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Abstract:

Today the geoid can be conveniently determined by a set of high-degree spherical harmonics, such as EGM08 with a resolution of about
5'. However, such a series will be biased when applied to the continental geoid inside the topographic masses. This error we call the
analytical downward continuation (DWC) error, which is closely related with the so-called topographic potential bias. However, while the
former error is the result of both analytical continuation of the potential inside the topographic masses and truncation of a series, the
latter is only the effect of analytical continuation.

This study compares the two errors for EGMO08, complete to degree 2160. The result shows that the topographic bias ranges from 0 at
sea level to 5.15 m in the Himalayas region, while the DWC error ranges from -0.08 m in the Pacific to 5.30 m in the Himalayas. The
zero-degree effects of the two are the same (5.3 ¢cm), while the rms of the first degree errors are both 0.3 cm. For higher degrees the
power of the topographic bias is slightly larger than that for the DWC error, and the corresponding global rms values reaches 25.6 and
25.3 cm, respectively, at nnax=2160. The largest difference (20.5 cm) was found in the Himalayas. In most cases the DWC error agrees
fairly well with the topographic bias, but there is a significant difference in high mountains. The global rms difference of the two errors
clearly indicates that the two series diverge, a problem most likely related with the DWC error.
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1. Introduction provide estimates of the geoid height globally to an accuracy of
the order of 1 cm at a resolution of 5’ x5’ (i.e., about 10X 10 kmz).
However, as for continental regions the geoid is mainly located

within the topographic masses, the representation of the disturb-
In 2008 the U.S. National Geospatial-Intelligence Agency (NGA)

EGM Development Team released the Earth Gravitational Model
EGMO8, complete to degree and order 2160 (Pavlis et al. 2008).
The long-wavelength part of the model was obtained from GRACE

ing potential of the Earth by a series of spherical harmonics, which
is the case when applying EGMO08, will be biased. This is because
EGMOS is related with an external type of harmonic series, while
inside the topographic masses the potential cannot be harmonic.
Sjoberg (1977) and (1980) as well as Jekeli (1981) studied “the
downward continuation error” (DWC error) as the difference be-

(Gravity Recovery And Climate Experiment) data to degree and
order 60, and the medium- to short-wavelengths were computed
by from a global coyerag? of 5'X 5" terrestrial gravity anomalies tween an external and internal type of harmonic series. This error
(generated by satellite altimetry over the oceans). EGM08 may is not due only to the fact that the actual potential is not harmonic

inside the topographic masses (the topographic bias), while the

*E-mail: Isjo@kth.se, Tel: +46-8-790-7330; Fax: +46-8-790-7343 harmonic series is, but it is due also to other problems of the series,
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such as truncation and convergence.

In Sjoberg (2007), (2008)
and (2009a) the so-called topographic potential bias was clearly
distinguished from the DWC error.

In a harmonic expansion of the disturbing potential to degree 16,
based on 5°x5° spherical blocks of mean topographic heights,
Sjoberg (1977) found that the global rms DWC error at sea level,
i.e. the geoid error, is about 0.13 m, and the error coefficients
were tabulated to the same degree (Sjoberg ibid., Table 3). On
the contrary, Jekeli (1981) studied only the DWC error at the
Earth's surface, which, of course, does not include any analytical
continuation and therefore no topographic bias. He concluded
that the DWC error of the quasigeoid height, based on an external
type of spherical harmonics of the disturbing potential to degree
and order 300, does not exceed 0.4 mm. Agren (2004) studied
numerically the difference between the “strict” DWC error (Eq. 3
below) and that achieved by using a binomial series expansion
of topographic height (Eq. 9 below). For a harmonic series to
degree and order 1800 he found good agreement between the
two formulas (using only binomial series to second order) when
excluding the highest mountain areas. When including also terms
up to power 4 in the binomial series the maximum reported
difference was 16 mm (in the Himalayas).

The questions we will discuss in this article are the following:

1. how significant is the DWC error in applying EGMO8 to
geoid computation?

2. Does this error differ significantly from the topographic
bias?

2. The downward continuation error

The external type of spherical harmonic representation of the
topographic potential applied at sea level and truncated at degree
Npax becomes (Sjéberg 1977)
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Here pris the product of the gravitational constant and topographic
density (assumed to be constant), R and rs > R are the radii of
sea level (assumed to be spherical) and the topographic surface,

+3
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respectively, and o is the unit sphere, and Y, is the fully-
normalized spherical harmonic of degree n and order m with
arguments (6, A) being co-latitude and longitude.

The corresponding internal type harmonic series becomes (Sjoberg
1977, Sect. 4)
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As discussed in Sjoberg (1977), (1980) and (2008) two main prob-
lems may occur when applying Eq. (1) at sea level:

1. the series will be biased within the topography (topo-
graphic bias; see Sect. 3),

2. the series may be part of a divergent series and therefore
incorrect.

The bias means a systematic error committed by analytically
continuing a harmonic series into the topographic masses, where
the correct potential is not harmonic. The problem of convergence
is not limited to the application of the series to a point inside the
topographic masses, but it is relevant to any computational point
below the Brillouin sphere, i.e. the limiting sphere enveloping
all topographic masses. In addition, as the series is truncated, it
also experiences a truncation error. In any case, while the internal
series, Eq. (2), suffers only from a truncation error from the terms
beyond degree n 4y, the external type series, Eq. (1), suffers from
truncation, analytical continuation into masses and the possible
error related with a divergent series. By taking the difference
between the two series we get what we call the DWC error of
the external series [but, actually, as the truncation errors differ
between the two series, the DWC error is composed of errors of
truncation, topographic bias and, possibly, convergence of the
series]. Explicitly the geoid height error becomes (when scaled to
geoid height by dividing the potential by normal gravity y)

SN (0, 1) =
S

where P, (cos ) is the Legendre’s polynomial of degree n and

R n+1
— (7) :|r2drP,, (cos ¢) da3)

 is the geocentric angle. Except for the sign, this formula agrees
with “the combined topographic effect” as presented in Sjoberg

(2000, Eq. 113). After integration with respect to radius, this
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equation can also be written in terms of spherical harmonics (cf.
Egs. 1a-2¢):
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where

1
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Here (see Sjoberg 1977)
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Egs. (4a), (4b) and (5) can also be obtained by directly taking the
difference between the external and internal types harmonic series
of Egs. (1a) and (2a).

By inserting the binomial series expansions (with H = rs — R)
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into Eq. (5) we obtain also
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By inserting Eq. (7) into Eq. (4b) one arrives at
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so that Eq. {(4a) becomes
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2.1.  Convergence of the series

In the strict sense we should not expect Eq. (3) to be conver-
gent when ny,,« approaches infinity. This is obvious, as the ratio
rs/R >1. Nevertheless, for a finite 1, the series is also finite. The
convergence problem holds also for the binomial series of Eq. (7);
see Sun and Sj6éberg (2001). In the numerical application we will
only consider a finite 1., so that convergence will not be a prob-
lem. The convergence problem was extensively described in Moritz
(1980, Chs. 6-7). Moritz (ibid.) and Wang (1997), when considering
the roughness of the Earth'’s topography, both concludes that the
series must be divergent in the strict, mathematical sense, but,
from a practical point of view, divergence can be changed into
convergence by a reasonable smoothing of the topography. In
this context Moritz (1980) refers to the approximation theorem of
Krarup-Runge. We will return to this question in our concluding
remarks.

3. Comparison with the topographic potential bias

The topographic potential bias was defined by Sjoberg (2007) as
the error in analytical continuation of the external potential inside
the topographic masses, and only the error due to the fact that the
potential is regarded as harmonic in a domain, where it is not (i.e.
inside the topographic masses), is considered. This means, that
some errors of the spherical harmonic series above, such as those
due to truncation and non-convergence, are not considered. For a
constant topographic density Sjoberg (2007), (2009a) and (2009c)
proved that the topographic bias for the total geoid height is given
by the simple formula

2H (6, )

6Nbiu5 (61 )\) 3R
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If the analytical continuation of the external potential to sea
level is truncated to wavelengths of a maximum degree of n .y,
the corresponding contribution to the topographic bias becomes



accordingly (Sjoberg 2007)

6Nbias (9: A) =
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Comparing this result with Eq. (9) we notice that the topographic
bias is exactly the first two terms of DWC error of the spherical
harmonics, but the remaining terms of the latter error are now
missing. Some further details of the difference between the two
error concepts can be found in the discussion between Vermeer
(2007) and Sjoberg (2008).

[A practical consequence of the topographic bias, in contrast to the
DWC, is that the geoid height can be determined without applying
the so-called terrain corrections (Sjoberg 2009b). However, this
topic is outside the scope of this article.]

4. Numerical studies

The aim of the numerical study is to compare the downward con-
tinuation error/analytical continuation error and the topographic
potential bias for the Earth Gravitational Model EGMO8 (for an
equivalent EGM) complete to degree and order 2160, correspond-
ing to a resolution of the order of 5. To do so we will use the
global Digital Terrain Model 2006 (DTM2006) available as a series
of spherical harmonics to the same degree and order (Pavlis et al.
2006).

Figure 1 shows the downward continuation error for geoid height
estimated by Eq. (4a), with coefficients determined by Eqs. (4b) and
(5). It is an interesting notation that small negative errors (down
to about -0.078 m) occur in 33.5% and 1.5% of points of over the
oceans and continents, respectively. The continental areas with
negative DWC error are primarily located along the shorelines. The
reason of the negative values may be due to the different natures
of the truncation errors of the external and internal series of the
DWC error. For comparison, Figure 2 illustrates the topographic
potential bias determined by Eq. (10), which, in contrast to Figure 1,
shows only non-negative biases.

The difference of the downward continuation error minus the
topographic bias, depicted in Figure 3 shows some significant
differences (down to -0.205 m), mainly in high-elevated areas.
Table 1 contains some basic statistics in comparing the analytical
As said
above, it can be seen that the bias is large in mountainous

continuation error (DWC) and the topographic bias.

areas. The maxima (occurring in the Himalayas) of DWC error
and topographic bias are 5.30 and 5.15 metre, respectively. The
maximum topographic bias occurs for the topographic height of
6679 m. The table shows also that the analytical continuation error
and topographic bias are more or less the same, because of the
same mathematical nature and physical concept. The statistic of
the differences shows that the mean is zero and differences are
small.
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Figure 1. Downward continuation error for geoid height with a reso-
lution 5’x5". (Unit: m)

Figure 2. Topographic bias for geoid height with a resolution 5'x5'.
(Unit: m)
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Figure 3. Difference between DWC error and topographic bias for
geoid height with a resolution 5'x5’. (Unit: m)
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Table 1. Statistic of the DWC error and topographic bias for geoid
height with a resolution 5’ x5’. (Unit: m)

Max Mean Min Std.

DWC error (Sjoberg, 1977)  5.300 0.101 -0.079 0.317
Topographic bias (Sjoberg, 2007) 5.153 0.101 0  0.317
0.185 0 -0.205 0.004

Difference

The degree variances of the DWC error and the topographic bias
are further compared in Figures 4 and 5. Both figures show that the
errors are dominated by their low-degree components. (Note that
the vertical scale in Figure 4 is logarithmic.) However, as can be
seen in Figure 5, after about degree 100 the cumulative rms errors
differ significantly and increase very slowly towards 0.253 m and
0.256 m for degree 2160. Although the two errors agree well for
low- and medium-degree components, their difference increases
with the degree (see Figures 6 and 7).
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Moreover, as can be seen from Figure 8, the relative difference

grows quickly with the degree after, say, degree 2000. Hence,
we may expect the DWC error to deviate considerably from the
topographic bias for ultra-high degree harmonic expansions of the
gravity field. This diverging pattern we refer to the shape of the
DWC error, as the harmonic series of the topographic bias cannot
be divergent.

4.1. The zero- and first-degree contributions

From Eq. (3) follows that the zero- and first-degree contributions
to the DWC error can be written
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and

1
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This shows that despite of that EGMO8 (as is custom for EGMs) is
defined in such a way that the zero- and first-degree harmonics are
zero, the geoid heights provided by this model will include such
harmonics (see also Sjoberg 2001).

For comparison, the topographic potential bias, computed by
Eq. (11), and the DWC error, given by Eq. (12), yield the same
zero-degree error of 5.3 cm, but the first-degree harmonics differ
slightly: the rms of the first degree dwc error and topographic bias
are both 0.3 cm.

Table 2. Comparison of the low-degree and -order terms of coefficients A,,. In order to get the spectral DWC error of geoid height, each coefficient

should be multiplied by the factor yR?/y =7.37x10°> m.

degree order Coeflicients A,

degree order Coeflicients A,

n m cos part sin part n m cos part sin part

0 0 7.07x107%  0.00x10° 4 0 255x107%  0.00x10°

1 0 -321x107%  0.00x10° 4 1 -3.61x107"0 -516x10708
1 1 1.34x107%8 303x10°%8 4 2 -3.66x107% 321x107%
2 0 436x107%  0.00x10° 4 3 895x107%° -4.03x107%
2 1 -263x10799 308x107% 4 4 1.74x10798 124x10708
2 2 371x107% 481x107%9 5 0 -5.73x107%  0.00x10°

3 0 -6.57x107%  0.00x10° 5 1 7.62x10799 7.47x10799
3 1 -323x10710 326x107% 5 2 1.61x10799 -7.35x107%
3 2 -429%x107% 133x10°%8 5 3 390x10799 -3.46x107%8
3 3 -6.18x107%9 -6.80x107% 5 4 +3.42x1079 -1.98x10708

In Table 2 we illustrate the lowest degree and order terms of coef-
ficients A, . They can be converted to geoid height components
by multiplying by the factor yR?/y 27.37x 10> m (computed for
topographicdensity setto2.67 g em > and normal gravity 981 Gal).
By subtracting these coefficients from those of the EGM08 poten-
tial coefficients, the latter model is converted to the coefficients of
the disturbing potential at sea-level (inside the topography over
continents). (The full set of coefficients can be obtained from the
authors). As mentioned, this set of coefficients can contribute to a
correction of the geoid computed by EGMO08 of as much as 5.3 m.

5. Concluding remarks

This study shows that the so-called DWC error in applying EGM08
to geoid determination is large in regions with high topography,
ranging to 5.15 m in the Himalayas. The DWC error differs from
the topographic potential bias, caused by the use of a harmonic
series within the topographic masses, where the potential is not
harmonic. While the topographic bias is caused solely by the
analytical continuation into the masses, the DWC error also has
other sources. For the EGMO8 the two errors differ within -0.20 and
+0.18 m, where the DWC error takes on the most extreme values.

According to Krarup-Runge's theorem (Moritz 1980, Ch. 7) the
external spherical harmonic representation of the geopotential is
practically convergent down to the Bjerhammar sphere (a sphere
"
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completely embedded in the Earth’s interior), implying that the
series will not experience any error (of arbitrarily chosen signifi-
cance level) related with a divergent series as long as the series
is truncated. This conclusion contradicts our discussions at the
beginning of Sect. 2.1 and of the numerical results of Figures 7
and 8 in Sect. 4, which show clear divergent shapes of the error
differences.

We showed also that the zero-degree error and rms first-degree
error of the geoid height, when directly determined by EGMOS,
agree exactly to 5.3 cm and 0.3 cm, respectively, for the DWC error
and topographic error. Hence, despite of the fact that EGM08 is
defined with vanishing zero- and first-degree terms, implying that
the mass and center of the reference ellipsoid agree with the mass
and gravity center of the Earth, the geoid will experience such
harmonics. This effect is due to the fact that the geoid partly runs
inside the topography.

The contents of this article are not only valid for applications
with EGMO08 alone, but they are also useful when combining
an EGM with terrestrial gravity data. For instance, as pointed
out by Sjéberg (2005), in geoid computation by the well-known
remove-compute-restore technique the EGM should be corrected
accordingly.
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