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Abstract

We analyze the “fractional continuum limit” and its generalization to n
dimensions of a self-similar discrete spring model which we introduced re-
cently [21]. Application of Hamilton’s (variational) principle determines in
rigorous manner a self-similar and as consequence non-local Laplacian op-
erator. In the fractional continuum limit the discrete self-similar Laplacian
takes the form of the fractional Laplacian −(−Δ)

α
2 with 0 < α < 2. We

analyze the fundamental link of fractal vibrational features of the discrete
self-similar spring model and the smooth regular ones of the corresponding
fractional continuum limit model in n dimensions: We find a characteristic
scaling law for the density of normal modes ∼ ω

2n
α
−1 with a positive expo-

nent 2n
α −1 > n−1 being always greater than n−1 characterizing a regular

lattice with local interparticle interactions. Furthermore, we study in this
setting anomalous diffusion generated by this Laplacian which is the source
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of Lévi flights in n-dimensions. In the limit of “large scaled times” ∼
t/rα >> 1 we show that all distributions exhibit the same asymptotically
algebraic decay ∼ t−n/α → 0 independent from the initial distribution and
spatial position. This universal scaling depends only on the ratio n/α of
the dimension n of the physical space and the Lévi parameter α.

MSC 2010: 28A80, 35Q84, 35R11, 60E07, 26A33, 82C31
Keywords and phrases: fractional Laplacian, self-similarity, power laws,

scale invariance, fractals, Weierstrass-Mandelbrot function, continuum limit,
fractional calculus, Fokker-Planck equation, anomalous diffusion, Lévi
flights, Lévi (stable) distributions, non-locality

1. Introduction
Self-similarity (scaling-invariance) can be found in many problems of

physics. There is a need for understanding the dynamics that leads to
fractal and self-similarity properties in domains of the physics as varied
as flow turbulence and complex materials. In “traditional modelling” the
continuum is assumed to have a characteristic length scale which deter-
mines the wavelengths where wave fields interact with the microstructure.
However, there are numerous materials in nature which are constituted by
a scale hierarchy of recurrent microstructure which can be conceived in a
good approximation as self-similar. This is true for solids and porous me-
dia but also in fluid mechanics, or multicomponent and multiphase flows.
As a consequence, there are many areas of modelling that could benefit
from a better understanding of the mechanisms underlying the dynamics
of objects exhibiting self-similarity properties.

In fluid mechanics, synthetic turbulence models are one of many exam-
ples of tempering with the input spectrum in order to understand better the
physics underlying Lagrangian diffusion [26] and such spectra can be traced
to the fractal distributions of velocity accumulation points in the synthetic
flow. Fractal approaches are developing rapidly in fluid mechanics. Such
approaches consist in either experimentally or numerically interfering with
the flow, forcing it through self-similar objects (or through numerical forc-
ing), [36, 11, 27].

On the other hand, there is a large area of research devoted to the so
called Fractional Laplacian and a huge number of references exists, employ-
ing this operator in various contexts of physics, e.g. [3, 4, 5, 10, 12, 13, 17,
20, 29, 31, 33, 34, 35, 38, 40]. In all these analytical models the fractional
Laplacian has been introduced in heuristic manner.

In the present paper we show that the fractional Laplacian represents in
a unique manner the limiting case of a self-similar lattice Laplacian which
we introduced for 1D in [21]. In that article we introduced self-similar
functions in the form of generalized Weierstrass-Mandelbrot functions.
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A similar Weierstrass-Mandelbrot type model as in [21] was recently
suggested by Nigmatullin and Baleanu [28] to derive functional equations
describing self-similar processes. In that model finite function series with
certain scaling properties are analyzed. In this way the self-similarity is only
approximate and characteristic length-scales remain present in that model.
However, in the limiting case of an infinite series those function series are
of the same exactly self-similar Weierstrass-Mandelbrot function type with
fractal features as in our model [21] being the point of departure for the
present paper. Despite the model [28] is highly useful and advanced to
describe fractal and self-similar processes, the “fractional continuum limit”
which links the discrete self-similar (fractal) approach with a fractional
approach was not considered in that paper.

One aim of the present analysis is hence, to provide a solid physical fun-
dament and justification for the fractional Laplacian based on a simple self-
similar “spring model approach”. We demonstrate in this paper that the
fractional Laplacian is a rigorous consequence (following from Hamilton’s
variational principle) defined by the “fractional continuum limit” of the dis-
crete linear spring model of [21] with self-similar and fractal interparticle
interactions. In this way we give a natural justification for the appearance
of the fractional Laplacian as the smooth field theoretical counterpart of a
discrete self-similar (fractal) Laplacian.

To this end we evoke the spring model with a self-similar spatial distri-
bution of harmonic interparticle springs [21] and extend it to n dimensions
of the physical space. We show that this self-similar Laplacian as well as
its generalization to n dimensions can be rigorously obtained by applica-
tion of Hamilton’s variational principle. We generalize the Laplacian to
the n-dimensional physical space where spatial isotropy of the Laplacian is
maintained. It turns out that the n-dimensional continuum limit represen-
tation of the self-similar Laplacian is up to a positive normalization factor
a representation of the n-dimensional fractional Laplacian. Throughout the
present paper we use synonymously the terms “self-similar Laplacian” in
its fractional continuum limit and “fractional Laplacian”.

In order to consider a physical application we analyze diffusion pro-
cesses generated by this Laplacian employed in the Fokker-Planck equa-
tion. We show that independently of the physical dimension n, the under-
lying anomalous diffusion processes indeed are Lévi flights, which has been
demonstrated in the literature for the fractional Laplacian for the spatial
dimension n = 2 [38] and thoroughly analyzed in the survey paper of Met-
zler and Klafter [20]. An interesting analysis of Lévi flights generated by
fractional Laplacians for the multidimensional space is also presented in
[10].
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It has been recognized that complex processes exist where the role of
fluctuations is by far underestimated and which cannot be described by
Gaussian statistics. These random particle motions have much more erratic
characteristics as Brownian motions which can be described by Gaussian
statistics and normal distributions. This is true for instance for the stock
market, where Gaussian statistics fails largely by underestimating fluctu-
ations (risks!). One of the first researchers to recognize this was indeed
Mandelbrot [18, 19]. Among the stochastic motions that are character-
ized by infinite mean fluctuations are those with Lévi-distributed scale free
heavy-tailed jump distributions. A thorough analysis of the jump distribu-
tion can be found in the article of Blumenthal et al. [2].

Such erratic motions, allowing long-distance jumps are known in the
literature as Lévi flights are the source of anomalous diffusion [15, 20] (and
references therein). Lévi flights are widely found in nature for instance in
the dynamics of bumblebees [14]. There is a huge number of models of
Lévi flights by fractional kinetic equations of diffusion and a vast literature
devoted to this subject. An excellent overview is provided in [20] (see also
the references therein).

However, the subject of the present paper is not the investigation of the
properties of Lévi flights at the first place as they are well studied, e.g. [8,
39, 20]. The diffusion problem considered in this paper is only supposed to
demonstrate the utility of the self-similar Laplacian approach. Nevertheless
we deduce some basic and highly useful properties and relations of Lévi
flights in the n-dimensional space.

2. Preliminaries

It is an interesting question how physical phenomena change when the
interparticle interactions become self-similar. For instance when we con-
sider the Poisson equation

Δselfsim u(r) = χ(r) (2.1)

with a self-similar Laplacian operator Δselfsim which is to be specified. To
this end we should elaborate first of all the notion of “self-similarity” em-
ployed in this paper. The notion of “self-similarity” which is employed
in this paper as well as in [21, 22, 23, 24, 25] corresponds to the notion
“self-similarity at a point” which is commonly used in the mathematical
literature [30]. Generally, an object is exactly self-similar in the strict sense
if it can be decomposed into parts which are exact rescaled copies of the
entire object. In contrast is the notion “self-similarity at a point” where
“point” means here a fixed-point of the scaling operation: An object which
is self-similar at a point contains a single part which is a re-scaled copy of
the entire object and so forth over an infinity of scales [30].



THE FRACTIONAL LAPLACIAN AS A LIMITING CASE . . . 831

According to this notion of self-similarity, we call a function Λ(h) self-
similar with respect to h, i.e. self-similar at point h = 0, when the scaling
relation

Λ(Nh) = N δΛ(h) (2.2)
is fulfilled for a prescribed scaling factor N > 1 and for any h > 0. We
assume real valued scaling exponents δ ∈ R. If a function Λ(h) fulfills (2.2),
it follows that (2.2) remains true if we replace N → N s with (s ∈ Z0 denotes
all positive and negative integers including zero). In other words: if Λ(h)
is self-similar with respect to h in the sense of relation (2.2), then there
exists a N > 1 such that the discrete set of rescaling operations h′ = hN ′
with N ′ = N s with only positive and negative integers s ∈ Z0 including the
zero, satisfy the self-similarity condition (2.2), namely Λ(hN ′) = N ′δΛ(h).
We observe further by putting h = Np+χ with p ∈ Z0 and 0 ≤ χ < 1
denoting the non-integer part, and by using the property of self-similarity
that (Np = hN−χ)

Λ(h = NpNχ) = NpδΛ(Nχ) = hδN−δχΛ(Nχ). (2.3)

From this relation we observe that all values of function Λ are uniquely
determined by its values within 1 ≤ Nχ < N (as 0 ≤ χ < 1) [23]. It
follows that the function h−δΛ(h) is scaling invariant under h′ = Nh or in
other words it is a log(N)-periodic function by conceiving it as function of
log(h) and can be expanded into a log-periodic Fourier series [37, 23]. Log-
periodic oscillations appear in many physical processes such as in turbulence
as footprint of self-similarity and scaling invariance [28]. This important
characteristic feature was probably first discovered by Sornette [37]. The
self-similar functions defined in this section can be uniquely expanded in
series of log-periodic modes. More details can be found in [37, 23].

We notice further that Λ(h) scales as hδ, especially when h → 0. How-
ever, in general, a unique limit h → 0 of h−δΛ(h) = N−δχΛ(Nχ) does not
exist because of its dependence on χ. Let us assume that a constant C > 0
exists such that 0 ≤ |N−δχΛ(Nχ)| ≤ C ∀h > 0 then function Λ(h) fulfills
the inequality

0 ≤ |Λ(h)| ≤ Chδ. (2.4)
For 0 < δ ≤ 1 relation (2.4) is the Hoelder condition, e.g. [32]. The
function Λ(h) is then a Hoelderian function (Hoelder continuous function)
being continuous but non-differentiable for 0 < δ < 1 at h = 0. The
Hoelderian functions include a wide range of fractal and erratic functions
[32]. For δ ≥ 1 the function Λ(h) is differentiable at h = 0. The self-similar
functions can hence be fractal or non-fractal functions.

Generally, a self-similar function which fulfills (2.2) for a prescribed N
can be written in the form [21]
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Λ(h) =
∞∑

s=−∞
N−δsf(N sh) (2.5)

which converges for sufficiently good functions f . Without any loss of
generality we can restrict ourselves to N > 1. The simplest self-similar
functions of this type are power-functions hδ . They constitute also the
fractional continuum limit of (2.5) (eq. (3.4) below).

3. The self-similar elastic continuum
- the fractional continuum limit

3.1. One-dimensional case

In this section we evoke a self-similar Laplacian from a simple linear
chain model which was introduced in [21] and its fractional continuum limit
we introduced in recent papers [22, 24] for the one-dimensional infinite
space. We consider this quasi-continuous chain with self-similar harmonic
springs with the Hamiltonian functional [21]

H =
1
2

∫ ∞

−∞

(
u̇2(x, t) + V (x, t, h)

)
dx, (3.1)

where x denotes the space- and t the time coordinates. Each spacepoint
x indicates a mass point (material point) and the mass density of the sys-
tem we consider is constant (spatially homogeneous) and we put the mass
density equal to 1. 1

2V (x, h) indicates the elastic energy density with

V (x, h) =
1
2

∞∑
s=−∞

N−δs
[
{u(x) − u(x + hN s)}2 + {u(x) − u(x − hN s)}2

]
(3.2)

which converges for sufficiently regular functions u(x) in the range 0 <
δ < 2 and where we assume h > 0 and N being a prescribed scaling
factor. We skip the time coordinate in u(x) whenever the time dependence
does not matter. Without loss of generality we can restrict ourselves to
N > 1 (N ∈ R). The additional factor 1/2 in the elastic energy density
compensates double counting of the springs when integrating in (3.1). (3.2)
describes the harmonic self-similar interaction of a mass point located at
x being connected by harmonic springs having spring constants N−δs with
an ensemble of mass points located at x ± hN s. It is important to note
that the elastic energy density does not have any characteristic interaction
length scale. The variable h characterizes self-similarity of the elastic energy
density, but does not have the physical meaning of a characteristic length.
Unlike in the case of a linear chain with only next neighbor interactions,
the limit h → 0 would not localize the interparticle interactions. In (3.1)
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and (3.2) u and u̇ = ∂
∂tu stand for the displacement field (or a generalized

field variable) and the velocity field, respectively. (3.2) has the property of
being self-similar with respect to h at point h = 0, namely

V (x,Nh) = N δV (x, h). (3.3)

As a starting point for the approach to be developed we evoke the
fractional continuum limit of (3.2) and the resulting equation of motion.
For 0 < δ ≤ 1 (3.2) is a Hoelder continuous function with respect to h
in the sense of (2.4) being for 0 < δ < 1 non-differentiable at h = 0. If
we prescribe in (3.2) a periodic field u(x) then the elastic energy density
is for exponents 0 < δ < 1 a fractal function (Weierstrass-Mandelbrot
fractal function, examples shown in the plots of Figure 1). We define the
fractional continuum limit as N = 1+ ζ (0 < ζ << 1) so τ = hN s becomes
a continuous variable and we can write a self-similar function Λ(h) which
fulfills a self-similarity condition (3.3) asymptotically as [21]

Λ(h) =
∞∑

s=−∞
N−δsf(N sh) ≈ hδ

ζ

∫ ∞

0

f(τ)
τ δ+1

dτ (3.4)

having the form of a power function Λ(h) = const hδ, where const is inde-
pendent on h. Both the discrete as well as the continuous representation of
(3.4) converge for the same sufficiently good functions (see details in [21]).
From (3.4) follows that in the fractional continuum limit we can write (3.2)
as a functional of the displacement field u(x) in the form

V (x, h) =
hδ

2ζ

∫ ∞

0

{
(u(x) − u(x + τ))2 + (u(x) − u(x − τ))2

}
τ δ+1

dτ (3.5)

which exists as in the discrete case (3.2) in the band 0 < δ < 2. Application
of Hamilton’s principle leads then to the definition of the Laplacian of our
system which is then determined by the functional derivative of the total
elastic energy W with respect to the field u, namely [9]

Δ(δ,h,ζ)u =: −δW

δu
, W =

1
2

∫
V dx. (3.6)

The equation of motion (“self-similar wave equation”) has then the form
[21]

∂2

∂t2
u(x, t) = Δ(δ,h,ζ)u(x, t), (3.7)

(3.6) together with the discrete spring representation (3.2) defines the dis-
crete form of the self-similar Laplacian [21]

Δ(δ,N,h)u(x) =
∞∑

s=−∞
N−δs {u(x + hN s) + u(x − hN) − 2u(x)} (3.8)
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which converges within the same interval as (3.2), namely 0 < δ < 2 and
fulfills the self-similarity condition Δ(δ,N,Nh) = N δΔ(δ,N,h). The self-similar
Laplacian Δ(δ,N,h) defined by (3.8) is of the type Weierstrass-Mandelbrot
function and can be a fractal function if the field u(x) is a periodic function
(Figure 1). To demonstrate the link between fractional continuum limit
(fractional Laplacian) and fractals represented by the discrete approach,
let us evoke the dispersion relation of this Laplacian which is obtained
straight-forwardly if one takes into account that this operator is transla-
tional invariant with respect to x, i.e. has eigenfunctions of the form eikx

which define the dispersion relation (negative eigenvalues of the self-similar
Laplacian)

Δ(δ,N,h)e
ikx = −ω2

δ (k)eikx (3.9)

with the dispersion relation [21]

ω2
δ (k) = 4

∞∑
s=−∞

N−δs sin2(
khN s

2
), 0 < δ < 2, (3.10)

which is a Weierstrass-Mandelbrot function (drawn in the two plots of Fig-
ure 1) which again converges for 0 < δ < 2 and is a fractal nowhere dif-
ferentiable function within 0 < δ < 1 with fractal Hausdorff dimension
D = 2 − δ, and is a regular function within 1 ≤ δ < 2.

The Weierstrass-Mandelbrot function fulfills also the self-similarity con-
dition with respect to variable kh. We further note that (3.10) is strictly
positive for k 
= 0 indicating positive definiteness (elastic stability). The
self-similar Laplacian is necessarily an elliptic, i.e. non-local and self-adjoint
negative (semi-)definite, spatially isotropic operator. (“semi-” because uni-
form translations are eigenmodes to eigenvalue zero). The fractional con-
tinuum limit N → 1 (relation (3.4)) of the discrete self-similar Laplacian
(3.8) is obtained as

Δ(δ,h,ζ)u(x) =
hδ

ζ

∫ ∞

0

(u(x − τ) + u(x + τ) − 2u(x))
τ1+δ

dτ, (3.11)

existing for the same interval 0 < δ < 2. The fractional continuum limit
Laplacian (3.11) can be also obtained from the functional derivative (3.6)
as a consequence of Hamilton’s variational principle. The fractional con-
tinuum limit N → 1 can be swaped with application of Hamilton’s prin-
ciple (functional derivative (3.6)). In both cases, in the discrete as well as
in the fractional continuum limit the Laplacian is due to its construction
self-similar with respect to variable h. The dimensional factor hδ comes
into play and maintains the dimension of the discrete self-similar Laplacian
(which can be without loss of generality defined as non-dimensional). Per-
forming this fractional limit N → 1 for the dispersion relation (3.10) yields
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Figure 1. Visualization of the limiting case N → 1 in
1D : fractal spring model (erratic curves) versus the frac-
tional continuum limit governed (regular curves) : Disper-
sion relation ω2

δ (k) from (3.10) (erratic fractal Weierstrass-
Mandelbrot type functions of Hausdorff dimension D =
1.7 = 2 − δ with δ = 0.3) and their smooth fractional con-
tinuum limits ω2

n=1,δ(k) = An=1,δk
δ where An=1,δ given by

(7.14) or equivalently by (7.17). N = 1.5 (upper diagram),
N = 1.05 (lower diagram).
The more the fractional limit N → 1 is approached, the bet-
ter the erractic fractal features are described by the smooth
fractional continuum limit approach.
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a scaling law of the form

ω2
δ (k) = Aδ|k|δ , 0 < δ < 2, (3.12)

where the strictly positive constant Aδ > 0 within 0 < δ < 2 is determined
below (relations (7.14) or equivalently by (7.17) for n = 1 deduced in the
appendix) and has the physical dimension of hδ , i.e. (length)δ . In the
plots of Figure 1 we represent for the fractal case δ = 0.3 the discrete
dispersion relation of the form Weierstrass-Mandelbrot which is a fractal
function for 0 < δ < 1 and its continuous counterpart represented by a
smooth power law (3.12). These two plots may show the correspondence of
the discrete self-similar spring model approach governed by the self-similar
Laplacian (3.8) and the continuous fractional limit governed by the (up
to the prefactor Aδ) fractional Laplacian (3.11) which can be written in
operator form as

Δ(δ,h,ζ) = −Aδ(− d2

dx2
)δ/2, 0 < δ < 2, (3.13)

with the 1D fractional Laplacian operator −(− d2

dx2 )δ/2 having eigenvalues
−kδ and which approaches the conventional Laplacian for δ → 2 − 0.

It might be sometimes convenient to rewrite (3.11) in the equivalent
form

Δ(δ,h,ζ)u(x) =
hδ

ζδ

d

dx

∫ ∞

0

(u(x + τ) − u(x − τ))
τ δ

dτ , 0 < δ < 2, (3.14)

where the range of existence of these relations is 0 < δ < 2. In the entire
analysis of this paper we put for any complex number z = |z|eiϕ the princi-
pal value −π < ϕ = Arg(z) ≤ π for its argument ϕ. In the further analysis
we will need the Γ-function (faculty-function) Γ(α) which is defined by ([1])

Γ(α + 1) =: α! =
∫ ∞

0
e−τ ταdτ, �(α) > −1. (3.15)

The condition �(α) > −1 is required for integral (3.15) to exist, �(α)
denotes the real part of a complex number α. Using (3.14) the equation of
motion (3.7) takes the form

∂2

∂t2
u(x, t) =

∂

∂x
σ(x, t), (3.16)

where ∂
∂x indicates the traditional partial derivative with respect to x and

σ(x, t) denotes the stress having the form [24]

σ(x) =
hδ

ζδ

∫ ∞

0

(u(x + τ) − u(x − τ))
τ δ

dτ , 0 < δ < 2, (3.17)

where the integration constant turns out to be zero when integrating the
right hand side of (3.14) with respect to x. For further comparison it will
be convenient to represent (3.17) in the equivalent form
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σ(x) =
hδ

2ζδ

∫ ∞

−∞
τ
(u(x + τ) − u(x − τ))

|τ |δ+1
dτ , 0 < δ < 2, (3.18)

where sgn(τ) = τ
|τ | maintains the integrand to be an even function with

respect to τ .
From the above considerations it follows that the self-similarity and

the fractality of the interparticle interactions as introduced by our spring
model lead inevitably to non-local fractional field theories. In the elastic
framework the material (modulus) functions are convolution kernels. In
contrast to the “classical” non-local elasticity theory as outlined by Eringen
[7] the self-similar case is characterized by long-range (heavy-tailed) power
law kernels decaying critically slowly and without a characteristic length
scale. Further details on 1D cases can be found in [22, 24, 25]. The following
section is devoted to the generalization of the approach to n-dimensions.

4. The fractional continuum limit of self-similar Laplacian
in the n-dimensional space

We introduce a generalization of the self-similar Laplacian (3.11) to
the n-dimensional space where n = 1, 2, 3, ... We define this Laplacian
by its action on a scalar field variable u(x). Then we can generalize the
one-dimensional case (3.11) to n = 1, 2, 3 dimensions as

Δ(n,α)u(x) =
hα

2ζ

∫
(u(x + r) + u(x − r) − 2u(x))

rα+n
dnr, (4.1)

where we have put δ − (n − 1) = α. (4.1) exists for sufficiently smooth
fields u(x) converging in the interval 0 < α = δ − (n − 1) < 2. Integral
(4.1) is performed over the entire n-dimensional physical space Rn. The
prefactor 2−1 occurs due to the fact that in (3.11) a prefactor 2−1 has to
be added to the integrand if we integrate over the entire physical space R1.
Expression (4.1) recovers (3.11) for n = 1. The prefactor hα renders the
Laplacian defined by (4.1) non-dimensional. We emphasize again that, as
a consequence of self-similarity, the length h does not have the meaning
of a characteristic length scale. It represents only a dimensional constant.
The fractional continuum limit N → 1 is up to the dimensional multiplier
hα independent of h (as indicated by the integral on the right hand side of
(3.4)). In some cases also the equivalent representation of (4.1)

Δ(n,α)u(x) =
hα

ζ

∫ {u(r) − u(x)}
|r− x|α+n

dnr, 0 < α < 2, (4.2)

might be convenient. In Appendix (7.2), we demonstrate that our self-
similar Laplacian (4.1), (4.2) is up to a strictly positive prefactor coinciding
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with the fractional Laplacian −(−Δ)
α
2 (with α = δ−(n−1) and 0 < α < 2)

known from the literature, e.g. [40] and the references therein.
For the further analysis the following representation of (4.1) in terms

of a divergence of a vector field will be useful

Δ(n,α)u(x) = ∇x · D(x), (4.3)

where (∇x)j = ∂
∂xj

denotes the gradient operator. The vector field D is
determined (up to an unimportant rotational gauge vector field b with
∇ · b = 0) by

D(x) =
hα

2αζ

∫
r

rα+n
{u(x + r) − u(x − r)} dnr, 0 < α < 2, (4.4)

which recovers for n = 1 the expression for the stresses (3.18). The deduc-
tion of (4.4) is performed in Appendix 7.1 by using the Gaussian theorem.
Further useful equivalent representations of (4.4) are given in Appendix.
We note that u is here without loss of generality a scalar field and the in-
tegrand of (4.4) is an even function with respect to integration variable r.
If we conceive equation (2.1) as a Poisson equation in an electrodynamic
context then the vector field (4.4) can be conceived as the “dielectric dis-
placement field”. Then (2.1) with (4.3) defines the self-similar Gauss-law
(charge conservation). Starting from this, we can set up a potential theory
of self-similar fields and apply it for instance to electromagnetism. Some
aspects of the theory of self-similar electrostatics are briefly described in
[23]. In Appendix 7.1 we have deduced a useful scalar potential (eq. (7.9))
useful in this context.

4.1. Dispersion relation and density of normal modes

In view of the translational symmetry of the Laplacian, we observe that
plane-waves φk(r) = eik·r are eigenfunctions of the Laplacian (4.1) where
its negative eigenvalues constitute the dispersion relation ω2

n,α(k) which is
obtained by the relation

Δ(n,α)φk(r) = −ω2
n,α(k)φk(r), (4.5)

ω2
n,α(k) = −hα

2ζ

∫ (
eik·r + e−ik·r − 2

)
rα+n

dnr, 0 < α < 2. (4.6)

We observe that the dispersion relation fulfills the scaling property

ω2
n,α(k) = An,αkα , 0 < α < 2, (4.7)

depending only on k = |k| reflecting isotropy of the Laplacian and An,α =
ω2

n,α(k = 1) is defined by (4.6). We observe from (4.6) that the coeffi-
cient An,α > 0 is strictly positive indicating “elastic stability”. An explicit
evaluation of the coefficient An,α is given in Appendix 7.2. The following
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observation is noteworthy: In dispersion relation (4.7) appears always a
positive exponent 0 < α < 2 being within the interval (0, 2) whatever the
dimension n of the physical space. From this follows the important property

ω2
n,α(k → 0) = 0 (4.8)

for any dimension n as a necessary consequence of the translational invari-
ance of the self-similar Laplacian. Translational invariance requires that
the k = 0 mode (uniform translation of the entire “material system”) must
give a zero contribution to the elastic energy and hence corresponds to
eigenvalue zero.

It is now straight-forward to obtain the density of normal modes which
we denote by D(ω). This quantity is defined such that D(ω)dω counts the
number of normal modes (per n-dimensional unit-volume) with frequencies
in the interval [ω, ω + dω]. We obtain this quantity from the dispersion
relation by (e.g. [21] or any textbook of theoretical physics [16])

D(ω)dω =
1

(2π)n
On(1)kn−1dk, (4.9)

where k = k(ω) = ω
2
α

A
1
α

represents the inverse dispersion relation and

On(1) = 2π
n
2

Γ(n
2
) denotes the surface of the unit-sphere. Then (4.9) yields

the scaling law

D(ω) =
22−n

π
n
2 Γ(n

2 )αA
n
α
n,α

ω
2n
α
−1, (4.10)

where the prefactor and exponent 2n
α − 1 being always positive, where 0 ≤

n−1 < 2n
α −1 (0 < α < 2) whatever the dimension n of the physical space.

n − 1 is the exponent of the mode density of the conventional Laplacian
having dispersion relation ω2(k) = k2 leading to the density of normal
modes in the n-dimensional space

Dconventional(ω) =
On(1)
(2π)n

ωn−1 =
21−n

π
n
2 Γ(n

2 )
ωn−1, (4.11)

scaling as ∼ ωn−1 and where (4.10) would assume (4.11) when we put there
the “forbidden” value α = 2 and A = 1. We emphasize that in a space
of dimension n the exponent of the mode density of the self-similar (frac-
tional) Laplacian is always greater than the exponent of the conventional
(localized) Laplacian

2n
α

− 1 > n − 1 , 0 < α < 2. (4.12)

We can qualify inequality (4.12) as a characteristic footprint of self-similarity.
The above power law (4.10) has due to its positive exponent the property

D(ω → 0) = 0 (4.13)
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for any dimension n of the physical space. The positiveness of the expo-
nent reflects the translational invariance of the medium. For n = 1 the
expression obtained in [21] is recovered by (4.10) with the exponent being
2
δ − 1 > 0 (0 < δ < 2) and yields

D1(ω) =
2

πδA
1
δ
1,δ

ω
2
δ
−1. (4.14)

It is quite remarkable that the appearance of the self-similar (frac-
tional) Laplacian gives rise to unusual physical phenomena being quali-
tatively different from those governed by the conventional Laplacian. Note
that diffusion problems formulated with a conventional Laplacian describe
traditional Gaussian statistics with finite variances (“Brownian motion”),
whereas diffusion problems formulated with self-similar (fractional) Lapla-
cians of the type (4.1) describe random motions allowing long-range scale-
free distributed jumps and leading to stable distributions of the Lévi type,
characterized by infinite variances (“Lévi flights”), [19]. As an application,
we devote the next section to this problem.

5. Anomalous diffusion problem in n dimensions - Lévi flights

We consider an ensemble of particles of density ρ(r, t) where ρ(r, t)dnr
denotes the number fraction of particles being located at a time t in the
volume element dnr which is attached to spacepoint r. We refer to this
picture as the “diffusion picture”. The other picture of this model is a
single randomly walking particle where ρ(r, t)dnr, then means in this “sto-
chastic picture” the probability to find the particle at time t > 0 in the
volume element dnr which is attached to spacepoint r. In what follows
we describe a model of the space-time evaluation of the density ρ where
both pictures, the diffusion picture and the stochastic picture are possible
physical interpretations. In the stochastic picture the present model de-
scribes a random walking particle which is walking continuously in time
where the jump distance of the particle in any infinitesimal time interval
δt is distributed according to a power law and isotropic in space. For such
stochastic motions Mandelbrot coined the term Lévi flights. We will see
that our above introduced self-similar Laplacian operator is the source of
exactly this type of stochastic motion in the n = 1, 2, 3, ... -dimensional
space.

We consider the problem for t ≥ 0. We are especially interested in the
characteristic asymptotic behavior for large times t.

The density to be analyzed is normalized for all times t ≥ 0 according
to ∫

ρ(r, t) dnr = 1. (5.1)
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We then define the diffusion problem by the following diffusion equation
(in the stochastic picture Fokker-Planck equation)

∂

∂t
ρ(r, t) = −Ln,αρ(r, t), (5.2)

where −Ln,α = Δ(n,α) denotes the Laplacian (4.1). We further assume a
prescribed initial distribution

ρ(r, t = 0) = ρ0(r) (5.3)

which is also normalized according to (5.1). We conceive the positive semi-
definite operator Ln,α as the diffusion generator where its eigenvalue spec-
trum is just the dispersion relation (4.7) with the diffusional eigenmodes
φk(r) = eik·r. The density ρ(r, t) written in terms of eigenmodes as Fourier
transformation

ρ(r, t) =
1

(2π)n

∫
ρ̂(k, t)eik·rdnk, (5.4)

the Fourier amplitude ρ̂(k, t) fulfills the evolution equation
∂

∂t
ρ̂(k, t) = −ω2

n,α(k)ρ̂(k, t), (5.5)

where ω2
n,α(k) is defined by dispersion relation (4.7). The Fourier ampli-

tudes show an exponential decay in time (A = An,α > 0)

ρ̂(k, t) = e−tAkα
ρ̂0(k), (5.6)

where we have 0 < α < 2 and ρ̂0(k) indicating the Fourier transform of the
initial distribution ρ0(r) at t = 0. Unlike in the case of Gaussian diffusion,
the non-locality of Laplacian (4.1) indicates that non-local particle jumps
are admitted which are scale free distributed. We will come back to this
important property more closely below.

We can also write the solution of (5.2) in the form

ρ(r, t) = e−tLn,αρ0(r) (5.7)

which we will evaluate next. We observe from this representation that the
normalization of (5.7) indeed is maintained at all times t ≥ 0∫

ρ(r, t)dnr = e−tLn,α

∫
ρ0(r)dnr = 1e−Ln,αt1 = 1, (5.8)

since ρ0(r) is normalized with Ln,α1 = 0 so that all powers higher than
m = 0 in the exponential series of the time evolution operator e−Ln,αt1
applied on a constant yield vanishing contributions. This indicates that
the total particle number is a conserved quantity. It is further illuminating
to consider the diffusion processes more closely: To this end we consider
how the density ρ(r, t + δt) evolves from the density ρ(r, t) where δt is an
infinitesimal small time interval



842 T.M. Michelitsch, G.A. Maugin, et al.

ρ(r, t + δt) = e−δtLn,αρ(r, t), (5.9)
where we can put e−δtLn,α ≈ 1 − δtLn,α and so

ρ(r, t + δt) = ρ(r, t) − δtLn,αρ(r, t). (5.10)

The operator Ln,α = −Δ(n,α) is the generator of diffusional processes,
generating the infinitesimal transformation of the density from t to t + δt.

Since ρ(r, t)dnr denotes the particle number fraction being at time t in
volume element dnr which is attached to the spacepoint r, we can conceive
the quantity

ρ(r, t + δt) − ρ(r, t)
δt

∼ ∂

∂t
ρ(r, t) = −Ln,αρ(r, t) (5.11)

as the net balance of the particle number(fraction) departing and arriving
in volume element dnr during the time interval δt. In other words (5.11)
measures the number of particles jumping into the volume element minus
the number of particles jumping out of the volume element.

The local net balance is due to the non-locality of the operation
Ln,αρ(r, t) depending on all values of ρ at time t in the entire physical space
Rn and not (as in the case of Gaussian diffusion) only from the ρ-values in
the local neighborhood. We can express this local balance described by the
diffusion equation (5.2) in terms of a continuity equation

∂

∂t
ρ(x, t) = −∇x · J(x, t), (5.12)

where we introduced the particle flux density J(x) which we can write by
using (4.4) in the form

J(x, t) = − hα

2αζ

∫
r

rα+n
{ρ(x + r, t) − ρ(x − r, t)} dnr, 0 < α < 2,

(5.13)
which is determined up to an unimportant rotational gauge field (describing
closed flux lines which do not change the local density. We observe that
equal distributions ρ(x) = const would not cause any particle flux. We can
write the flux density also in the equivalent form

J(x, t) =
hα

αζ

∫
r

rα+n
ρ(x − r, t)dnr, 0 < α < 2, (5.14)

where a further equivalent expression is obtained by exchanging r → −r in
(5.14). For n = 1 these relations recover the expression found earlier [24].
We can conceive (5.13) or equivalently (5.14) as the (non-local) constitutive
law connecting particle flux and density replacing the (local) Fick’s law of
Gaussian diffusion.

Let us consider the particle jump rate into a small volume element δV
around r = 0 due to a localized distribution Q(x, t = 0) = δn(x). This
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localized particle distribution induces at spacepoint of distance x = |x|
instantaneously the flux (due to non-local particle jumps of distance x)

J(x, t = 0) =
hα

αζ

x
xα+n

. (5.15)

These non-local particle jumps due to the flux (5.15) cause at spacepoint
x a particle balance which must be positive counting particle jumps from
r = 0 to x, i.e. jumps over a distance x. We obtain with (5.15)

∂

∂t
Q(x, t = 0) = −∇x · J(x, t = 0) =

hα

ζ
x−α−n > 0 , ∀x 
= 0, (5.16)

which is positive and scaling as ∼ x−α−n decaying with jump distance x
whatever the dimension n since n < n + α < n + 2 being nonzero in the
entire space whatever the jumping distance x 
= 0 of the particles. The
relation (5.16) holds everywhere except in the origin x = 0. Due to the
stochastic spatial isotropy of the particle jumps, integration of (5.16) over
the sphere of radius R gives the total jump rate of all jumps with distance
R at t = 0+. This rate is given for R 
= 0 by the first relation

rate(R) =
2π

n
2

Γ(n
2 )

Rn−1 ∂

∂t
Q(x, t = 0) =

hα

ζ

2π
n
2

Γ(n
2 )

R−α−1 ∼ R−α−1

Rate(r > R) =
∫ ∞

r=R
rate(r)dr =

hα

αζ

2π
n
2

Γ(n
2 )

R−α ∼ R−α , 0 < α < 2,

(5.17)
where 2π

n
2

Γ(n
2
)R

n−1 is the surface of the sphere of radius R. The second relation

gives the rate of jumps over distances greater than R which scales as R−α

where 0 < α < 2. We can conceive (5.17) as follows: The probability that
a particle which is at t = 0 located in the origin r = 0 undertakes jumps
of distance R within the infinitesimal time interval δt scales as R−α−1. It
follows that the total jump rate of all jumps over distances greater than R
at t = 0+ decays spatially, scaling with a heavy-tailed distribution ∼ R−α

where 0 < α < 2 is the band of admissible Lévi-parameter α, whatever the
dimension n of the physical space. The heavy-tailed power law distribution
of jump distances (5.17)2 is nothing but the classical definition of Lèvi
flights coined by Mandelbrot [19], indeed proving that diffusion processes
generated by the fractional Laplacians in the n-dimensional space describe
Lévi flights.

A crucial rule plays the space-time representation of the time evolution
operator from which we considered the small time regime in (5.16). This
propagator is generally defined by

Q(r, t) = e−tLn,αδn(r), (5.18)
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where δn(r) denotes the n-dimensional Dirac’s δ-function. In the stochastic
picture the interpretation is as follows: The kernel Q(r, t) describes then
the conditional probability density and Q(r, t)dnr denotes the probability
to find the particle which was located at t = 0 in the origin r = 0 at time t
in the volume element dnr attached to the spacepoint r. Correspondingly,
Q(r, t) fulfills then the initial condition

Q(r, t = 0) = δn(r) (5.19)

and is hence itself a normalized probability distribution solving (5.2). We
deduce some integral relations thereof in Appendix 7.3. The density (5.7)
can then be represented by the convolution

ρ(r, t) =
∫

Q(r − r′, t)ρ0(r′)dnr′. (5.20)

Taking into account that

δn(r) =
1

(2π)n

∫
eik·rdnk, (5.21)

together with the property

(Ln,α)meik·r = ω2m
n,α(k)eik·r, m = 0, 1, 2, .. ∈ N, (5.22)

where ω2
n,α(k) denotes the dispersion relation (4.7), we can write for any suf-

ficiently smooth function f(ξ) in the form f(tLn,α)eik·r = f(tω2
n,α(k))eik·r.

By using this property for the exponential operator e−Ln,αt, we obtain
Q(r, t) in the form

Q(r, t) =
1

(2π)n

∫
e−An,αkαteik·rdnk, (5.23)

where 0 < α < 2. The kernel is spatially isotropic and depends only on
r = |r| due to the isotropic symmetry of the δ-function. We note that the
linear order in t of this Fourier integral coincides with (5.16) constituting
the regime of small times t (Appendix 7.3).

The distributions of the form (5.23) are referred to as Lévi distributions
[15, 19]. In contrast to the Gaussian distributions, the Lévi-distributions
exhibit diverging mean fluctuations (all even moments are diverging). This
can be directly verified from

< r2 >=
{∫

Q(r, t)r2e−ik·rdnr
}

k=0

= −∇k ·∇kQ̃(k, t)|k=0 → ∞, (5.24)

which is fulfilled by Q̃(k, t) = e−An,δkαt for positive α in the interval 0 < α <
2. It is interesting to see that the condition of existence of the Laplacian
(4.1) leads to the same admissible α-band 0 < α < 2 as the condition
of divergence of the variance (5.24), equivalent with the condition of non-
differentiability of Q̃(k, t) at k = 0.
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All odd moments are vanishing due to the isotropic symmetry of the
distribution Q(r, t). For the further evaluation it is convenient to introduce
the following function defined by the surface integral over the unit sphere

Gn(τ) =
1

(2π)n

∫
|k̂|=1

dΩ(k̂)eτ k̂1 =
1

(2π)n

∫
δ(k − 1)eτk1dnk, (5.25)

where k̂1 denotes any Cartesian component of the unit vector k̂. We observe
due to the spherical symmetry that Gn(τ) contains only even powers in τ ,
i.e. only the even part cosh τ k̂1 of the integrand contributes to (5.25). The
surface integral (5.25) is evaluated explicitly in Appendix 7.3 (eq. (7.35)).
The kernel (5.23) can be further written as

Q(r, t) = r−nP (
Aα,nt

rα
), (5.26)

where P is a function of the “scaled time” λα = Aα,nt
rα only. In the following

we keep in mind that the constant Aα,n depends on n and α = δ − (n − 1)
and skip these subscripts. The function P takes then the form

P (λα) =
∫ ∞

0
e−λαξα

Gn(iξ) ξn−1dξ. (5.27)

To consider large λα = At
rα >> 1 we can write by introducing the “fast”

variable u = λξ, and we emphasize that 0 < α < 2 and hence 1
α is a positive

exponent, so we can rewrite

P (λα) = λ−n

∫ ∞

0
e−uα

un−1Gn(iλ−1u)du, (5.28)

and hence the kernel Q = r−nP has the form

Q(r, t) =
1

(At)
n
α

W

(
r

(At)
1
α

)
, 0 < α < 2, (5.29)

W (λ−1) =
∫ ∞

0
e−uα

un−1Gn(iλ−1u)du , λ =
(At)

1
α

r
, (5.30)

and the function Gn depends only on the dimension n of physical space
and is defined by (5.25). We note that equations (5.29) with (5.30) are
exact relations. Representation (5.29) recovers the expression obtained in
[24] for one dimension. Generally, except in certain cases to be considered,
the integral (5.30) cannot be obtained in closed form. Despite α = 2 is a
forbidden case in our model (corresponding to Brownian motion described
by a diffusion equation with the conventional Laplacian), we can formally
consider this case for which (5.29) with (5.30) can be evaluated in closed
form and lead to a Gaussian distribution
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Qg(r, t) =
1

(4πAt)
n
2

e
− r2

4At , (5.31)

where here A = A2 which is not defined by our model as dispersion relation
(4.6) is diverging for α = 2. Representation (5.29) is in a sense formally
analogous to the Gaussian distribution (5.31) where the time dependence
of the normalization factor of (5.29) is given by (At)−

n
α and exhibits in the

Gaussian case (α = 2) (At)−
n
2 and leading to (5.31).

Asymptotic regime λα = (At)
rα >> 1, where λα denotes a scaled time: In

this regime, relation (5.30) assumes asymptotically the form

Q(r,At >> rα)∼ Gn(0)
(At)

n
α

(
I(n, α)− r2

(At)
2
α

I(n+2, α) + ...

+ O(
r

(At)
1
α

)4 + ...
)
∼ Q(t) =

Gn(0)(I(n, α)
(At)

n
α

→ 0,

(5.32)

which decays in the dominant term in time as t−
n
α independent on r, and

where

I(n, α) =
∫ ∞

0
e−uα

un−1du (5.33)

and

Gn(0) =
2

(4π)
n
2 Γ(n

2 )
. (5.34)

The asymptotic relation (5.32) describes the manner how the distri-
bution approaches the thermodynamic Boltzmannian equal distribution.
Since the dominant term in (5.32) is independent of r and hence does not
contain any information about the initial positions of the particles we can
conclude that the leading term Q(t) in (5.32) is universal and holds for any
initial distribution ρ0(r). This follows also from the asymptotic relation
where we assume that At/Rα >> 1 and R >> 1: The leading contribution
to the density in this regime then is (with Q(r, t) ∼ Q(t))

ρ(r, t) =
∫

Q(r − r′, t)ρ0(r′)dnr′ ∼ Q(t)
∫

ρ0(r′)dnr′ = Q(t), (5.35)

which leads indeed for any initial distribution ρ0(r) to the identical spatially
uniform asymptotics Q(t) ∼ t−

n
α → 0 where the exponent depends only on

the ratio n
α of the physical dimension n and the Lévi parameter α with the

restriction n
2 < n

α < ∞. If time t exceeds all limits, the system of diffus-
ing particles “forgets” its past approaching all the same thermodynamic
attractor Q(t) → 0. However, since the scaled time At/rα is for finite t
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never a large quantity in the entire space as there is always a region where
At/rα << 1 is still small and hence (5.32) is not (yet) valid there. In other
words: The spherical region for which the spatially quasi-equal distribution
Q(t) of (5.32) is valid and hence which is close to thermodynamic equilib-
rium is expanding in time slower than r(t) ∼ (At)

1
α . The volume of this

expanding region scales as V (t) ∼ rn(t) ∼ (At)
n
α . The asymptotic uniform

distribution Q(t) ∼ 1/V (t) ∼ (At)−
n
α scales as the inverse of the volume

V (t) of thermodynamic quasi-equilibrium where Q(t) is the quasi-equal dis-
tribution within this region of “quasi-equilibrium”. The universal scaling
behavior of the type (5.32) in fractional models of anomalous diffusion was
already noted earlier [20].

For all dimensions n of the physical space it holds: The algebraic de-
cay of the kernel Q(r, t) ∼ Q(t) being independent from r for large scaled
times At/rα >> 1 is a necessary consequence of Boltzmann’s postulate
saying that the location of a diffusing particle becomes completely unde-
termined without any preferred location in the thermodynamic equilibrium
indicating the complete “loss of information” about the location of the par-
ticle. This corresponds to the thermodynamically necessary condition of
approaching maximum (infinite) entropy. We will demonstrate this by the
following brief consideration of the entropy which we define here as negative
H-function [16]

S(t) ∼ −
∫

Q(r, t) log Q(r, t) dnr. (5.36)

We are especially interested in this quantity in the large times limit t → ∞.
In this regime we can put

S(t) ∼ − log{(At)−
n
α }
∫

Q(r, t) dnr ∼ n

α
log(t) → ∞ (5.37)

which diverges logarithmically and spatially homogenously in time indicat-
ing in the stochastic picture that the state of complete uncertainty about
the location of the particle is approached as the global time t tends to in-
finity. It follows that (5.37) is universal and independent from the initial
distribution ρ0(r). In other words, relation (5.37) expresses the validity
of the H-theorem due to Boltzmann which is equivalent to the fact that
distributions are broadening in time approaching equal distribution as time
tends towards infinity. The divergence of the maximum entropy in (5.37)
is reflecting the fact that the available volume for any particle becomes
infinite as t → ∞ whereas the particle number remains a finite constant.
The entropy would approach a finite equilibrium value if for t → ∞ the
volume accessible for the particles would be finite. A finite volume, however
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would be in contradiction to the self-similarity and as a consequence non-
locality of the Laplacian. For a “real” physical system in nature therefore,
self-similarity can only be approximatively fulfilled.

Let us briefly consider the one-dimensional case n = 1: There we have
α = δ − (n − 1) = δ with

Q1(r,At >> rδ) ∼ I(1, δ)
π

(At)−
1
δ , 0 < δ < 2, (5.38)

and
I(1, δ) =

∫ ∞

0
e−uδ

du. (5.39)

Expressions (5.38) with (5.39) is in accordance with the asymptotic
relation obtained in [24] for the one-dimensional case. There is one single
case remaining, where Q(r, t) can be obtained in closed form: From (5.30)
that this is the case for α = n which can be only fulfilled for n < 2. Since
n ∈ N the only case is n = δ = 1. We obtain then

G1(iξ) =
1
π

cos ξ (5.40)

and (5.30) yields

W (λ−1) =
1
π

∫ ∞

0
e−u cos (λ−1u) du =

1
π

(At)2

(At)2 + r2
. (5.41)

The distribution (5.29) is then obtained as (r = |x| and λ = At
|x|)

Q(r, t) =
1
At

W (λ−1) =
1
π

At

(At)2 + x2
(5.42)

which is known as Cauchy distribution [19] having also the property of
diverging even moments. The Cauchy distribution hence is the result of a
Lévi flight for a special Lévi parameter α = δ = 1. Sometimes this motion
is referred to as Cauchy flight. The Cauchy case stands out in the present
model and appears uniquely for n = δ = 1. The Cauchy distribution
behaves for large At >> |x| as Q(t) ∼ 1

π (At)−1 in accordance with (5.32)
for α = n = 1 (with I(1, 1) = 1 and G1(0) = 1

π ).

6. Conclusions

Starting from the self-similar spring model introduced in [21] we have
deduced by application of Hamilton’s variational principle a self-similar
Laplacian operator by a fractional continuum limit for the n-dimensional
infinite physical space. This operator fulfils all criteria of ellipticity of a
good Laplacian: linearity, self-adjointness, isotropic symmetry, negative
semi-definiteness, and translational symmetry. The self-similar symmetry
renders this Laplacian operator non-local. We proved that this self-similar
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Laplacian in its fractional continuum limit coincides (up to a strictly posi-
tive normalization factor) with the fractional Laplacian −(−Δ)

α
2 .

We gave a physical picture and simple basis by means of a self-similar
spring model for this Laplacian which follows naturally from a limiting pro-
cess (the fractional continuum limit) from the spring model. In this way
we have demonstrated the correspondence of fractal behavior and fractional
models (plots of figure 1). The self-similarity can be conceived as manifes-
tation of an elastic medium with scaling invariant harmonic interparticle
interactions. Employing this approach we have deduced the dispersion re-
lation with the density of normal oscillator modes. The density of normal
modes in the frequency space fulfills a scaling law ∼ ω

2n
α
−1 with a char-

acteristic strictly positive exponent being always greater than n − 1 which
would be the exponent due to a conventional Laplacian of the n-dimensional
space.

As an application of the approach we analyzed a diffusion problem in the
n-dimensional space defined by a Fokker-Planck equation by employing the
self-similar Laplacian (fractional Laplacian). The model describes anoma-
lous diffusion allowing non-local particle jumps where the jump distances
are scale free distributed (Lévi flights). The solutions of the Fokker-Planck
equation are Lévi-stable distributions with characteristic algebraic decay
∼ t−

n
α in the regime of large scaled times with the Lévi parameter α being

in the interval 0 < α < 2 whatever the dimension n. The present model
of anomalous diffusion may have some applications to model physical phe-
nomena dominated by non-Brownian stochastic erratic motions such as for
instance in turbulence and chaos. We hope the present approach inspires
further work in such directions.

Moreover, the present approach which links fractal features to fractional
calculus can be used as a starting point to describe continuous scale free
field problems in statics and dynamics. By employing self-similar harmonic
models involving higher order differences of the displacement fields, new
representations for the fractional Laplacian can be obtained with exponents
α exceeding α = 2. A model of this type is currently under progress.

7. Appendix

7.1. Derivation of the vector field (4.4)

Here we deduce the vector field (“dielectric displacement”) D of relation
(4.4). To this end, we start with the Laplacian (4.1)

Δ(n,α)u(x) =
hα

2ζ

∫
(u(x + r) + u(x − r) − 2u(x))

rα+n
dnr, 0 < α < 2, (7.1)

and use the identity
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r−α−n =
−1
α

∇r · (r−α−nr) (7.2)

with ∇ · (ab) = b∇ · a+ a · ∇b. We note that 0 < α < 2 is always non-zero.
By applying the Gauss theorem for the boundary integral term we get∫

V (R)
r−α−n (u(x + r) + u(x − r) − 2u(x)) dnr

=
∫

∂V (R)
rn−1dΩ(n) ·

{−1
α

· (r−(α+n−1)) (u(x + r) + u(x − r) − 2u(x))
}

+
1
α

∫
V (R)

(r−α−nr) · ∇r (u(x + r) + u(x− r) − 2u(x)) dnr.

(7.3)
The boundary integral over ∂V (R) scales as R−α → 0 and is hence vanishing
as R → ∞ (since 0 < α < 2). When we further use

∇r (u(x + r) + u(x− r) − 2u(x)) = ∇x (u(x + r) − u(x − r)),
we can write (7.1) as a divergence

Δ(n,α)u(x) = ∇x ·D (7.4)

with the vector field D being determined (up to a unimportant rotational
field)

D(x) =
hα

2ζα

∫
r−α−nr {u(x + r) − u(x − r)} dnr , 0 < α < 2, (7.5)

which is relation (4.4). We observe that the integrand is an even function
of r. Taking into account that the volume integral over any odd function
of r is vanishing we can also write

D(x) =
hα

ζα

∫
r

rα+n
u(x + r)dnr , 0 < α < 2, (7.6)

or equivalently (by replacing x + r → r)

D(x) = −hα

ζα

∫
x− r

|x − r|α+n
u(r)dnr , 0 < α < 2, (7.7)

where only the even part of the integrand namely (7.5)) contributes. All
representations (7.5) and (7.6) or (7.7) exist in the band 0 < α < 2 just as
the Laplacian (7.1). (7.6) can be further written in the form of a gradient
of a scalar potential

D(x) = ∇xΦ(x), (7.8)
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where the scalar potential Φ(x) can be written for sufficiently good fields
u(x) and α + n − 2 
= 0 as:

Φ(x) =
hα

α(α + n − 2)ζ

∫
|x− r|2−α−nu(r)dnr, δ 
= 1, 0 < α < 2.

(7.9)
For n = 1 this expression recovers those obtained in our previous paper

([21]). We note that the scalar Φ(x) is a convolution of the scalar field u
with the convolution kernel being the power function |r − x|2−α−n. The
special case 2 − α − n = 0 (i.e. δ = α + n − 1 = 1) appears only for
n = 1. For n ≥ 2 we have 2 − α − n < 0 and hence R2−α−n is vanishing
at infinity and singular at R = 0. Only the case of one dimension n = 1
with 0 < δ < 2 has for 0 < δ < 1 the “anomaly” that the Riesz potential is
diverging at infinity and vanishing in the origin. It follows that

Δn,δu(x) = ∇x · ∇xΦ(x), (7.10)

where ∇x · ∇x denotes the conventional Laplacian of the n-dimensional
space. Relation (7.10) recovers for n = 1 the expression we obtained earlier
[21].

The case δ = 1 which can only occur for n = 1 furthermore again stands
out among all the others. This case e.g. leads us to the Cauchy-distribution
in Section 5. Evaluation of (7.9) for n = δ = 1 yields

Φδ=1,n=1(x) = −h

ζ

∫ ∞

−∞
ln(|x − τ |)u(τ)dτ, (7.11)

which has been already obtained in [21].

7.2. Determination of An,α

In this appendix we determine the constant An,α = ω2
n,α(k = 1) oc-

curring in the dispersion relation (4.7) ω2
n,α(k) = An,αkα. By introducing

spherical coordinates r · k = krn1, (n · k = kn1) evaluation of (4.6) yields
the representation

ω2(k = 1)n,α = An,α =
1
2
J (n)

α A1,α (7.12)

with

A1,α = ω2
n=1,δ=α(k = 1) =

2hα

ζ

∫ ∞

0

(1 − cos(τ))
τα+1

dτ , 0 < α < 2. (7.13)

In view of (7.12) we can conclude that the dispersion relation of the
n-dimensional space corresponds to that one in one dimension up to a pref-
actor J

(n)
α
2 which depends only on the exponent α and dimension n of the

physical space. The constant A1,α of (7.13) is nothing but the dispersion
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relation for the one-dimensional case ω2
n=1,α(k = 1) which we already de-

duced in the one-dimensional model [24]. For the evaluation we refer to
that paper. We obtained there

A1,α =
hαπ

ζα! sin πα
2

> 0 , 0 < α < 2, (7.14)

where this constant is strictly positive and finite in the admitted range
0 < α < 2. In (7.12) occurs a surface integral on the unit-sphere

J (n)
α =

∫
|n|=1

dΩ(n)|n1|α =
2π

n−1
2 Γ(α+1

2 )
Γ(α+n

2 )
, 0 < α < 2, (7.15)

and where we have J
(1)
α = 2 for n = 1. The surface integral (7.15) is

straight-forwardly evaluated from the integral I
(n)
α =

∫
e−r2 |x|αdnr where

x = rn1 and by separating the surface integration and the radial integration
and by decomposing it into a product of n integrals over the Cartesian co-
ordinates. For α → 0+ (7.15) approaches the (n−1)-dimensional “surface”
of the unit-sphere O(1) = 2π

n
2

Γ(n
2
) . We obtain then finally for the constant of

(7.12),

An,α =
hα

ζ

π
n+1

2

Γ(α + 1) sin πα
2

Γ(α+1
2 )

Γ(α+n
2 )

> 0, 0 < α < 2, (7.16)

being positive within the admissible interval 0 < α < 2. After some algebra
by using the doublication formula together with Euler reflection formulas
for Γ-functions (see Abramovitz & Stegun [1], page 256, formulas 6.1.18
where 2z = α + 1 and 6.1.17 with z = α

2 ), one finally arrives for the
constant (7.12) at the expression

An,α =
hα

ζ

π
n
2 Γ(α

2 )Γ(1 − α
2 )

2αΓ(1 + α
2 )Γ(α+n

2 )
=

hα

ζ

π
n
2 Γ(1 − α

2 )
2α−1αΓ(α+n

2 )
, 0 < α < 2, (7.17)

which is in accordance with the (inverse) normalization constant given in
the literature, e.g. in [40] (and see the references therein) which occurs by
defining the (negative) fractional Laplacian (−Δ)

α
2 as the operator with the

Fourier transform kα with 0 < α < 2. It follows from the scaling behavior
of the dispersion relation ω2(k)n,α = An,αkα, that the fractional Laplacian
−(−Δ)

α
2 and self-similar Laplacian defined by (4.1), (4.2) are linked by the

relation
Δ(n,α) = −An,α(−Δ)

α
2 , 0 < α < 2, (7.18)

with the strictly positive prefactor An,α which is determined by (7.17) for
any dimension n = 1, 2, 3, ... of the physical space. For α → 2 − 0 the
fractional Laplacian (−Δ)

α
2 defined by (7.18) with (4.1), (4.2) approaches
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the conventional Laplacian and for α → 0+ the unity operator. The nor-
malization constant (7.17) has the physical dimension of hα (i.e. lengthα)
compensating the dimension of length−α of the fractional Laplacian ren-
dering Δ(n,α) dimensionless.

7.3. Some useful integrals

In this appendix we deduce a rather remarkable relation when we take
into account the following identities, namely those of equations (5.16) and
(5.18) being the linear order in t of relation (5.23). First we have

∂Q

∂t
(r, t = 0) = Δn,δδ

n(r) = − An,α

(2π)n

∫
eik·rkαdnk

=
hα

ζ

∫
δn(r− r′)

r′α+n dnr′ =
hα

ζ
r−α−n,

(7.19)

where the latter integral is obtained by application of the Laplacian on the
δ-function for r 
= 0 and yields (5.16). The Fourier integral can be rewritten
for r 
= 0 as

∂Q

∂t
(r, t = 0) = −An,α

rα+n

∫ ∞

0
Gn(iτ)τα+n−1dτ, (7.20)

where Gn is the surface integral defined in (5.25) which is evaluated in
closed form below. Comparison with the explicit expression (5.16) yields
the integral relation∫ ∞

0
Gn(iτ)tα+n−1dτ = − hα

ζAn,α
< 0. (7.21)

7.3.1. Surface integrals. We choose a Cartesian coordinate system in which
the unit vector n = (n1, ..., nn)tr (with n ·n = 1) represents a parametriza-
tion of the unit-sphere. Let us then evaluate the integral of an integer
power of any Cartesian coordinate

A(n)
m =

∫
|n|=1

dΩ(n)nm
1 , m = 0, 1, 2, ... ∈ N0, (7.22)

where we integrate over the surface of the unit-sphere. The superscript
(..)(n) indicates the dimension (n = 1, 2, 3, ... ∈ N) of the space. We observe
that all integrals of odd powers (odd functions) A

(n)
2m+1 = 0 are vanishing.

Only integrals over even powers are non-vanishing and by applying the
Gauss-theorem we find the recursion

A
(n)
2m =

(2m − 1)
(2m − 2 + n)

A
(n)
2m−2, (7.23)
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where n denotes the dimension of the space n = 1, 2, 3, .... This recursion
can be applied m-times linking A

(n)
2m with A

(n)
0 = On(1) which is the surface

of the unit sphere. In this way we obtain

A
(n)
2m =

(2m − 1)... × 3 × 1
(2m − 2 + n)... × (n + 2) × n

A
(n)
0 . (7.24)

The products (each containing m factors) in the nominator and the
denominator can be written as

(2m − 1).. × 3 × 1 =
(2m)!
2mm!

= 2m Γ(m + 1
2 )

Γ(1
2)

(7.25)

and

(2m − 2 + n).. × (n + 2) × n = 2m (n
2 − 1 + m))!

(n
2 − 1)!

= 2m Γ(m + n
2 )

Γ(n
2 )

. (7.26)

So we obtain for (7.24)

A
(n)
2m =

(2m)!(n
2 − 1)!

22mm!(n
2 − 1 + m)!

On(1), m = 0, 1, 2, ...,N , (7.27)

where On(1) denotes the surface area of the unit-sphere embedded into the
n-dimensional space [1]

On(1) =
2π

n
2

(n
2 − 1)!

=
2π

n
2

Γ(n
2 )

, (7.28)

and hence,

A
(n)
2m =

2π
n
2 (2m)!

22mm!(n
2 − 1 + m)!

= 2π
n
2
−1 Γ(m + 1

2)
Γ(m + n

2 )
= J

(n)
α=2m, (7.29)

coinciding with (7.15) for α = 2m. So we can perform the unit-sphere
surface integral of any sufficiently smooth function f(τ)

f(ξn1) =
∞∑

m=0

am

m!
ξmnm

1 , (7.30)

g(ξ) =
∫
|n|=1

dΩ(n)f(ξn1), (7.31)

where only its even part f(τ)+f(−τ)
2 (even powers) contributes. By using

(7.22)-(7.29) we obtain for (7.31) the series

g(ξ) =
∞∑

m=0

a2m
A

(n)
2m

(2m)!
ξ2m (7.32)

which is uniquely determined by all even derivatives a2m of f(τ) at τ = 0.
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7.3.2. Explicit evaluation of (5.25). With (7.32) we can evaluate the func-
tion Gn(iξ) which is defined by surface integral (5.25). The integrand (7.30)
is f(ξn1) = 1

(2π)n cos ξn1 (or alternatively f(ξn1) = 1
(2π)n eiξn1 since any

odd function such as sin ξn1 yields a zero contribution). Then we obtain
for Gn(iξ) with (7.32) and (7.27) the following series

Gn(iξ) =
2

(4π)
n
2

∞∑
m=0

(−1)m
1

m!Γ(m + n
2 )

ξ2m

22m
. (7.33)

Taking into account the generalized definition of the Bessel function of
the first kind ([1] p. 360, 9.1.10.) for any (integer and non-integer) ν ∈ R,

Jν(ξ) =
(

ξ

2

)ν ∞∑
m=0

1
m!Γ(m + ν + 1)

(−ξ2

4

)m

, (7.34)

we obtain for (5.25) the closed form expression

Gn(iξ) =
1

(2π)
n
2 ξ

n
2
−1

Jn
2
−1(ξ). (7.35)

Let us now look especially on the physically important cases of dimen-
sions n = 1, 2, 3.

(i) n = 1. We have with

22mm!(m− 1
2
)!=(2m)(2m − 2)...2 × (2m − 1)(2m − 3)...3Γ(

1
2
) = (2m)!

√
π,

(7.36)
and hence

J− 1
2
(ξ) =

√
2
ξ
π

∞∑
m=0

(−1)m
ξ2m

(2m)!
=
√

2
πξ

cos ξ, (7.37)

so that

Gn=1(iξ) =
1
π

cos ξ, (7.38)

which we reverify to be correct by its definition Gn=1(ξ) = 1
2π

(
eiξ + e−iξ

)
.

(ii) n = 2. Then we have

J0(ξ) =
∞∑

m=0

(−1)m
ξ2m

22mm!m!
(7.39)

and

Gn=2(iξ) =
1

(2π)
J0(ξ) (7.40)

which can be again reverified directly by the definition of G2

G2(iξ) =
1

(2π)2

∫ 2π

0
eiξ cos ϕdϕ, (7.41)

by taking into account the definition of J0.



856 T.M. Michelitsch, G.A. Maugin, et al.

(iii) n = 3. Finally we have

22mm!(m +
1
2
)! = (2m + 1)(2m − 1) × ...3

(
1
2

)
! × 2m(2m − 2) × ... 2

= (2m + 1)!
(

1
2

)
! = (2m + 1)!

√
π

2
,

(7.42)
as
(

1
2

)
! = 1

2Γ(1
2) =

√
π

2 , and hence

J 1
2
(ξ) =

√
2ξ
π

∞∑
m=0

(−1)m
ξ2m

(2m + 1)!
=
√

2
πξ

sin ξ. (7.43)

Thus we obtain

Gn=3(iξ) =
1

2π2

sin ξ

ξ
(7.44)

which again is directly verifiable by the definition

G3(iξ) =
1

(2π)3

∫ 2π

0

∫ π

0
eiξ cos θ sin θdθdϕ

=
1

(2π)3
4π
∫ 1

0
cos (ξu)du =

1
2π2

sin ξ

ξ
.

(7.45)
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