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Abstract:

Today the geoid can be conveniently determined by a set of high-degree spherical harmonics, such as EGM08 with a resolution of about
5'. However, such a series will be biased when applied to the continental geoid inside the topographic masses. This error we call the
analytical downward continuation (DWC) error, which is closely related with the so-called topographic potential bias. However, while the
former error is the result of both analytical continuation of the potential inside the topographic masses and truncation of a series, the
latter is only the effect of analytical continuation.
This study compares the two errors for EGM08, complete to degree 2160. The result shows that the topographic bias ranges from 0 at
sea level to 5.15 m in the Himalayas region, while the DWC error ranges from -0.08 m in the Pacific to 5.30 m in the Himalayas. The
zero-degree effects of the two are the same (5.3 cm), while the rms of the first degree errors are both 0.3 cm. For higher degrees the
power of the topographic bias is slightly larger than that for the DWC error, and the corresponding global rms values reaches 25.6 and
25.3 cm, respectively, at nmax=2160. The largest difference (20.5 cm) was found in the Himalayas. In most cases the DWC error agrees
fairly well with the topographic bias, but there is a significant difference in high mountains. The global rms difference of the two errors
clearly indicates that the two series diverge, a problemmost likely related with the DWC error.
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1. Introduction

In 2008 the U.S. National Geospatial-Intelligence Agency (NGA)

EGM Development Team released the Earth Gravitational Model

EGM08, complete to degree and order 2160 (Pavlis et al. 2008).

The long-wavelength part of themodel was obtained fromGRACE

(Gravity Recovery And Climate Experiment) data to degree and

order 60, and the medium- to short-wavelengths were computed

by from a global coverage of 5'×5' terrestrial gravity anomalies

(generated by satellite altimetry over the oceans). EGM08 may
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provide estimates of the geoid height globally to an accuracy of

the order of 1 cm at a resolution of 5'×5' (i.e., about 10×10 km2).
However, as for continental regions the geoid is mainly located

within the topographic masses, the representation of the disturb-

ing potential of the Earth by a series of spherical harmonics, which

is the case when applying EGM08, will be biased. This is because

EGM08 is related with an external type of harmonic series, while

inside the topographic masses the potential cannot be harmonic.

Sjöberg (1977) and (1980) as well as Jekeli (1981) studied ``the

downward continuation error'' (DWC error) as the difference be-

tween an external and internal type of harmonic series. This error

is not due only to the fact that the actual potential is not harmonic

inside the topographic masses (the topographic bias), while the

harmonic series is, but it is due also to other problems of the series,
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such as truncation and convergence. In Sjöberg (2007), (2008)

and (2009a) the so-called topographic potential bias was clearly

distinguished from the DWC error.

In a harmonic expansion of the disturbing potential to degree 16,

based on 5◦×5◦ spherical blocks of mean topographic heights,

Sjöberg (1977) found that the global rms DWC error at sea level,

i.e. the geoid error, is about 0.13 m, and the error coefficients

were tabulated to the same degree (Sjöberg ibid., Table 3). On

the contrary, Jekeli (1981) studied only the DWC error at the

Earth's surface, which, of course, does not include any analytical

continuation and therefore no topographic bias. He concluded

that the DWC error of the quasigeoid height, based on an external

type of spherical harmonics of the disturbing potential to degree

and order 300, does not exceed 0.4 mm. Ågren (2004) studied

numerically the difference between the ``strict'' DWC error (Eq. 3

below) and that achieved by using a binomial series expansion

of topographic height (Eq. 9 below). For a harmonic series to

degree and order 1800 he found good agreement between the

two formulas (using only binomial series to second order) when

excluding the highest mountain areas. When including also terms

up to power 4 in the binomial series the maximum reported

difference was 16 mm (in the Himalayas).

The questions we will discuss in this article are the following:

1. how significant is the DWC error in applying EGM08 to

geoid computation?

2. Does this error differ significantly from the topographic

bias?

2. The downward continuation error

The external type of spherical harmonic representation of the

topographic potential applied at sea level and truncated at degree

nmax becomes (Sjöberg 1977)

V T
e (θ, λ) = µR2 nmax∑

n=0
n∑

m=−n
eV T

nmYnm (θ, λ) , (1a)

where

eV T
nm = 1(2n+ 1) (n+ 3) ∫∫

σ

[( rS
R

)n+3
− 1]Ynm (θ, λ)dσ.

(1b)
Hereµ is theproductof thegravitational constant and topographic
density (assumed to be constant), R and rS > R are the radii of

sea level (assumed to be spherical) and the topographic surface,

respectively, and σ is the unit sphere, and Ynm is the fully-

normalized spherical harmonic of degree n and order m with

arguments (θ, λ) being co-latitude and longitude.

Thecorresponding internal typeharmonic seriesbecomes (Sjöberg

1977, Sect. 4)

V T
i (θ, λ) = µR2 nmax∑

n=0
n∑

m=−n
iV T

nmYnm (θ, λ) , (2a)

where

iV T
nm = 1(2n+ 1)(n − 2)

∫∫
σ

[(
R
rS

)n−2
− 1]Ynm (θ, λ)dσ,

if n 6= 2 (2b)

and

iV T2m = ∫∫
σ

ln(rS/R )Ynm (θ, λ)dσ, if n = 2. (2c)

As discussed in Sjöberg (1977), (1980) and (2008) two main prob-

lems may occur when applying Eq. (1) at sea level:

1. the series will be biased within the topography (topo-

graphic bias; see Sect. 3),

2. the series may be part of a divergent series and therefore

incorrect.

The bias means a systematic error committed by analytically

continuing a harmonic series into the topographic masses, where

the correct potential is not harmonic. The problemof convergence

is not limited to the application of the series to a point inside the

topographic masses, but it is relevant to any computational point

below the Brillouin sphere, i.e. the limiting sphere enveloping

all topographic masses. In addition, as the series is truncated, it

also experiences a truncation error. In any case, while the internal

series, Eq. (2), suffers only from a truncation error from the terms

beyond degree nmax , the external type series, Eq. (1), suffers from
truncation, analytical continuation into masses and the possible

error related with a divergent series. By taking the difference

between the two series we get what we call the DWC error of

the external series [but, actually, as the truncation errors differ

between the two series, the DWC error is composed of errors of

truncation, topographic bias and, possibly, convergence of the

series]. Explicitly the geoid height error becomes (when scaled to

geoid height by dividing the potential by normal gravity γ)

δN (θ, λ) =
µ
Rγ

nmax∑
n=0
∫∫
σ

rs∫
R

[( r
R

)n
−
(
R
r

)n+1]
r2drPn (cosψ)dσ,(3)

where Pn (cosψ) is the Legendre's polynomial of degree n and

ψ is the geocentric angle. Except for the sign, this formula agrees

with ``the combined topographic effect'' as presented in Sjöberg

(2000, Eq. 113). After integration with respect to radius, this
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equation can also be written in terms of spherical harmonics (cf.

Eqs. 1a-2c):

δN (θ, λ) = µR2
γ

nmax∑
n=0

n∑
m=−nAnmYnm (θ, λ) , (4a)

where

Anm = 12n+ 1
∫∫
σ

In (R, rS )Ynm (θ, λ)dσ. (4b)

Here (see Sjöberg 1977)

In (R, rS ) =


(rS/R )n+3 − 1
n+ 3 + (R/rS )n−2 − 1

n − 2 if n 6= 2
(rS/R )5 − 15 − ln(rS/R ) if n = 2

(5)
Eqs. (4a), (4b) and (5) can also be obtained by directly taking the

differencebetween the external and internal typesharmonic series

of Eqs. (1a) and (2a).

By inserting the binomial series expansions (withH = rS − R )

( rS
R

)n+3 = (1 + H
R

)n+3 = ∞∑
k=0
(
n+ 3
k

)(
H
R

)k
(6a)

and

( rS
R

)−(n−2) = ∞∑
k=0
(
− (n − 2)

k

)(
H
R

)k
, (6b)

into Eq. (5) we obtain also

In (R, rS ) = ∞∑
k=2
[(

n+ 2
k

)
−
(
−n+ 1

k

)](
H
R

)k =
(2n+ 1)(H

R

)2 [12 + 13 HR + n(n+ 1)2× 3× 4
(
H
R

)2 + ...
]
.

(7)
By inserting Eq. (7) into Eq. (4b) one arrives at

Anm = 2π((H2)nm + 2(H3)nm3R + n(n+ 1)3× 4
(
H4)

nm
R2 + ...

)
,

(8a)
where

Hν
nm = 14π

∫∫
σ

HνYnm (θ, λ)dσ, (8b)

so that Eq. (4a) becomes

δN (θ, λ) =2πµ
γ R2 nmax∑

n=0
n∑

m=−n
∞∑
k=2
[(

n+ 2
k

)
−
(
−n+ 1

k

)]
·

·
(
H
R

)k
Ynm (θ, λ) =2πµ

γ

nmax∑
n=0

n∑
m=−n

((H2)nm + 2(H3)nm3R + n(n+ 1)3× 4 (H4)nm
R2 + ...

)
·

·Ynm (θ, λ) .
(9)

2.1. Convergence of the series

In the strict sense we should not expect Eq. (3) to be conver-

gent when nmax approaches infinity. This is obvious, as the ratio

rS/R >1. Nevertheless, for a finitenmax the series is also finite. The
convergence problem holds also for the binomial series of Eq. (7);

see Sun and Sjöberg (2001). In the numerical application we will

only consider a finitenmax , so that convergence will not be a prob-

lem. Theconvergenceproblemwasextensivelydescribed inMoritz

(1980, Chs. 6-7). Moritz (ibid.) and Wang (1997), when considering

the roughness of the Earth's topography, both concludes that the

series must be divergent in the strict, mathematical sense, but,

from a practical point of view, divergence can be changed into

convergence by a reasonable smoothing of the topography. In

this context Moritz (1980) refers to the approximation theorem of

Krarup-Runge. We will return to this question in our concluding

remarks.

3. Comparison with the topographic potential bias

The topographic potential bias was defined by Sjöberg (2007) as

the error in analytical continuation of the external potential inside

the topographicmasses, and only the error due to the fact that the

potential is regarded as harmonic in a domain, where it is not (i.e.

inside the topographic masses), is considered. This means, that

some errors of the spherical harmonic series above, such as those

due to truncation and non-convergence, are not considered. For a

constant topographic density Sjöberg (2007), (2009a) and (2009c)

proved that the topographic bias for the total geoid height is given

by the simple formula

δNbias (θ, λ) = 2πµ
γ

[
H2 (θ, λ) + 2H3 (θ, λ)3R

]
. (10)

If the analytical continuation of the external potential to sea

level is truncated to wavelengths of a maximum degree of nmax ,
the corresponding contribution to the topographic bias becomes



Journal of Geodetic Science 5

accordingly (Sjöberg 2007)

δNbias (θ, λ) =2πµ
γ

nmax∑
n=0

n∑
n=−n

[(
H2)

nm + 2 (H3)
nm3R
]
Ynm (θ, λ) . (11)

Comparing this result with Eq. (9) we notice that the topographic

bias is exactly the first two terms of DWC error of the spherical

harmonics, but the remaining terms of the latter error are now

missing. Some further details of the difference between the two

error concepts can be found in the discussion between Vermeer

(2007) and Sjöberg (2008).

[Apractical consequenceof the topographic bias, in contrast to the

DWC, is that the geoid height can be determinedwithout applying

the so-called terrain corrections (Sjöberg 2009b). However, this

topic is outside the scope of this article.]

4. Numerical studies

The aim of the numerical study is to compare the downward con-

tinuation error/analytical continuation error and the topographic

potential bias for the Earth Gravitational Model EGM08 (for an

equivalent EGM) complete to degree and order 2160, correspond-

ing to a resolution of the order of 5'. To do so we will use the

global Digital Terrain Model 2006 (DTM2006) available as a series

of spherical harmonics to the same degree and order (Pavlis et al.

2006).

Figure 1 shows the downward continuation error for geoid height

estimatedby Eq. (4a), with coefficients determinedby Eqs. (4b) and

(5). It is an interesting notation that small negative errors (down

to about -0.078 m) occur in 33.5% and 1.5% of points of over the

oceans and continents, respectively. The continental areas with

negative DWC error are primarily located along the shorelines. The

reason of the negative values may be due to the different natures

of the truncation errors of the external and internal series of the

DWC error. For comparison, Figure 2 illustrates the topographic

potential bias determinedbyEq. (10), which, in contrast to Figure 1,

shows only non-negative biases.

The difference of the downward continuation error minus the

topographic bias, depicted in Figure 3 shows some significant

differences (down to -0.205 m), mainly in high-elevated areas.

Table 1 contains some basic statistics in comparing the analytical

continuation error (DWC) and the topographic bias. As said

above, it can be seen that the bias is large in mountainous

areas. The maxima (occurring in the Himalayas) of DWC error

and topographic bias are 5.30 and 5.15 metre, respectively. The

maximum topographic bias occurs for the topographic height of

6679m. The table shows also that the analytical continuation error

and topographic bias are more or less the same, because of the

same mathematical nature and physical concept. The statistic of

the differences shows that the mean is zero and differences are

small.

Figure 1. Downward continuation error for geoid height with a reso-
lution 5’×5’. (Unit: m)

Figure 2. Topographic bias for geoid height with a resolution 5’×5’.
(Unit: m)

Figure 3. Difference between DWC error and topographic bias for
geoid height with a resolution 5’×5’. (Unit: m)
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Table 1. Statistic of the DWC error and topographic bias for geoid
height with a resolution 5’×5’. (Unit: m)

Max Mean Min Std.

DWC error (Sjöberg, 1977) 5.300 0.101 -0.079 0.317
Topographic bias (Sjöberg, 2007) 5.153 0.101 0 0.317

Difference 0.185 0 -0.205 0.004

The degree variances of the DWC error and the topographic bias

are further compared in Figures 4 and 5. Both figures show that the

errors are dominated by their low-degree components. (Note that

the vertical scale in Figure 4 is logarithmic.) However, as can be

seen in Figure 5, after about degree 100 the cumulative rms errors

differ significantly and increase very slowly towards 0.253 m and

0.256 m for degree 2160. Although the two errors agree well for

low- and medium-degree components, their difference increases

with the degree (see Figures 6 and 7).

Figure 4. Comparison between DWC error and topographic bias de-
gree variances up to 2160 degree. (Unit: m2)

Figure 5. Cumulative global rms errors up to degree 2160. (Unit: m)

Figure 6. Degree variances of the difference between DWC error and
topographic bias to 2160 degree. (Unit: m2)

Figure 7. The global rms difference per degree for the two types of
errors to degree 2160. (Unit: m)

Figure 8. Relative degree variances of the difference of DWC error
and topographic bias with respect to the degree variances
of topographic bias to degree 2160. (Unit: Percent)
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Moreover, as can be seen from Figure 8, the relative difference

grows quickly with the degree after, say, degree 2000. Hence,

we may expect the DWC error to deviate considerably from the

topographic bias for ultra-high degree harmonic expansions of the

gravity field. This diverging pattern we refer to the shape of the

DWC error, as the harmonic series of the topographic bias cannot

be divergent.

4.1. The zero- and first-degree contributions

From Eq. (3) follows that the zero- and first-degree contributions

to the DWC error can be written

δN0 = 2π µγ
[(
H2)0 + 23

(
H3)0
R

]
(12)

and

δN1 (θ, λ) = 2πR2 µ
γ

1∑
m=−1A1mY1m (θ, λ) . (13)

This shows that despite of that EGM08 (as is custom for EGMs) is

defined in such away that the zero- and first-degree harmonics are

zero, the geoid heights provided by this model will include such

harmonics (see also Sjöberg 2001).

For comparison, the topographic potential bias, computed by

Eq. (11), and the DWC error, given by Eq. (12), yield the same

zero-degree error of 5.3 cm, but the first-degree harmonics differ

slightly: the rms of the first degree dwc error and topographic bias

are both 0.3 cm.

Table 2. Comparison of the low-degree and -order terms of coefficients Anm. In order to get the spectral DWC error of geoid height, each coefficient
should be multiplied by the factor µR2/γ =7.37×105 m.

degree order Coefficients Anm degree order Coefficients Anm
n m cos part sin part n m cos part sin part

0 0 7.07×10−08 0.00×100 4 0 2.55×10−08 0.00×100
1 0 -3.21×10−09 0.00×100 4 1 -3.61×10−10 -5.16×10−08
1 1 1.34×10−08 3.03×10−08 4 2 -3.66×10−08 3.21×10−09
2 0 4.36×10−08 0.00×100 4 3 8.95×10−09 -4.03×10−08
2 1 -2.63×10−09 3.08×10−08 4 4 1.74×10−08 1.24×10−08
2 2 -3.71×10−08 4.81×10−09 5 0 -5.73×10−08 0.00×100
3 0 -6.57×10−08 0.00×100 5 1 7.62×10−09 -7.47×10−09
3 1 -3.23×10−10 3.26×10−08 5 2 1.61×10−09 -7.35×10−09
3 2 -4.29×10−08 1.33×10−08 5 3 3.90×10−09 -3.46×10−08
3 3 -6.18×10−09 -6.80×10−09 5 4 +3.42×10−08 -1.98×10−08

In Table 2 we illustrate the lowest degree and order terms of coef-

ficients Anm . They can be converted to geoid height components

by multiplying by the factor µR2/γ ≈7.37×105 m (computed for

topographicdensity set to2.67gcm−3 andnormalgravity981Gal).

By subtracting these coefficients from those of the EGM08 poten-

tial coefficients, the latter model is converted to the coefficients of

the disturbing potential at sea-level (inside the topography over

continents). (The full set of coefficients can be obtained from the

authors). As mentioned, this set of coefficients can contribute to a

correction of the geoid computed by EGM08 of as much as 5.3 m.

5. Concluding remarks

This study shows that the so-called DWC error in applying EGM08

to geoid determination is large in regions with high topography,

ranging to 5.15 m in the Himalayas. The DWC error differs from

the topographic potential bias, caused by the use of a harmonic

series within the topographic masses, where the potential is not

harmonic. While the topographic bias is caused solely by the

analytical continuation into the masses, the DWC error also has

other sources. For the EGM08 the two errors differ within -0.20 and

+0.18 m, where the DWC error takes on the most extreme values.

According to Krarup-Runge's theorem (Moritz 1980, Ch. 7) the

external spherical harmonic representation of the geopotential is

practically convergent down to the Bjerhammar sphere (a sphere
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completely embedded in the Earth's interior), implying that the

series will not experience any error (of arbitrarily chosen signifi-

cance level) related with a divergent series as long as the series

is truncated. This conclusion contradicts our discussions at the

beginning of Sect. 2.1 and of the numerical results of Figures 7

and 8 in Sect. 4, which show clear divergent shapes of the error

differences.

We showed also that the zero-degree error and rms first-degree

error of the geoid height, when directly determined by EGM08,

agree exactly to 5.3 cm and 0.3 cm, respectively, for the DWC error

and topographic error. Hence, despite of the fact that EGM08 is

defined with vanishing zero- and first-degree terms, implying that

themass and center of the reference ellipsoid agree with themass

and gravity center of the Earth, the geoid will experience such

harmonics. This effect is due to the fact that the geoid partly runs

inside the topography.

The contents of this article are not only valid for applications

with EGM08 alone, but they are also useful when combining

an EGM with terrestrial gravity data. For instance, as pointed

out by Sjöberg (2005), in geoid computation by the well-known

remove-compute-restore technique the EGM should be corrected

accordingly.
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