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1. Introduction

Gangliosides are a diverse class of
glycosphingolipids found in all mammalian
membranes, although they are especially
abundant in neural tissue. These amphipathic
molecules consist of a hydrophobic ceramide
core anchoring a polar carbohydrate chain,
bearing one or more sialic acid residues in
the outer leaflet of the plasma membrane
(Figure 1) [1]. Several hundreds of ganglioside
structures have been characterized based on
differences in either the oligosaccharide chain,
or the fatty acids linked to the ceramide moiety
of the molecule [2]. Individual ganglioside
species are present at distinct time periods
during neurodevelopment, brain maturation
and aging; ganglioside expression patterns
change dramatically during those processes
[3-5], as well as during certain pathological
conditions [6-10]. In the adult human brain,
there is also a specific regional distribution of

gangliosides as evidenced by the extensive
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biochemical analysis of forty brain samples
- consisting of neocortical, archicortical,

and paleocortical areas, telencephalic,
diencephalic, and mesencephalic subcortical
nuclei, cerebellum, and corresponding white
matter bundles - revealing remarkable regional
pattern differences [11]. Briefly, preponderance
of a-series gangliosides (GD1a, GM1) was
found in frontal, parietal and temporal cortical
areas, while occipital cortex and structures
related to visual system were characterized
by higher proportion of b-series gangliosides
(GQ1b, GT1b, GD1b). Predominance of b-series
gangliosides was found in cerebellum, and
of a-series gangliosides in hippocampal
archicortex and the amygdala [11]. Due to
their

gangliosides can serve as neurodevelopmental

regional and temporal distribution,
and aging markers as well as biomarkers for
specific pathological processes [4,5,12].
Gangliosides are not distributed evenly
throughout the plasma membrane, but rather

concentrated into organized microdomains

termed lipid rafts [13]. In addition to
gangliosides and other glycosphingolipids, lipid
rafts are enriched in cholesterol and specific
membrane proteins making those regions
different in both composition and molecular
organization from the rest of the membrane.
For that reason lipid rafts are considered to be
signaling platforms important as a site for the
interaction between glycosphingolipids and

signaling molecules [14].
2. Ganglioside metabolism

Gangliosides are  synthesized by a
stepwise addition of monosaccharides to
lactosylceramide by glycotransferases in the
Golgi apparatus and are then transported to
the outer leaflet of the plasma membrane
[15]. The first ganglioside in the biosynthetic
pathway is GM3 which is then modified to
give a-, b- and c-series gangliosides (Figure 2).
Since gangliosides are essential for normal
cell function, disorders in their biosynthetic
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pathway resulting in the depletion of certain
gangliosides were thought to be lethal.
However, this assumption was disproved
when a mutation in the biosynthetic enzyme
GM3 synthase in humans was found to
result in the loss of expression of complex
infantile-onset
[16]. In
addition, various experimental mouse models

gangliosides, causing

symptomatic epilepsy syndrome
with blocks in ganglioside synthesis were
produced to investigate the physiological
led to
the elucidation of numerous ganglioside

roles of gangliosides [17] which

functions. The main observations in studies
on genetically modified mice include: (a)
blocking ganglioside biosynthetic pathways
at specific synthetic steps leads to alteration
in ganglioside stuctures and composition,
however, the total quantity of gangliosides
is maintained due to replacement of more
complex gangliosides by simpler structures;
(b) deficiency and/or accumulation of specific
gangliosides structures, depending on the
site of block in synthesis, has very different
phenotypic consequences mostly related to
neurological abnormalities [18].

Historically, the catabolism of gangliosides
has been more extensively investigated
than ganglioside biosynthesis. Degradation
of gangliosides is a sequential process that
occurs on the surface of cell membranes,
starting at the plasma membrane by
the action of membrane sialidase which
hydrolyses  poly-sialo  gangliosides to
GM1. After the removal of GM1 and other
gangliosides from the plasma membrane
by endocytosis they are further degraded in
lysosomes where they are embedded in the
intralysosomal membrane [19]. Carbohydrate
residues are sequentially released by the
action of different glycosidases until they are
degraded to ceramide (Figure 3), which is
then cleaved into sphingosine and fatty acid.
Many genetic defects of enzymes involved
in endo-lysosomal catabolic pathways have
been described in humans. Deficiencies of the
enzymes involved in ganglioside degradation
lead to the accumulation of specific non-
which
results in lysosomal storage disorders with

degraded  sphingolipid  species,

devastating effects [20].
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Complex regulation of  ganglioside
metabolism has not been explained in details
although several mechanisms, based on in vivo
and in vitro observations, have been suggested:

transcriptional regulation of genes involved in
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Figure 1. Structure of ganglioside GM1.
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ganglioside metabolism; proper sorting and
directing of glycosphingolipid structures into
cellular compartments; feed-back control of
metabolism; and enzyme posttranslational

modifications [21].
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Figure 2. Schematic representation of ganglioside biosynthesis. Cer=ceramide; Glc=glucose; Gal=galactose;
GlcT=glucosyltransferase; ST7=sialyltransferase | (GM3-synthase); ST2=sialyltransferase Il (GD3-
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brain gangliosides are boxed.
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3. Ganglioside functions

The membrane localisation of gangliosides
allows them to interact laterally, within the
membrane plane, with other lipids and
membrane proteins such as receptor kinases
[22]. Also, because of the oligosaccharide
chain protruding towards the extracellular
space, gangliosides can communicate with
other cells through specific intermolecular
interactions [23]. Thanks to cis and trans
interactions gangliosides exert their effects
on many physiological processes (Table 1)
and are crucial for proper functioning of the
central nervous system [24]. One illustration
of ganglioside interactions with other cells
(trans), influencing nervous system stability,
is the interaction between axons and myelin,
multilayered complex membrane that wraps
the nerve axons and is required for rapid nerve
conductance. Myelin-associated glycoprotein
(MAG) is a sialic acid binding lectin expressed
in myelin-producing cells directly opposed to
the surface of the axon [25]. It has been shown
that MAG binds to major nerve gangliosides
GD1la and GT1b [26] thus promoting their

Table 1. Diversity of gangliosides functions.
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Figure 3. Schematic representation of major pathway of ganglioside degradation in lysosomes. Cer=ceramide;
Glc=glucose; Gal=galactose. Ganglioside abbreviations are given acccording to Svennerholm [76].

MAG - myelin-associated glycoprotein; PDGF - platelet-derived growth factor; NMDA - N-methyl-D-aspartate
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physical association with the neurotrophin
receptor (p75"™) to lipid rafts and induces
signal transduction and inhibition of neurite
outgrowth [27]. Because of their role as

functional MAG ligands, gangliosides are
thought to be extremely important in myelin
stability.

In  addition to other intercellular
communication functions, gangliosides have
a well-recognized role in modulating the
activity of membrane proteins, such as receptor
kinases. Theirimpact on cell signaling pathways
may be accomplished on several levels: 1)
through changing the microenvironment
(membrane/lipid raft composition) [28]; 2)
through direct interactions with membrane
proteins [29,30]; and 3) through binding
ligands and exposing them to their receptors in
a specific orientation, or through the disabling
formation of aggregates of ligand molecules
[31,32]. Furthermore, gangliosides are involved
in processes such as cellular proliferation,
differentiation and programmed cell death
(summarized in Table 1), as well as in oncogenic
transformation. Namely, distinct ganglioside
expression pattern and unusual ganglioside
species have been shown in brain tumors [33]
indicating an alteration in the ganglioside
biosynthetic pathway during tumorigenesis.
In addition, higher expression of specific
ganglioside biosynthetic enzymes has been
linked with proliferation and tumor growth, as
evidenced for GD3 synthase which enhances
tumorigenicity in breast cancer through
constitutive activation of certain signaling
pathways [34]. Interestingly, elimination of
the same enzyme has been found to improve
memory and reduce amyloid-3 plaque load in

APP/PSEN1 transgenic mice [35].

4. Gangliosides in brain aging
and neurodegeneration

Considering the abundance and structural
diversity of glycosphingolipids in mammalian
their
development, aging and neurodegeneration

brain tissue, involvement in brain
is not surprising. The importance of membrane
lipid raft constituents in neurodevelopmental

phenomena is asserted by the observation that

neuronal lipid rafts are specifically positioned
in axonal plasma membranes, where they
link to molecules of the extracellular matrix
through intermolecular interactions [36,37].
The integrity of vast surfaces of extremely
complex membranes in the nervous system is
vital for its normal functions because some of
the biochemical and physiological phenomena
underlying specific functions of adult brain
are associated with membranes - nerve
conductance, neurotransmitter transmission,
signal transduction. Moreover, processes such
as cell proliferation and differentiation (occuring
during brain development), neuritogenesis,
axonal sprouting, synaptogenesis, myelination,
require a formation of different specialized
membrane structures and these may also
modify structural and functional plasticity of
neural cells.

Quantitative and qualitative changes of
brain gangliosides pattern, as previously stated,
may indeed serve as stage specific markers of
mammalian brain development and aging [4,5].
Both biochemical and immunohistochemical
characterization evidenced that: GD3 is specific
for proliferating cells; polysialylated c-series
gangliosides are synthesized during early
neurodevelopmental stages yet are found in
modest quantities in adult brain; GM1, GD1b
and GT1b are abundant during neurogenesis,
neuronal migration and neuritogenesis, as
well as in adult brain; GD1a is found in high
proportion during synaptogenesis; increase in
GM1 and GM4 accompanies gliogenesis and
myelination [4,5].
aging
physico-chemical

During and neurodegeneration

processes, properties of
membranes change as a consequence of
altered proportion of lipids in membranes
and/or changed ratio of membrane lipids; in
addition, the functions of specific membrane
proteins may be altered due to changes in
their interactions with lipid molecules. The
systematic study of lipid content in human
brain during aging showed no dramatic loss
of the main lipid classes (glycosphingolipids,
phospholipids, cholesterol) from 20 to 80 years
of age; however, an alteration in the pattern of
lipid molecules (particularly gangliosides) was
observed [38]. Changes in ganglioside content
and pattern have shown to be more expressed

: . v
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in brain tissue affected with neurodegeneration
(Alzheimer’s disease, AD). Several studies
have documented a significant decrease in
the total concentration of gangliosides in AD
brain samples compared with age-matched
controls. In addition, the composition of
gangliosides differed in AD brain samples from
the frontal, parietal and temporal cortices,
showing a decreased proportion of ganglio-
series gangliosides (GD1a, GD1b, GT1b) and an
increase in simple ganglioside structures (GM2,
GM3, GM4) [6,7,39,40]. The quantitative and
qualitative alterations of gangliosides in AD
brain have been explained as a consequence of
neuronal cell degeneration, demyelination and
gliosis. The finding of an increased proportion
of simple gangliosides also indicated
accelerated degradation of brain gangliosides
in AD [7]. The speculation on accelerated
lysosomal degradation of gangliosides in AD
brain tissue has been supported by reported
immunohistochemical studies, showing both
abnormal distribution and colocalization of
several lysosomal hydrolases and proteases
(B-hexosaminidase A, a-glucosidase, catepsin
D) with P-amyloid in diffuse plaques in
cerebellum and striatum in AD and Down'’s
syndrome (DS) brain tissue [41]. Documented
increases in the expression of lysosomal
hydrolases in neuronal populations affected
by amyloid pathology has been explained
by the up-regulation of the endosomal-
lysosomal system and has been proposed to
be an early marker of metabolic dysfunction
related to primary AD etiopathogenesis.
Similar biochemical alterations have been
observed in AD peripheral tissues, supporting
the hypothesis on probable systemic nature
of Alzheimer’s disease. Several groups have
reported on alterations of glycosphingolipid
metabolism in AD peripheral cells: (1) Maguire
and colleagues found decreased activity of
GSL biosynthetic enzymes (sialyltransferases)
in serum and brain tissue in AD as compared
with control samples [42,43]; (2) our group
showed statistically significant increase in
B—-galactosidase activity in AD leukocytes in
comparison with age-matched control and
increased activity of B-galactosidase and p-
hexosaminidase in AD skin fibroblast cell line

and age-matched controls, indicating that
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acceleration of atleast some lysosomal catabolic
pathways of gangliosides is present in AD
nonneural cells (leukocytes and skin fibroblasts)
[44]; (3) Emiliani determined up-regulation
of lysosomal hydrolases (B-galactosidase,
-hexosaminidase) in skin fibroblasts derived
from both familial and sporadic AD patients;
in this paper, Ras activation was suggested to
play a role in transcriptional up-regulation of
analyzed lysosomal glycohydrolases in AD skin
fibroblasts [45]; (4) Pitto reported enhanced
GM1 catabolism in AD skin fibroblasts and
that

of sphingolipids could serve as peripheral

proposed increased hydrolysis rate
biochemical hallmark of the disease [46].

The results of the aforementioned studies
call attention to the possible involvement
of membrane

lipids  (glycosphingolipids,

cholesterol) and lipid rafts in complex
pathogenesis of Alzheimer’s disease [47-49]. The
idea that cholesterol is linked to pathogenesis
of Alzheimer’s disease (AD) was first introduced
by the observation that specific genetic
polymorphism for apolipoprotein E gene (APOE
allele 4) increased the risk for developing the
disease [50]. Biochemical studies have shown
that apolipoprotein E is actually involved in the
trafficking and sorting of amyloid precursor
protein, whose abnormal processing leads
to AD pathology [51]. However, the fact that
apolipoprotein E is involved in lipid metabolism,
and also that therapy with statins (drugs
inhibiting the crucial enzyme in cholesterol
biosynthesis) alleviates the clinical symptoms
and progression of the disease, has initiated a
new line of research focused on cholesterol and
its possible roles in AD pathogenesis [47,48,52].
The results of relevant studies have supported
this idea: changes in cholesterol content and
trafficking have been found in Alzheimer's
disease [53-56]; the control of cholesterol and
sphingomyelin metabolism involves processing
of the amyloid precursor protein (APP) [57]; and
gene expression analysis has also shown that
the cluster of genes involved in lipid metabolism
(also of genes involved in extracelullar
matrix molecules synthesis) is upregulated in
hippocampal samples in Alzheimer’s disease
[58].

Lipid rafts are involved in regulation of
trafficking and proteolytic processing of

APP [59]. It appears that amyloidogenic APP
processing occurs within the rafts; thus the
content and composition of cholesterol and
glycosphingolipids critically influences the
formation of amyloidogenic Ap-peptide [60].
Moreover, the conformational change and
resulting aggregation of AP is dependent
on its interaction with specific molecules of
the lipid bilayer [61]. It has been shown that
ganglioside GM1 acts as an endogenous seed
for amyloidogenesis, interacting with amyloid
protein, and that sterols (cholesterol) may
promote the formation of GM1 clusters, which
interact with AP [62,63]. Preferential binding
of AB to GM1 and formation of GAR as well as
neurotoxicity of amyloid fibrils in the presence
of gangliosides have been demonstrated by
in vivo and in vitro studies [64]. A growing
body of evidence confirms that AR binding
to gangliosides in cell membranes may be

the initial step in AB polymerization and thus
is an important contributing factor in AD
pathogenesis. Additional supporting evidence
on GM1 availability for GAB formation comes
from a study reporting increased proportions
of gangliosides GM1 and GM2 in lipid domains
isolated from AD frontal and temporal cortex
[65]. We suggest that GM1 clustering, which
is a prerequisite for GAB generation inside
and on the surface of neurons in AD, is a
consequence of cellular death and atrophy
accompanied by the accelerated degradation
of membrane glycosphingolipids (Figure 4).
Namely, ganglioside catabolism begins at the
membrane, where more complex membrane
gangliosides are being degraded by sialidase
(neuraminidase). The product of the membrane
sialidase activity is GM1, which is then
internalized into an endosomal-lysosomal
compartment.
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Figure 4. Ganglioside GM1 is accumulated due to degradation of complex gangliosides by sialidase activity.
Increased activity of B—hexosaminidase was documented in AD brain [41], while increased activity of
B —galactosidase and B —~hexosaminidase was shown in non-neural cells in AD [44]. Activity of sialidase
and B-galactosidase is probably increased in AD brain. Higher concentration of ceramide is associated

with APP secretion and AP production [59].
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Besides being involved in regulation of APP
processing and AP aggregation, sphingolipids
are also important for the regulation of neuronal
[66,67].
Alteration in sphingolipid metabolism in AD

excitability and synaptic activity
results in the disturbance of intramembraneous

lipid-lipid and lipid-protein interactions
which may underlie alterations in complex
cellular signalisation events and probably
those pathways which are asccociated with
synaptic plasticity [59]. In addition, it has
been documented that sphinogolipids may
regulate formation of the SNARE complex,
the fusion of synaptic vesicles with target
membranes, and exocytosis, i.e. events involved

in neurotransmission [68]. It can be suggested

the complex pathogenesis of neurodegeneration
is associated with the localization of these lipid
molecules in membranes, particularly in highly
organized lipid rafts. It seems that alterations in
ganglioside metabolism leading to changes in
membrane physico-chemical properties are not
merely a consequence of primary pathology,
but may be involved in the early pathogenesis of
the disease through documented effects on APP
proteolytic processing and amyloid aggregation.
Investigations of glycolipid metabolic alterations
which accompany neurodegenerative disorders
give insight into pathogenetic mechanisms and
enable recognition of diagnostic markers as well
as molecular structures acting as therapeutic
tools interfering with cascade of pathological

: . v
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Abbreviations

AD - Alzheimer’s disease

AB - amyloid- peptide

APOE4 - apolipoprotein E gene allele 4

that alterations of sphingolipid metabolism in  events.
AD are also related to disturbed synaptic activity,
through sphingolipid mediated regulation of
presynaptic and postsynaptic events.

In  conclusion, numerous studies have
confirmed that gangliosides are involved in aging

andneurodegeneration.Theroleofgangliosidesin
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