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Abstract: We present a probabilistic analysis of seismic travel-time equations using the Bayesian Method. The assessment
of models and data is crucial in 3D seismic travel-time tomography, and a method quantitatively assess the
quality of both the data and the model is necessary in order to attain the most realistic results. The Bayesian
method that we propose here is more effective than the frequentist approach, both in analysis time and uncertainty
minimization, when processing large sets of tomographic data.
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1. Introduction

Tomography, in a geophysical context, is a method to in-
terpret the earth’s interior, and is based on representative
mathematical models of physical systems [1]. Models are
however approximate representations of an incomplete set
of data. It is therefore necessary to test the reliability of
the data and model being used in order to obtain realistic
final models. Data and model uncertainty analysis quan-
titatively defines the uncertainty in the measured data,
the accuracy in the modelling of the physical system, and
the realism of the final model. In practice, for examination
of data uncertainties is used the chi-square test which ef-
fectiveness is problematic [2]. It is remarkable that in the
great majority of cases, this examination is either ignored,
by simply calculating the difference between observed and
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calculated travel times, or is partially solved by applying
a priori data errors.

2. Inverse Problem

In the following account, we use the symbol d for data,
where d € R” (R is the set of the real numbers and n is
the dimension of the data); m for an infinite dimensional
model vector, where m € S and S is the infinite dimen-
sional space of models; and, 0 and p for the data and
model estimators, respectively. Data estimation involves
mapping elements from the model space to the data space.
Supposing that we have collected a quantity of n data, we
determine a function, termed here the forward function ¢,
which maps models into data space. As this function is
always an approximation it introduces a systematic error
k, where k represents a vector in a n-dimensional space.
The equation which connects data and model is as follows:
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d=¢(m)+e+k, (1)

where ¢ is a vector in a n-dimensional space resulting
from random measurement errors. In the case of a lin-
ear forward function, Equation (1) can be expressed as an
infinite series of coefficients

m={m;}: 2
d=1Lm+¢,

where L is the linear forward function with L = SR"". In
Equation (2) we ignore the systematic error k because
we consider L as accurate. According to Trampert and
Snieder [3], we can rewrite Equation (2) considering a fi-
nite vector m’, which contains the first i coefficients, and
the sequence N, which contains all subsequent coeffi-
cients:

d="0Um + LoNa + €. 3)

We can consider the factor L, Ny as the systematic error
k. As L maps an infinite space into a finite one, the ker-
nel of the forward operator ¢, Ker(¢), will be non-trivial,
resulting in multiple models that fit the data. This means
that the solution is non-unique, a crucial matter for seismic
tomography. A solution is to introduce prior information
in order to limit the range of suitable models.

Two probabilistic approaches exist for data and model un-
certainty analysis; the Bayesian (e.qg. [4]) and the frequen-
tist (e.g. [0]). The Bayesian method, the most popular ap-
proach for geophysical inverse problems, is based on an a
priori probability model, where we know about the model
before collecting/applying any data. The frequentist ap-
proach is rarely applied and is based on the interpretation
of the probability from the frequency of outcomes. While
the Bayesian method relies on pre-data information, or
how proximate to the reality a hypothesis can be, the fre-
quentist method uses post-data information. In seismic
surveys, especially in very shallow experiments, the se-
lection of the prior model may be a very difficult task,
because of velocity variations. As prior knowledge is the
conversion of deterministic information into probability is
challenging. In practice, the prior model, through a se-
ries of calculations, tends to reqularize the a posteriori
solution [2]

3. The Bayesian methodology

In order to address a Bayesian inversion, firstly, we have
to choose how the prior information is going to be repre-
sented and, secondly, how the a posteriori information will

be estimated (e.g. the constraints, parameters and veloc-
ity model to be used). The prior information is a subjective
choice usually based on individual experience of a certain
problem with a specific level of uncertainty. This deci-
sion is particularly difficult to make in high-dimensional
problems. A more practical approach to this problem is the
use of observations to estimate the prior model. This tech-
nique, known as empirical Bayesian, is an approximation
to a full Bayesian analysis (e.g. [6]). A full hierarchical
Bayesian analysis introduces additional dependencies on
parameters and this process ends when all the parame-
ters are considered as known. Conversely, the empirical
Bayesian analysis ends when the last parameters cannot
ever be considered as known.

4. Estimator’s performance and risk

Each estimator depends on prior data, and we presently
cannot evaluate how much prior information causes error
in the a posteriori information [7]. The risk depends on
the chosen model. We define the loss function L(u,m) as a
measure of how good the estimator y is for the model m.
For any other model n, we have L(m,n) >0 and L(m,m) =0.
There are many loss functions [8], but the most common is
the square-error loss function:

L(u, m) = (m — p)* (4)

and the £, norm loss function:
L{s,m) = [(m — )] )
The risk, R(u,m), of the estimator p is given by:

Ry, m) = Ep (L(u, m)), (6)

where p is the probability distribution and E,, is the expec-
tation operator according to the probability distribution.
Equation (6) is also known [7] as the weighted average of
the risk.

5. Comparing different estimators

To compare different estimators we can use either poste-
rior risk, by taking the expected loss with respect to the
posterior distribution p(m|d), or the weighted average of
the risk using the prior distribution as weight function.
The posterior risk (r) is given by:

Tmjd = Emjg (L(m, p(0))) (7)
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The weighted average of the risk, known as Bayes risk [2],
is given by:

rp = E,R(m, ), (8)

where p is the prior model distribution. The estimator
with the smallest risk is called Bayes estimator. If f is
the joint distribution of models and data, we can obtain
the distribution of the data by integrating f with respect
to all the models:

h(d) = /M f(m, d)dm, (9)

where M is the space of models. The Bayesian posterior
distribution, that is, the conditional distribution of model
m given d data, according to Bayes’ theorem [9] is given
by:

p(d|m)p(m)
plnld) = 1250 T (10
Equation (10) updates the prior information according to
the data.

6. Application to a seismic profile

In a typical tomographic problem, the aim is to interpret
the observed travel times in order to reconstruct a model
of the examined volume’s interior. For each observation,
the travel time (t) is given by:

1
t_/LEdL, (11)

where L is the ray path and u is the velocity. The co-
efficient 1/u is also known as slowness [10]. Given the
time t, we want to calculate the velocity u or a functional
thereof. The velocity u is not constant because the rays
are not straight and, so, the problem is non-linear. From
N observations we take the following system:

Ms = t, (12)

where s is the m-dimensional slowness vector denoting
the slowness in the j-th cell, t is the n dimensional time
vector denoting the total travel time of the i-th ray and
M is the (m * n) dimensional matrix of [;;, where [;; is the
length of the i-th ray path through the j-th cell. In most
cases, matrix M is sparse, with only a few elements being
non-zero, and it is highly overdetermined. Under these
conditions, y(t) > (s), where:

y(t) = dim ((¢M, .. 1))

and

P(t) =dim((s1,...,5,)). (13)

The forward modelling operator ¢(m), which maps models
onto data, is the product of the matrix M and the slowness
vector s. Let o t? be the travel time for the i-th observation
and tf be the i-th calculated travel time. The term t{ is
a function of slowness s. If e; is the noise for the i-th
observation, then:

=1 +e. (14)

The noise term e;, though, theoretically has a zero mean,
and a variance o2. As we have already mentioned, the sys-
tem defined by Equation (12) is overdetermined. However,
it is also underdetermined because rank (M)< ¢i(s). Thus,
no s exists that exactly satisfies Equation (12). In the case
where rank(M)=u(s) Equation (12) has a unique solution.
Our approach is to determine the slowness values, s, that
make the misfit function smaller than a user-defined tol-
erance limit. In other words, we seek a vector s, which
minimizes the

PMs —t, (15)

where P/ is the Euclidean norm. Since rank (M)< ¢(s),
there are infinite solutions of s that satisfy the criterion of
Equation (15), which is known as the least-squares solu-
tion. For a detailed review of the least-squares solution
see A. Van der Sluis and H.A. Van der Vorst [11]. A com-
monly used misfit function is the chi-square function [12]:

1T &+t
2(6) = L+t
X(S)—N-F;( p )

Another misfit criterion is the normalized chi-square func-
tion [12], given by:

2

(16)

N 2
xX(s) = 1N +Z (72' L;-.—d-[) ' (17)
i=1 !

where, m; is the j-th model, and d; the data for the i-th
datum.

We discard all the values of slowness, s, that do not fit
the data for the condition x* = 1.

7. Case study

In order to test the efficiency of our approach we used
both synthetic and real data sets. The real data set
was the first-break picks from 200 records gathered dur-
ing geoarcheological examination [13]. The shot interval
was 6 m and the receiver interval was 3 m. Each shot
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recorded 120 channels. After picking the first breaks, an
initial velocity model is estimated. Using the ray-tracing
algorithm [14, 15], an initial set of travel times is calcu-
lated as well as the ray paths. The travel-time misfit is
estimated and the velocity model is changed.This process
is iterated until the misfit lies within acceptable limits,
i.e. when x> = 1. We used the Bayesian and the fre-
quentist approach on the same data sets in order to test
their efficiency. We applied this approach to an existing
geoarchaeological problem [16].

Previous excavations at some parts of the area show good
agreement between our results and the existing subsur-
face structure. From the excavations we see the presence
of three layers, which comprise a low velocity sedimentary
layer underlain by weathered crystalline rock of several
metres in thickness, which is in turn, underlain by com-
pact crystalline rock. The tomographic approach using
Bayesian estimators gave very close results to the arche-
ological excavation (Figure 1) and managed to process the
data in a very efficient manner. The processing procedure
lasted some minutes on a Unix based system. The typical
calculation time, approximately ten minutes, was half of
that needed for the frequentist approach.

Figure 1. The tomographic results using the Bayesian approach.

Although the frequentist approach also defined three main
layers, the tomographic results did not correspond well
with the excavation data (Figure 2). Moreover, during the
calculation, several delays and breakdowns occurred as
the frequentist algorithm cannot efficiently process large
data sets. We therefore had to break the data into smaller
sets. The Root Mean Square (RMS) error using the
Bbayesian approach is approximately 1, while the same
data with the frequentist approach gave an RMS error of
1.56. Similarly, the Bayesian method gave a chi-squared
value of 1.1, and the frequentist method a chi-squared
value of around 2. Our new Bayesian method also corre-
sponded with other excavations in the area according to
Arvanitis and Karastathis [1].

2.5 velocity (knvs)

length (m)

Figure 2. The tomographic results using the frequentist approach.

8. Conclusions

We carried out a probabilistic analysis of seismic travel-
time equations using the Bayesian approach. This ap-
proach was shown to more efficiently process large to-
mographic data sets when compared to the frequentist
method. We applied both methods to a geoarcheologi-
cal excavation site in Greece, and found that the Bayesian
method resulted in noticeably smaller errors in model esti-
mation. We therefore propose that the Bayesian approach
provides an improved method to quantify both model and
data uncertainties in 3D seismic travel-time tomography,
particularly when applied to large data sets.
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