of hemispherical symmetries in the associated Legendre

functionsPnm(cos (π – θ)) = (-1)n+mPnm(cos θ). These choices
of equiangular grids and other options are discussed explicitly in

e.g. Blais et al. (2005 and 2006).

Hence, for equiangular (complex) data {f (θj , λk ) + ig(θj , λk )},
SHT is a two-step analysis transformation

SHT : {f (θj , λk ) + ig(θj , λk )} DFTλ−−−−−−→
per parallel

{um(θj ) + ivm(θj )}
CQ or LS−−−−−→ {c̃nm + is̃nm)}

with the inverse being the synthesis transformation for {um(θj ) +
ivm(θj )} followed by the inverse DFT per parallel or row. More

discussion of the data arrays will be included in the simulation

examples.

Now, in some applications with equiangular data f (θj , λk ), it is
important to consider the corresponding 2D Fourier transform,

that is,

{f (θj , λk )} DFTλ−−−−−−→
per parallel

{um(θj ) + ivm(θj )}
DFTθ−−−−−−−→

per meridian
{f (θj , λk )}∧ (13)
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in which {f (θj , λk )}∧ denotes the 2D Fourier transform of the

array {f (θj , λk )}. Notice that in general, for complex spatial data,

{f (θj , λk ) + ig(θj , λk )} DFTλ−−−−−−→
per parallel

{um(θj ) + ivm(θj )}
DFTθ−−−−−−−→

per meridian
{f (θj , λk ) + ig(θj , λk )}∧

which is also exact in exact arithmetic. Hence the functional

diagram in Figure 1 which summarizes themathematical situation

with the separability of latitude and longitude formulations as well

as the commutativity of the ordinary Fourier transforms.

It therefore follows that amodification of SHT for the Fourier trans-

form of equiangular (complex) data {f (θj , λk ) + ig(θj , λk )}∧can
be defined as follows:

FHT : {f (θj , λk ) + ig(θj , λk )}∧ DFT−1
θ−−−−−−−→

per meridian

{um(θj ) + ivm(θj )} CQ or LS−−−−−→ {c̃nm + is̃nm)}
with the inverse being the synthesis transformation for {um(θj )
+ ivm(θj )} followed by the DFT per meridian or column. More

discussion of the data arrays will be included in the simulation

examples.

{c̃nm + is̃nm}
l (11)

{um(θj ) + ivm(θj )}
↗DFTλ ↘DFTθ

{f (θj , λk ) + ig(θj , λk )} DFT−−−−→
in 2D {f (θj , λk ) + ig(θj , λk )}∧

Figure 1. Functional diagram relating spherical harmonic coefficients
and global array data.

Explicitly, the Chebychev Quadrature (CQ) is as follows

c̃′nm + is̃′nm = 2N−1∑
j=0 qj (ujm + ivjm)P̃nm(cosθj ) (14)

with ujm ≡ um(θj ) and vjm ≡ vm(θj ), and CQ weights

qj =
1
N sin ((j + 12 ) π2N ) N−1∑

h=0 12h+1 sin ((2h+ 1)(j + 12 ) π2N )
(15)

with q2N−j = qj for j = 0, 1, . . . , N − 1 by hemispherical

symmetry. These computations are roughly O(N3) for degree

N . A brief overview of the derivation of these Chebychev weights

can be found in Appendix A of Driscoll and Healy (1994).

The Least-Squares (LS) formulation per degreem is as follows

N−1∑
n=m P̃nm(cosθj ) (c̃′′nm + is̃′′nm) = um(θj ) + ivm(θj ) (16)

with (shifted) isolatitudes θj = (j + 12 ) πN = (2j + 1)π/2N
for j = 0, 1, ..., N − 1. The least-squares computations for

c̃′′nm + is̃′′nm per degree m are obviously very demanding and

roughly O(N4). The elements in the corresponding normal

matrices couldbe evaluatedusing theChristoffel-Darboux formula

as shown in (Swarztrauber and Spotz 2000, Appendix B) based on

(Hildebrand 1956) for more computational efficiency. More details

of the LS formulation can be found in Blais et al. (2005, 2006).

3. Numerical Experimentation

The previous definitions of SHTs and FHTs are for band-limited

spherical functions and these correspond to finite sequences of

spherical harmonic coefficients. In practice, numerical experi-

mentation and analysis are done using simulations for spectral

coefficients of different degrees and orders. After spherical har-

monic synthesis and analysis, an RMS of the spectral differences

can be obtained and subsequently using a second synthesis of the

computed coefficients, an RMS of the spatial differences results.

The RMS quantities for both SHT and FHT have been analyzed for

maximum degrees and orders. The analysis of their magnitudes

and stability characteristics confirm the appropriateness of the

mathematical formulations and computer code.

Most of the experimentation has been done using unit spectral

coefficients which correspond to white noise. Such white noise

spectrum may not be physically meaningful but the objective

here is the numerical reproducibility after synthesis/analysis in the

spectral domain, and following a second synthesis, in the spatial

domain. Withmorephysically realizablespectrasuchas 1, ..., 1/n2
for degrees n > 0, ..., the RMS values are orders of magnitude

smaller than for unit spectral coefficients. For the EGM 2008

and other similar models, the RMS values after synthesis/analysis

and second synthesis are much smaller as those spectra generally

decrease rapidly for large degrees n.
Startingwithsimulatedunit spectral coefficients, the reconstructed

coefficients using CQ and LS formulations are compared with

the input coefficients and RMS values are computed for various

degrees and orders. Similarly, after a second synthesis, RMS values

are computed in the spatial domain. Schematically, using the

Chebychev Quadrature (CQ),

{c̃nm + is̃nm}N×N
SHT−1
−−−−−−→
using CQ

{
̂fjk + igjk

}
2N×N SHT−−−−−−→

using CQ{
̂c̃nm + is̃nm

}
N×N

SHT−1
−−−−−−→
using CQ

{
̂̂fjk + igjk

}
2N×N
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and correspondingly using Least Squares (LS),

{c̃nm + is̃nm}N×N
SHT−1
−−−−−→
using LS

{
̂fjk + igjk

}
N×N

SHT−−−−−→
using LS{

̂c̃nm + is̃nm
}
N×N

SHT−1
−−−−−→
using LS

{
̂̂fjk + igjk

}
N×N

The key results, all obtained in double precision arithmetic, are

shown in Table 1 for degrees and orders to 3900. The results for

degrees and orders to 1800 or so agree exactly with those double

precision resultspublished in (Blais et al, 2005and2006). Forhigher

degrees and orders to 3900, these results also generally agreewith

the synthesis/analysis results in (Blais, 2008) corresponding to

Eq. (11). The numerical stability in the full spherical harmonic

synthesis and analysis is very good for simulations using unit

spectral coefficients. Again, with physically realizable spectral

coefficients decreasing in magnitude with increasing order, the

corresponding RMS would be smaller.

The same synthesis/analysis and second synthesis simulations

have also been done using the modified SHT, herein called FHT,

for the ordinary Fourier transform of the data matrix, i.e. using the

Chebychev Quadrature (CQ),

{c̃nm + is̃nm}N×N
FHT−1
−−−−−−→
using CQ

{
̂fjk + igjk

}∧
2N×N FHT−−−−−−→

using CQ{
̂c̃nm + is̃nm

}
N×N

FHT−1
−−−−−−→
using CQ

{
̂̂fjk + igjk

}∧
2N×N

and correspondingly using Least Squares (LS),

{c̃nm + is̃nm}N×N
FHT−1
−−−−−→
using LS

{
̂fjk + igjk

}∧
N×N

FHT−−−−−→
using LS{

̂c̃nm + is̃nm
}
N×N

FHT−1
−−−−−→
using LS

{
̂̂fjk + igjk

}∧
N×N

The differences in the corresponding RMS values in Tables 1

and 2 show a small improvement for the Fourier domain over

the spatial domain which would be somewhat insignificant for

practical applications.

In comparison with the corresponding SHT results for Table 1 in

(Blais, 2008), the small differences are attributable to the fact that

the latter are for the reproducibility of the spectral coefficients

following Eq. (11) above using CQ and LS using unit spectral

coefficients. The following Tables 1 and 2 are the RMS results

for full synthesis/analysis and second synthesis with unit spectral

coefficients. The resulting accuracies and numerical stability char-

acteristics are essentially the same as the numerical properties of

theDFTs arewell knownanddocumented in the literature. TheDFT

software used herein is the FFTW (the ``Fastest Fourier Transform in

theWest'') fromM. Frigo and S.G. Johnson (2005), (www.fftw.org),
on Linux Operating Systems and IMSL FFT (www.vni.com) on

Microsoft Operating Systems.

Using the latest Earth Geopotential Model EGM 2008 of maximum

degree and order 2190, available from http://earth-info.nima.
mil/GandG/, is the most complete geopotential model for ter-

restrial applications such as geoid undulations, deflections of the

vertical, etc. (see Pavlis et al., 2008 for details). The EGM 2008 spec-

trum is well known to decrease rapidly with increasing degrees

implying much smaller RMS in the synthesis/analysis and second

synthesis corresponding to the precedingwhite noise simulations.

The following experimentation with EGM 2008 confirms the com-

putational efficiency and reliability of the above described soft-

ware:{
c̃nm + is̃nm
ofEGM2008

}
2190×2190

SHT−1
−−−−−−→
using CQ

{
̂fjk + igjk

}
4380×2190

SHT−−−−−−→
using CQ

{
̂c̃nm + is̃nm

ofEGM 2008
}

2190×2190
SHT−1
−−−−−−→
using CQ

{
̂̂fjk + igjk

}
4380×2190

with RMS in the spectral domain of

RMS
[
{c̃nm + is̃nm} − { ̂c̃nm + is̃nm}

]
2190×2190 =3.25706991E − 022

and the corresponding RMS in the spatial domain (on the unit

sphere) is

RMS
[
{ ̂fjk + igjk} − {

̂̂fjk + igjk}
]

4380×2190 =
2.14335602E − 021

Using themodifiedSHT (herein calledFHT) for the 2DDFT of the

spatial data i.e. {f (θj , λk )}∧ , one obtains{
c̃nm + is̃nm
ofEGM2008

}
2190×2190

FHT−1
−−−−−−→
using CQ

{
̂fjk + igjk

}∧
4380×2190

FHT−−−−−−→
using CQ

{
̂c̃nm + is̃nm

ofEGM 2008
}

2190×2190
FHT−1
−−−−−−→
using CQ

{
̂̂fjk + igjk

}∧
4380×2190

with RMS in the spectral domain of

RMS
[
{c̃nm + is̃nm} − { ̂c̃nm + is̃nm}

]
2190×2190 =3.25722469E − 022

and the corresponding RMS in the spatial domain is

RMS
[
{ ̂fjk + igjk}∧ − {

̂̂fjk + igjk}∧
]

4380×2190 =
6.92374626E − 025

www.fftw.org
www.vni.com
http://earth-info.nima.mil/GandG/
http://earth-info.nima.mil/GandG/
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Table 1. Numerical CQ and LS SHT Results for Synthesis/Analysis and Second Synthesis with Unit Spectral Coefficients on a PC Desktop in
Double Precision Arithmetic.

Degrees N CQ SHT RMS of Synthesis/Analysis LS SHT RMS of Synthesis/Analysis
and Second Synthesis (grid: 2N×N) and Second Synthesis (grid: N×N)

1000 0.12463916E-012 7.73103474E-012 3.93281287E-014 2.52035513E-011
2000 3.16718363E-012 3.29685442E-011 8.08325307E-014 1.02379555E-010
3000 6.72948908E-012 7.47029579E-011 1.16240398E-013 2.23369947E-010
3200 2.60215965E-012 1.41240416E-011 1.19171640E-013 2.43384839E-010
3400 3.86495948E-012 4.04349665E-011 1.15282097E-013 2.50333725E-010
3600 3.54526184E-012 3.00488397E-011 1.16869701E-013 2.68849687E-010
3700 3.59012376E-011 6.09252567E-011 1.20727075E-013 2.84276107E-010
3800 3.86992724E-004 1.72661284E-004 1.46767720E-013 3.54453854E-010
3900 8.92525237E-002 1.13286540E-002 1.56210407E-013 3.86462663E-010

Table 2. Numerical CQ and LS FHT Results for Synthesis/Analysis and Second Synthesis with Unit Spectral Coefficients on a PC Desktop in
Double Precision Arithmetic.

Degrees N CQ FHT RMS of Synthesis/Analysis LS FHT RMS of Synthesis/Analysis
and Second Synthesis (grid: 2N×N) and Second Synthesis (grid: N×N)

1000 1.24639700E-012 5.85214418E-015 3.92230629E-014 2.08092327E-014
2000 3.16718392E-012 1.17631266E-014 8.08980689E-013 4.12514658E-014
3000 6.72948833E-012 1.83162980E-014 1.16478400E-013 6.26858711E-014
3200 2.60215900E-012 4.13440121E-015 1.19336843E-013 6.48340211E-014
3400 3.86495292E-012 9.89864372E-015 1.15266963E-013 6.28269357E-014
3600 3.54526145E-012 6.99588177E-015 1.17272526E-013 6.49750224E-014
3700 3.59012377E-011 1.37156046E-014 1.20281259E-013 6.66999748E-014
3800 3.86992724E-004 4.54371799E-008 1.46264987E-013 7.52423113E-014
3900 8.92525237E-002 2.90478307E-006 1.55443019E-013 7.96237119E-014

Using least squares, the same numerical experimentation can be

done and the corresponding four RMS values are respectively

RMS
[
{c̃nm + is̃nm} − { ̂c̃nm + is̃nm}

]
2190×2190 =1.45227398E − 023

RMS
[
{ ̂fjk + igjk} − {

̂̂fjk + igjk}
]

2190×2190 =
2.00437035E − 020
RMS

[
{c̃nm + is̃nm} − { ̂c̃nm + is̃nm}

]
2190×2190 =1.49249170E − 023

RMS
[
{ ̂fjk + igjk}∧ − {

̂̂fjk + igjk}∧
]

2190×2190 =
8.39844042E − 024

These results confirm the accuracy and numerical stability of SHT
and FHT when using the current EGM 2008.

For thewhite noise simulations, the computer times are essentially

as discussed in Blais (2008) when simply implementing Eq. (11) in

the spectral domain only while the preceding results refer to the

full spherical harmonic syntheses and analyses. For the experi-

mentation using EGM2008, the desktop PC computer times (using

a COMPAQ FORTRAN 95 compiler under Microsoft XP with IMSL

FFT) aregiven inTable3. Thecomputational efforts are respectively

O(N3) with CQ andO(N4) with LS. Some optimization of the LS

analysis code could be done as previously mentioned in Section 2.

Table 3. Computer Times Using CQ and LS SHT and FHT for Syn-
thesis/Analysis and Second Synthesis with EGM 2008 Co-
efficients on a PC Desktop.

USING Grid Synthesis/Analysis Second
Size Synthesis

SHT with CQ 4380×2190 1028.297 sec. 523.188 sec.
FHT with CQ 4380×2190 1043.750 sec. 534.141 sec.
SHT with LS 2190×2190 91583.73 sec. 257.828 sec.
FHT with LS 2190×2190 91753.97 sec. 259.250 sec.
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4. Concluding Remarks

Forgeneral applications, considerableworkhasbeendoneonsolv-

ing the computational complexities, and enhancing the speed of

calculation of spherical harmonic transforms for different equian-

gular grids. The numerical problems of evaluating the associated

Legendre functions for very high degrees and orders have been re-

solved using numerical preconditioning as detailed in Blais (2008).

Explicitly, using simulatedunit spectral coefficients fordegreesand

orders over 3800, full synthesis and analysis lead to numerically

stable RMS errors. For more physically realizable spectra such as

in geodetic applications, these simulation results can be expected

to improve by at least a couple of orders of magnitude, as experi-

enced in previous experimental work. Such results would perhaps

bemore indicativeof theexpectednumerical accuracies inpractice

as exemplified by the results using the Earth Geopotential Model

EGM 2008 of maximum degree and order 2190.

A new functional diagram shows the mathematical relationship

between the discrete spherical harmonic transform and the corre-

sponding 2D Fourier transform of equiangular grids of data on the

sphere. Using the separability of the 2D Fourier transform, a mod-

ification of the conventional SHT, called FHT above, has been

introduced to handle the 2D Fourier transformof equiangular data

matrices. Experimentation has shown that the numerical accuracy

and conditioning are not really different with FHT and SHT as the

modification really consists in replacing the row wise (or parallel

wise) Fourier transform by a column wise (or meridian wise) one.

The implications can be very interesting for applications where

the Fourier transform of the data matrix is more appropriate or

convenient.

As enormous quantities of data are involved the gravity field and

other (e.g. the Cosmic Microwave Background) applications, par-

allel and grid computations are imperative for these applications.

Preliminary experimentation with parallel processing has already

been done (Soofi and Blais, 2005) and these double precision

results can readily be duplicated in parallel environments.
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