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1. Introduction

Gangliosides are a diverse class of 
glycosphingolipids found in all mammalian 
membranes, although they are especially 
abundant in neural tissue. These amphipathic 
molecules consist of a hydrophobic ceramide 
core anchoring a polar carbohydrate chain, 
bearing one or more sialic acid residues in 
the outer leaflet of the plasma membrane 
(Figure 1) [1]. Several hundreds of ganglioside 
structures have been characterized based on 
differences in either the oligosaccharide chain, 
or the fatty acids linked to the ceramide moiety 
of the molecule [2]. Individual ganglioside 
species are present at distinct time periods 
during neurodevelopment, brain maturation 
and aging; ganglioside expression patterns 
change dramatically during those processes 
[3-5], as well as during certain pathological 
conditions [6-10]. In the adult human brain, 
there is also a specific regional distribution of 
gangliosides as evidenced by the extensive 

biochemical analysis of forty brain samples 
- consisting of neocortical, archicortical, 
and paleocortical areas, telencephalic, 
diencephalic, and mesencephalic subcortical 
nuclei, cerebellum, and corresponding white 
matter bundles - revealing remarkable regional 
pattern differences [11]. Briefly, preponderance 
of a-series gangliosides (GD1a, GM1) was 
found in frontal, parietal and temporal cortical 
areas, while occipital cortex and structures 
related to visual system were characterized 
by higher proportion of b-series gangliosides 
(GQ1b, GT1b, GD1b). Predominance of b-series 
gangliosides was found in cerebellum, and 
of a-series gangliosides in hippocampal 
archicortex and the amygdala [11]. Due to 
their regional and temporal distribution, 
gangliosides can serve as neurodevelopmental 
and aging markers as well as biomarkers for 
specific pathological processes [4,5,12]. 

Gangliosides are not distributed evenly 
throughout the plasma membrane, but rather 
concentrated into organized microdomains 

termed lipid rafts [13]. In addition to 
gangliosides and other glycosphingolipids, lipid 
rafts are enriched in cholesterol and specific 
membrane proteins making those regions 
different in both composition and molecular 
organization from the rest of the membrane. 
For that reason lipid rafts are considered to be 
signaling platforms important as a site for the 
interaction between glycosphingolipids and 
signaling molecules [14]. 

2. Ganglioside metabolism 

Gangliosides are synthesized by a 
stepwise addition of monosaccharides to 
lactosylceramide by glycotransferases in the 
Golgi apparatus and are then transported to 
the outer leaflet of the plasma membrane 
[15]. The first ganglioside in the biosynthetic 
pathway is GM3 which is then modified to 
give a-, b- and c-series gangliosides (Figure 2). 
Since gangliosides are essential for normal 
cell function, disorders in their biosynthetic 
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pathway resulting in the depletion of certain 
gangliosides were thought to be lethal. 
However, this assumption was disproved 
when a mutation in the biosynthetic enzyme 
GM3 synthase in humans was found to 
result in the loss of expression of complex 
gangliosides, causing infantile-onset 
symptomatic epilepsy syndrome [16]. In 
addition, various experimental mouse models 
with blocks in ganglioside synthesis were 
produced to investigate the physiological 
roles of gangliosides [17] which led to 
the elucidation of numerous ganglioside 
functions. The main observations in studies 
on genetically modified mice include: (a) 
blocking ganglioside biosynthetic pathways 
at specific synthetic steps leads to alteration 
in ganglioside stuctures and composition, 
however, the total quantity of gangliosides 
is maintained due to replacement of more 
complex gangliosides by simpler structures; 
(b) deficiency and/or accumulation of specific 
gangliosides structures, depending on the 
site of block in synthesis, has very different 
phenotypic consequences mostly related to 
neurological abnormalities [18]. 

Historically, the catabolism of gangliosides 
has been more extensively investigated 
than ganglioside biosynthesis. Degradation 
of gangliosides is a sequential process that 
occurs on the surface of cell membranes, 
starting at the plasma membrane by 
the action of membrane sialidase which 
hydrolyses poly-sialo gangliosides to 
GM1. After the removal of GM1 and other 
gangliosides from the plasma membrane 
by endocytosis they are further degraded in 
lysosomes where they are embedded in the 
intralysosomal membrane [19]. Carbohydrate 
residues are sequentially released by the 
action of different glycosidases until they are 
degraded to ceramide (Figure 3), which is 
then cleaved into sphingosine and fatty acid. 
Many genetic defects of enzymes involved 
in endo-lysosomal catabolic pathways have 
been described in humans. Deficiencies of the 
enzymes involved in ganglioside degradation 
lead to the accumulation of specific non-
degraded sphingolipid species, which 
results in lysosomal storage disorders with 
devastating effects [20]. 

Figure 1.  Structure of ganglioside GM1.

Figure 2.  Schematic representation of ganglioside biosynthesis. Cer=ceramide; Glc=glucose; Gal=galactose; 
GlcT=glucosyltransferase; ST1=sialyltransferase I (GM3-synthase); ST2=sialyltransferase II (GD3-
synthase); ST3=sialyltransferase III (GT3-synthase); ST6=sialyltransferase VI (GM4-synthase). 
Abbreviations for ganglioside structures are given acccording to Svennerhom nomenclature [76]. Major 
brain gangliosides are boxed.

Complex regulation of ganglioside 
metabolism has not been explained in details 
although several mechanisms, based on in vivo 
and in vitro observations, have been suggested: 
transcriptional regulation of genes involved in 

ganglioside metabolism; proper sorting and 
directing of glycosphingolipid structures into 
cellular compartments; feed-back control of 
metabolism; and enzyme posttranslational 
modifications [21].
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3. Ganglioside functions 

The membrane localisation of gangliosides 
allows them to interact laterally, within the 
membrane plane, with other lipids and 
membrane proteins such as receptor kinases 
[22]. Also, because of the oligosaccharide 
chain protruding towards the extracellular 
space, gangliosides can communicate with 
other cells through specific intermolecular 
interactions [23]. Thanks to cis and trans 
interactions gangliosides exert their effects 
on many physiological processes (Table 1) 
and are crucial for proper functioning of the 
central nervous system [24]. One illustration 
of ganglioside interactions with other cells 
(trans), influencing nervous system stability, 
is the interaction between axons and myelin, 
multilayered complex membrane that wraps 
the nerve axons and is required for rapid nerve 
conductance. Myelin-associated glycoprotein 
(MAG) is a sialic acid binding lectin expressed 
in myelin-producing cells directly opposed to 
the surface of the axon [25]. It has been shown 
that MAG binds to major nerve gangliosides 
GD1a and GT1b [26] thus promoting their 

Figure 3.  Schematic representation of major pathway of ganglioside degradation in lysosomes. Cer=ceramide; 
Glc=glucose; Gal=galactose. Ganglioside abbreviations are given acccording to Svennerholm [76]. 

Gangliosides and intercellular communication Gangliosides within cell membrane Gangliosides and intracellular events

Effect Example Ref Effect Example Ref Effect Example Ref

Myelin-axon 
interactions

GD1a and GT1b are 
functional ligands 

for MAG 
[23]

Modulation of
membrane

proteins activity

Local accumulation 
of GM1 changes the 

microenvironment and 
displaces PDGF receptor 

and blocks the PDGF 
signaling

[28] Proliferation

GD1b and GT1b 
enhance proliferation 
through continuous 

activation of TrkA and 
ERK1/2

[72]

Cell adhesion and 
migration

GM3 inhibits cell 
migration on 
fibronectin

[69]

Interaction of GM3 with 
the insulin receptor 

which leads to insulin 
resistance (inhibition of 

signaling)

[29] Differentiation

GM1 promotes 
neuritogenesis by 

modulating Ca2+ flux in 
the cell

[73]

Ligands for
neurotransmitters

GM1 binds to 
serotonin released 

from synaptic 
vesicles

[31]

GM1 and GQ1b have 
a stimulatory role in 
functional coupling 
between adenylate 

cyclase and serotonin 
receptors

[71] Apoptosis

GD3 induces apoptosis; 
it causes opening of 
the mitochondrial 

permeability transition 
pore complex and the 
release of apoptogenic 

factors

[74]

Pathogen binding

GT1b and GQ1b 
are ligands 

for botulinum 
neurotoxin

[70]

GQ1b activates the 
NMDA receptor 

signaling pathway by 
increasing tyrosine 

phosphorylation of one 
of its subunits

[30] Regeneration
GT1b promotes 

regeneration of lesioned 
hypoglossal nerve

[75]

Table 1.  Diversity of gangliosides functions.

MAG – myelin-associated glycoprotein; PDGF – platelet-derived growth factor; NMDA – N-methyl-D-aspartate
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physical association with the neurotrophin 
receptor (p75NTR) to lipid rafts and induces 
signal transduction and inhibition of neurite 
outgrowth [27]. Because of their role as 
functional MAG ligands, gangliosides are 
thought to be extremely important in myelin 
stability.

In addition to other intercellular 
communication functions, gangliosides have 
a well-recognized role in modulating the 
activity of membrane proteins, such as receptor 
kinases. Their impact on cell signaling pathways 
may be accomplished on several levels: 1) 
through changing the microenvironment 
(membrane/lipid raft composition) [28]; 2) 
through direct interactions with membrane 
proteins [29,30]; and 3) through binding 
ligands and exposing them to their receptors in 
a specific orientation, or through the disabling 
formation of aggregates of ligand molecules 
[31,32]. Furthermore, gangliosides are involved 
in processes such as cellular proliferation, 
differentiation and programmed cell death 
(summarized in Table 1), as well as in oncogenic 
transformation. Namely, distinct ganglioside 
expression pattern and unusual ganglioside 
species have been shown in brain tumors [33] 
indicating an alteration in the ganglioside 
biosynthetic pathway during tumorigenesis. 
In addition, higher expression of specific 
ganglioside biosynthetic enzymes has been 
linked with proliferation and tumor growth, as 
evidenced for GD3 synthase which enhances 
tumorigenicity in breast cancer through 
constitutive activation of certain signaling 
pathways [34]. Interestingly, elimination of 
the same enzyme has been found to improve 
memory and reduce amyloid-β plaque load in 
APP/PSEN1 transgenic mice [35].

4.  Gangliosides in brain aging 
and neurodegeneration

Considering the abundance and structural 
diversity of glycosphingolipids in mammalian 
brain tissue, their involvement in brain 
development, aging and neurodegeneration 
is not surprising. The importance of membrane 
lipid raft constituents in neurodevelopmental 
phenomena is asserted by the observation that 

neuronal lipid rafts are specifically positioned 
in axonal plasma membranes, where they 
link to molecules of the extracellular matrix 
through intermolecular interactions [36,37]. 
The integrity of vast surfaces of extremely 
complex membranes in the nervous system is 
vital for its normal functions because some of 
the biochemical and physiological phenomena 
underlying specific functions of adult brain 
are associated with membranes – nerve 
conductance, neurotransmitter transmission, 
signal transduction. Moreover, processes such 
as cell proliferation and differentiation (occuring 
during brain development), neuritogenesis, 
axonal sprouting, synaptogenesis, myelination, 
require a formation of different specialized 
membrane structures and these may also 
modify structural and functional plasticity of 
neural cells. 

Quantitative and qualitative changes of 
brain gangliosides pattern, as previously stated, 
may indeed serve as stage specific markers of 
mammalian brain development and aging [4,5]. 
Both biochemical and immunohistochemical 
characterization evidenced that: GD3 is specific 
for proliferating cells; polysialylated c-series 
gangliosides are synthesized during early 
neurodevelopmental stages yet are found in 
modest quantities in adult brain; GM1, GD1b 
and GT1b are abundant during neurogenesis, 
neuronal migration and neuritogenesis, as 
well as in adult brain; GD1a is found in high 
proportion during synaptogenesis; increase in 
GM1 and GM4 accompanies gliogenesis and 
myelination [4,5]. 

During aging and neurodegeneration 
processes, physico-chemical properties of 
membranes change as a consequence of 
altered proportion of lipids in membranes 
and/or changed ratio of membrane lipids; in 
addition, the functions of specific membrane 
proteins may be altered due to changes in 
their interactions with lipid molecules. The 
systematic study of lipid content in human 
brain during aging showed no dramatic loss 
of the main lipid classes (glycosphingolipids, 
phospholipids, cholesterol) from 20 to 80 years 
of age; however, an alteration in the pattern of 
lipid molecules (particularly gangliosides) was 
observed [38]. Changes in ganglioside content 
and pattern have shown to be more expressed 

in brain tissue affected with neurodegeneration 
(Alzheimer’s disease, AD). Several studies 
have documented a significant decrease in 
the total concentration of gangliosides in AD 
brain samples compared with age-matched 
controls. In addition, the composition of 
gangliosides differed in AD brain samples from 
the frontal, parietal and temporal cortices, 
showing a decreased proportion of ganglio-
series gangliosides (GD1a, GD1b, GT1b) and an 
increase in simple ganglioside structures (GM2, 
GM3, GM4) [6,7,39,40]. The quantitative and 
qualitative alterations of gangliosides in AD 
brain have been explained as a consequence of 
neuronal cell degeneration, demyelination and 
gliosis. The finding of an increased proportion 
of simple gangliosides also indicated 
accelerated degradation of brain gangliosides 
in AD [7]. The speculation on accelerated 
lysosomal degradation of gangliosides in AD 
brain tissue has been supported by reported 
immunohistochemical studies, showing both 
abnormal distribution and colocalization of 
several lysosomal hydrolases and proteases 
(β-hexosaminidase A, a-glucosidase, catepsin 
D) with β–amyloid in diffuse plaques in 
cerebellum and striatum in AD and Down’s 
syndrome (DS) brain tissue [41]. Documented 
increases in the expression of lysosomal 
hydrolases in neuronal populations affected 
by amyloid pathology has been explained 
by the up-regulation of the endosomal-
lysosomal system and has been proposed to 
be an early marker of metabolic dysfunction 
related to primary AD etiopathogenesis. 
Similar biochemical alterations have been 
observed in AD peripheral tissues, supporting 
the hypothesis on probable systemic nature 
of Alzheimer’s disease. Several groups have 
reported on alterations of glycosphingolipid 
metabolism in AD peripheral cells: (1) Maguire 
and colleagues found decreased activity of 
GSL biosynthetic enzymes (sialyltransferases) 
in serum and brain tissue in AD as compared 
with control samples [42,43]; (2) our group 
showed statistically significant increase in 
β–galactosidase activity in AD leukocytes in 
comparison with age-matched control and 
increased activity of β–galactosidase and β–
hexosaminidase in AD skin fibroblast cell line 
and age-matched controls, indicating that 
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acceleration of at least some lysosomal catabolic 
pathways of gangliosides is present in AD 
nonneural cells (leukocytes and skin fibroblasts) 
[44]; (3) Emiliani determined up-regulation 
of lysosomal hydrolases (β-galactosidase, 
β-hexosaminidase) in skin fibroblasts derived 
from both familial and sporadic AD patients; 
in this paper, Ras activation was suggested to 
play a role in transcriptional up-regulation of 
analyzed lysosomal glycohydrolases in AD skin 
fibroblasts [45]; (4) Pitto reported enhanced 
GM1 catabolism in AD skin fibroblasts and 
proposed that increased hydrolysis rate 
of sphingolipids could serve as peripheral 
biochemical hallmark of the disease [46]. 

The results of the aforementioned studies 
call attention to the possible involvement 
of membrane lipids (glycosphingolipids, 
cholesterol) and lipid rafts in complex 
pathogenesis of Alzheimer’s disease [47-49]. The 
idea that cholesterol is linked to pathogenesis 
of Alzheimer’s disease (AD) was first introduced 
by the observation that specific genetic 
polymorphism for apolipoprotein E gene (APOE 
allele 4) increased the risk for developing the 
disease [50]. Biochemical studies have shown 
that apolipoprotein E is actually involved in the 
trafficking and sorting of amyloid precursor 
protein, whose abnormal processing leads 
to AD pathology [51]. However, the fact that 
apolipoprotein E is involved in lipid metabolism, 
and also that therapy with statins (drugs 
inhibiting the crucial enzyme in cholesterol 
biosynthesis) alleviates the clinical symptoms 
and progression of the disease, has initiated a 
new line of research focused on cholesterol and 
its possible roles in AD pathogenesis [47,48,52]. 
The results of relevant studies have supported 
this idea: changes in cholesterol content and 
trafficking have been found in Alzheimer’s 
disease [53-56]; the control of cholesterol and 
sphingomyelin metabolism involves processing 
of the amyloid precursor protein (APP) [57]; and 
gene expression analysis has also shown that 
the cluster of genes involved in lipid metabolism 
(also of genes involved in extracelullar 
matrix molecules synthesis) is upregulated in 
hippocampal samples in Alzheimer’s disease 
[58]. 

Lipid rafts are involved in regulation of 
trafficking and proteolytic processing of 

APP [59]. It appears that amyloidogenic APP 
processing occurs within the rafts; thus the 
content and composition of cholesterol and 
glycosphingolipids critically influences the 
formation of amyloidogenic Aβ-peptide [60]. 
Moreover, the conformational change and 
resulting aggregation of Aβ is dependent 
on its interaction with specific molecules of 
the lipid bilayer [61]. It has been shown that 
ganglioside GM1 acts as an endogenous seed 
for amyloidogenesis, interacting with amyloid 
protein, and that sterols (cholesterol) may 
promote the formation of GM1 clusters, which 
interact with Aβ [62,63]. Preferential binding 
of Aβ to GM1 and formation of GAβ as well as 
neurotoxicity of amyloid fibrils in the presence 
of gangliosides have been demonstrated by 
in vivo and in vitro studies [64]. A growing 
body of evidence confirms that Aβ binding 
to gangliosides in cell membranes may be 

the initial step in Aβ polymerization and thus 
is an important contributing factor in AD 
pathogenesis. Additional supporting evidence 
on GM1 availability for GAβ formation comes 
from a study reporting increased proportions 
of gangliosides GM1 and GM2 in lipid domains 
isolated from AD frontal and temporal cortex 
[65]. We suggest that GM1 clustering, which 
is a prerequisite for GAβ generation inside 
and on the surface of neurons in AD, is a 
consequence of cellular death and atrophy 
accompanied by the accelerated degradation 
of membrane glycosphingolipids (Figure  4). 
Namely, ganglioside catabolism begins at the 
membrane, where more complex membrane 
gangliosides are being degraded by sialidase 
(neuraminidase). The product of the membrane 
sialidase activity is GM1, which is then 
internalized into an endosomal-lysosomal 
compartment. 

Figure 4.  Ganglioside GM1 is accumulated due to degradation of complex gangliosides by sialidase activity. 
Increased activity of β–hexosaminidase was documented in AD brain [41], while increased activity of 
β –galactosidase and β –hexosaminidase was shown in non-neural cells in AD [44]. Activity of sialidase 
and β–galactosidase is probably increased in AD brain. Higher concentration of ceramide is associated 
with APP secretion and Aβ production [59].
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Besides being involved in regulation of APP 
processing and Aβ aggregation, sphingolipids 
are also important for the regulation of neuronal 
excitability and synaptic activity [66,67]. 
Alteration in sphingolipid metabolism in AD 
results in the disturbance of intramembraneous 
lipid-lipid and lipid-protein interactions 
which may underlie alterations in complex 
cellular signalisation events and probably 
those pathways which are asccociated with 
synaptic plasticity [59]. In addition, it has 
been documented that sphinogolipids may 
regulate formation of the SNARE complex, 
the fusion of synaptic vesicles with target 
membranes, and exocytosis, i.e. events involved 
in neurotransmission [68]. It can be suggested 
that alterations of sphingolipid metabolism in 
AD are also related to disturbed synaptic activity, 
through sphingolipid mediated regulation of 
presynaptic and postsynaptic events. 

In conclusion, numerous studies have 
confirmed that gangliosides are involved in aging 
and neurodegeneration. The role of gangliosides in 

the complex pathogenesis of neurodegeneration 
is associated with the localization of these lipid 
molecules in membranes, particularly in highly 
organized lipid rafts. It seems that alterations in 
ganglioside metabolism leading to changes in 
membrane physico-chemical properties are not 
merely a consequence of primary pathology, 
but may be involved in the early pathogenesis of 
the disease through documented effects on APP 
proteolytic processing and amyloid aggregation. 
Investigations of glycolipid metabolic alterations 
which accompany neurodegenerative disorders 
give insight into pathogenetic mechanisms and 
enable recognition of diagnostic markers as well 
as molecular structures acting as therapeutic 
tools interfering with cascade of pathological 
events. 
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abbreviations

AD  – Alzheimer’s disease
Aβ  – amyloid-β peptide
APOE4  – apolipoprotein E gene allele 4
APP  – amyloid precursor protein
Cer  – ceramide
Gal  – galactose
GalNAc  – N-acetylgalactosamine
Glc  – glucose
GlcT  – glucosyltransferase
GSL  – glycosphingolipid
DS  – Down’s syndrome
MAG  – myelin-associated glycoprotein
NeuAc  – N-acetylneuraminic acid (sialic acid)
NMDA  – N-methyl-D-aspartate
P75NTR  – neurotrophin receptor
PDGF  – platelet-derived growth factor
PSEN1  – presenilin1 
SNARE  –  SNAP (Soluble NSF Attachment 

Protein) Receptors
ST  – sialyltransferase
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