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Abstract: We present a probabilistic analysis of seismic travel-time equations using the Bayesian Method. The assessment
of models and data is crucial in 3D seismic travel-time tomography, and a method quantitatively assess the
quality of both the data and the model is necessary in order to attain the most realistic results. The Bayesian
method that we propose here is more effective than the frequentist approach, both in analysis time and uncertainty
minimization, when processing large sets of tomographic data.
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1. Introduction

Tomography, in a geophysical context, is a method to in-

terpret the earth’s interior, and is based on representative

mathematical models of physical systems [1]. Models are

however approximate representations of an incomplete set

of data. It is therefore necessary to test the reliability of

the data and model being used in order to obtain realistic

final models. Data and model uncertainty analysis quan-

titatively defines the uncertainty in the measured data,

the accuracy in the modelling of the physical system, and

the realism of the final model. In practice, for examination

of data uncertainties is used the chi-square test which ef-

fectiveness is problematic [2]. It is remarkable that in the

great majority of cases, this examination is either ignored,

by simply calculating the difference between observed and
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calculated travel times, or is partially solved by applying

a priori data errors.

2. Inverse Problem

In the following account, we use the symbol d for data,

where d ∈ Rn (R is the set of the real numbers and n is

the dimension of the data); m for an infinite dimensional

model vector, where m ∈ S and S is the infinite dimen-

sional space of models; and, δ and μ for the data and

model estimators, respectively. Data estimation involves

mapping elements from the model space to the data space.

Supposing that we have collected a quantity of n data, we

determine a function, termed here the forward function φ,

which maps models into data space. As this function is

always an approximation it introduces a systematic error

k , where k represents a vector in a n-dimensional space.

The equation which connects data and model is as follows:
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d = φ(m) + ε + k, (1)

where ε is a vector in a n-dimensional space resulting

from random measurement errors. In the case of a lin-

ear forward function, Equation (1) can be expressed as an

infinite series of coefficients

m = {mi} :

d = Lm+ ε,
(2)

where L is the linear forward function with L = Rnm. In

Equation (2) we ignore the systematic error k because

we consider L as accurate. According to Trampert and

Snieder [3], we can rewrite Equation (2) considering a fi-

nite vector m’, which contains the first i coefficients, and

the sequence N∞, which contains all subsequent coeffi-

cients:

d = L′m′ + L∞N∞ + ε. (3)

We can consider the factor L∞N∞ as the systematic error

k . As L maps an infinite space into a finite one, the ker-

nel of the forward operator φ, Ker(φ), will be non-trivial,

resulting in multiple models that fit the data. This means

that the solution is non-unique, a crucial matter for seismic

tomography. A solution is to introduce prior information

in order to limit the range of suitable models.

Two probabilistic approaches exist for data and model un-

certainty analysis; the Bayesian (e.g. [4]) and the frequen-

tist (e.g. [5]). The Bayesian method, the most popular ap-

proach for geophysical inverse problems, is based on an a

priori probability model, where we know about the model

before collecting/applying any data. The frequentist ap-

proach is rarely applied and is based on the interpretation

of the probability from the frequency of outcomes. While

the Bayesian method relies on pre-data information, or

how proximate to the reality a hypothesis can be, the fre-

quentist method uses post-data information. In seismic

surveys, especially in very shallow experiments, the se-

lection of the prior model may be a very difficult task,

because of velocity variations. As prior knowledge is the

conversion of deterministic information into probability is

challenging. In practice, the prior model, through a se-

ries of calculations, tends to regularize the a posteriori

solution [2]

3. The Bayesian methodology

In order to address a Bayesian inversion, firstly, we have

to choose how the prior information is going to be repre-

sented and, secondly, how the a posteriori information will

be estimated (e.g. the constraints, parameters and veloc-

ity model to be used). The prior information is a subjective

choice usually based on individual experience of a certain

problem with a specific level of uncertainty. This deci-

sion is particularly difficult to make in high-dimensional

problems. A more practical approach to this problem is the

use of observations to estimate the prior model. This tech-

nique, known as empirical Bayesian, is an approximation

to a full Bayesian analysis (e.g. [6]). A full hierarchical

Bayesian analysis introduces additional dependencies on

parameters and this process ends when all the parame-

ters are considered as known. Conversely, the empirical

Bayesian analysis ends when the last parameters cannot

ever be considered as known.

4. Estimator’s performance and risk

Each estimator depends on prior data, and we presently

cannot evaluate how much prior information causes error

in the a posteriori information [7]. The risk depends on

the chosen model. We define the loss function L(μ,m) as a

measure of how good the estimator μ is for the model m.

For any other model n, we have L(m,n) �0 and L(m,m) =0.

There are many loss functions [8], but the most common is

the square-error loss function:

L(μ,m) = (m− μ)2 (4)

and the �p norm loss function:

L(μ,m) = |(m− μ)|p. (5)

The risk, R(μ,m), of the estimator μ is given by:

R(μ,m) = Ep (L(μ,m)) , (6)

where p is the probability distribution and Ep is the expec-

tation operator according to the probability distribution.

Equation (6) is also known [7] as the weighted average of

the risk.

5. Comparing different estimators

To compare different estimators we can use either poste-

rior risk, by taking the expected loss with respect to the

posterior distribution p(m|d), or the weighted average of

the risk using the prior distribution as weight function.

The posterior risk (r) is given by:

rm|d = Em|d (L(m, μ(δ))) (7)
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The weighted average of the risk, known as Bayes risk [2],

is given by:

rρ = EρR(m, μ), (8)

where ρ is the prior model distribution. The estimator

with the smallest risk is called Bayes estimator. If f is

the joint distribution of models and data, we can obtain

the distribution of the data by integrating f with respect

to all the models:

h(d) =

∫

M

f(m,d)dm, (9)

where M is the space of models. The Bayesian posterior

distribution, that is, the conditional distribution of model

m given d data, according to Bayes’ theorem [9] is given

by:

p(m|d) = f
p(d|m)ρ(m)

h(d)
. (10)

Equation (10) updates the prior information according to

the data.

6. Application to a seismic profile

In a typical tomographic problem, the aim is to interpret

the observed travel times in order to reconstruct a model

of the examined volume’s interior. For each observation,

the travel time (t) is given by:

t =

∫

L

1

u
dL, (11)

where L is the ray path and u is the velocity. The co-

efficient 1/u is also known as slowness [10]. Given the

time t, we want to calculate the velocity u or a functional

thereof. The velocity u is not constant because the rays

are not straight and, so, the problem is non-linear. From

N observations we take the following system:

Ms = t, (12)

where s is the m-dimensional slowness vector denoting

the slowness in the j-th cell, t is the n dimensional time

vector denoting the total travel time of the i-th ray and

M is the (m ∗ n) dimensional matrix of lij , where lij is the

length of the i-th ray path through the j-th cell. In most

cases, matrix M is sparse, with only a few elements being

non-zero, and it is highly overdetermined. Under these

conditions, γ(t) � ψ(s), where:

γ(t) = dim
(〈
t(1), . . . , t(m)

〉)

and

ψ(t) = dim (〈s1, . . . , sn〉) . (13)

The forward modelling operator φ(m), which maps models

onto data, is the product of the matrix M and the slowness

vector s. Let o toi be the travel time for the i-th observation

and tci be the i-th calculated travel time. The term tci is

a function of slowness s. If ei is the noise for the i-th

observation, then:

toi = tci + ei. (14)

The noise term ei, though, theoretically has a zero mean,

and a variance σ 2
i . As we have already mentioned, the sys-

tem defined by Equation (12) is overdetermined. However,

it is also underdetermined because rank (M)< ψ(s). Thus,

no s exists that exactly satisfies Equation (12). In the case

where rank(M)=ψ(s) Equation (12) has a unique solution.

Our approach is to determine the slowness values, s, that

make the misfit function smaller than a user-defined tol-

erance limit. In other words, we seek a vector s, which

minimizes the

PMs − t, (15)

where PI is the Euclidean norm. Since rank (M)< ψ(s),

there are infinite solutions of s that satisfy the criterion of

Equation (15), which is known as the least-squares solu-

tion. For a detailed review of the least-squares solution

see A. Van der Sluis and H.A. Van der Vorst [11]. A com-

monly used misfit function is the chi-square function [12]:

x2(s) =
1

N
+

N∑

i=1

(
tci + toi
σi

)2

. (16)

Another misfit criterion is the normalized chi-square func-

tion [12], given by:

x2(s) =
1

N
+

N∑

i=1

(∑
i Lij − di

σi

)2

, (17)

where, mj is the j-th model, and di the data for the i-th

datum.

We discard all the values of slowness, s, that do not fit

the data for the condition x2 = 1.

7. Case study

In order to test the efficiency of our approach we used

both synthetic and real data sets. The real data set

was the first-break picks from 200 records gathered dur-

ing geoarcheological examination [13]. The shot interval

was 6 m and the receiver interval was 3 m. Each shot
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recorded 120 channels. After picking the first breaks, an

initial velocity model is estimated. Using the ray-tracing

algorithm [14, 15], an initial set of travel times is calcu-

lated as well as the ray paths. The travel-time misfit is

estimated and the velocity model is changed.This process

is iterated until the misfit lies within acceptable limits,

i.e. when x2 = 1. We used the Bayesian and the fre-

quentist approach on the same data sets in order to test

their efficiency. We applied this approach to an existing

geoarchaeological problem [16].

Previous excavations at some parts of the area show good

agreement between our results and the existing subsur-

face structure. From the excavations we see the presence

of three layers, which comprise a low velocity sedimentary

layer underlain by weathered crystalline rock of several

metres in thickness, which is in turn, underlain by com-

pact crystalline rock. The tomographic approach using

Bayesian estimators gave very close results to the arche-

ological excavation (Figure 1) and managed to process the

data in a very efficient manner. The processing procedure

lasted some minutes on a Unix based system. The typical

calculation time, approximately ten minutes, was half of

that needed for the frequentist approach.

Figure 1. The tomographic results using the Bayesian approach.

Although the frequentist approach also defined three main

layers, the tomographic results did not correspond well

with the excavation data (Figure 2). Moreover, during the

calculation, several delays and breakdowns occurred as

the frequentist algorithm cannot efficiently process large

data sets. We therefore had to break the data into smaller

sets. The Root Mean Square (RMS) error using the

Bbayesian approach is approximately 1, while the same

data with the frequentist approach gave an RMS error of

1.56. Similarly, the Bayesian method gave a chi-squared

value of 1.1, and the frequentist method a chi-squared

value of around 2. Our new Bayesian method also corre-

sponded with other excavations in the area according to

Arvanitis and Karastathis [1].

Figure 2. The tomographic results using the frequentist approach.

8. Conclusions

We carried out a probabilistic analysis of seismic travel-

time equations using the Bayesian approach. This ap-

proach was shown to more efficiently process large to-

mographic data sets when compared to the frequentist

method. We applied both methods to a geoarcheologi-

cal excavation site in Greece, and found that the Bayesian

method resulted in noticeably smaller errors in model esti-

mation. We therefore propose that the Bayesian approach

provides an improved method to quantify both model and

data uncertainties in 3D seismic travel-time tomography,

particularly when applied to large data sets.
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