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Abstract

The aim of this article is to generalize the diffusion based adsorption
model to a fractional diffusion and fractional adsorption model. The models
are formulated as nonlinear fractional boundary value problems equivalent
to a singular Hammerstein integral equation. The novelty is that not only
the diffusion component of the model is fractionalized but also the adsorp-
tion part. The singular Hammerstein integral equation is solved by Sinc
approximations. Specific numerical schemes are presented. Based on these
solutions we are able to identify different regimes of adsorption diffusion
processes controlled by fractional derivatives verified by experimental data.
These regimes allow to classify experiments if examined with respect to
their scaling behavior.
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1. Introduction

The earliest examination of adsorption kinetics with control by diffu-
sion toward a plane and an expanding sphere describing a dropping mer-
cury electrode was examined by Delahay and coworkers [6], [7]. Later on
for practical purposes radial diffusion in connection with adsorption was
examined to determine pore diffusion coefficients for designing industrial
equipment to be used in pollution control [10]. Due to the pollution con-
trol most studies of intraparticle diffusion have been for gas-filled porous
materials because of the importance of gas-solid catalytic reactions. The
subject became recently again of interest when the ideas of Delahay were
used in Monte Carol simulations by Seri-Levy and Avnir [25] and general-
ized to a fractional formulation by Giona and Giustiniani [12] applied to
fractal surfaces. In the field of nano-technology nano rods as catalyst were
examined by Kwon et al [15], Such et al [29] experimentally examined dif-
fusion and adsorption of single molecules on the KBr(001) surfaces and for
bio-chemical applications like anomalous diffusion in crowded environments
see [19],[9]. For recent applications on the nano scale see the compilation of
Quirke [22]. The variety of applications of diffusion controlled adsorption
suggests that still great interest is present in the problem. However, the
modeling and solution side of the problem became settled when fractal sur-
faces once were introduced. In fact this geometric property was modeled
by a temporal operator [12]. The temporal extension, however, opens a
route to go one step further in not only generalizing the temporal proper-
ties of the diffusion equation but also by extending the temporal behavior
of adsorption to a fractional modeling. First steps and formulations in
this direction were given in [12]. The idea is to include memory effects
into the processes. Memory effects in diffusion through non-homogeneous
media have been theoretically studied by Goddard [13], who shows that
this phenomenon can be represented by introducing memory kernels and
convolution integrals in time to describe the history effects arising from
microscopic diffusional relaxation [12]. It turned out in these studies that
the experimentally important quantity Mt/M∞ is represented in an im-
plicit analytic way. As already mentioned the model discussed in [12] was
restricted to absorption on a fractal surface. The adsorption process itself
was assumed to be normal. In general such an assumption can be extended
to a fractional adsorption process. One of the aims of this article is to
generalize not only the diffusion process to a fractional process but also the
adsorption process can be included in such a scheme. Another target of
this article is to overcome the complicated analytic calculations especially
of the inverse Laplace transform, if at all possible, by a numeric approach
delivering high accurate results for the experimentally important quantity
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Mt/M∞. The used numeric method does not only show an exponential
convergence but is also able to deal with singularities. Singularities show
up in fractional models as soon as we introduce fractional integral or dif-
ferential operators [2]. However, the used approximation method, the Sinc
method, is able to deal with such kind of obstacles effectively in all kind of
calculations [28].

The paper is organized as follows. In Section 2 we formulate the prob-
lem. Section 3 introduces the different normal and fractional models for
diffusion controlled adsorption. It turns out that all these models can be
formulated as a nonlinear integral equation a so called Hammerstein equa-
tion. Section 4 discusses the numerical solution of Hammerstein equations
by applying Sinc approximations to it. The explicit collocation formulas
based on Laplace techniques are given. Section 5 presents some numerical
examples for normal and fractional diffusion controlled adsorption models.
The final section summarizes and discusses the results.

2. Problem Formulation

Let us assume we are examining spherical beads of finite size allowing a
substance to diffuse and become adsorbed on the surface of the beads. One
of the assumptions of the model now is that a chemical is diffusing in a finite
d-dimensional spherical space governed by the radial diffusion equation.
The diffusion in a d-dimensional spherical space is usually described by the
diffusion equation in spherical coordinates as

∂tu(t, r) =
1

rd−1

∂

∂r

(
rd−1∂u(t, r)

∂r

)
, (1)

here d represents the dimension of the space; i.e. d = 1, 2, 3, . . .. This kind
of equation can be generalized to a fractional version of the form

Dμ
0,tu(t, r) =

1
rd−1

∂

∂r

(
rd−1∂u(t, r)

∂r

)
with 0 < μ ≤ 1. (2)

Such kind of equation was discussed by Metzler et al. [20] in connection
with anomalous diffusion. However, the authors did not consider the equa-
tion in connection with boundary conditions. We will use this equation
but add to the initial conditions boundary conditions of the problem. The
boundary conditions we will add, assume that there is a temporal change of
the diffusing substance on the surface. Moreover these surface interaction
is governed by a generic non-linear interaction. The boundary conditions
we assume for the diffusion process are

u(t, 1) = b(y(t)) for t > 0 (3)
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which is a time dependent nonlinear generic function b(y) on the surface
with y = y(t) a time dependent function at the normalized radius r = 1. For
the function b(y) there exist several empirical models used in adsorption
theory known as Langmuir, Henry, Freundlich, Sip, or Troth’s model to
mention only a few; for a detailed discussion see [8]. Relation (3) is also
known as the adsorption isotherm. The diffusion process satisfies at the
origin the conditions

∂u(t, 0)
∂r

= 0, t > 0 (4)

and
u(0, r) = 0 for 0 < r < 1. (5)

This means that the diffusing quantity u(t, r) is vanishing everywhere in
the domain and its first order derivative is finite at the origin. In addition
the assumed adsorption process is governed at the surface with r = 1 by
adsorption rate equation

dy(t)
dt

= −α∂u(t, 1)
∂r

(6)

with initial condition y(0) = y0. Relation (6) is nothing more than Fick’s
first law on the surface. The model of this diffusion and adsorption process
assumes that due to the fractional processes in the fluid the process of
diffusion will be changed to an anomalous behavior. The adsorption process
in (6) is assumed to follow the Fickian law with an integer rate of change
in time. However, this model is under question by different authors and
some call it even “inadequate” [31], [1], [30]. It is worth noting that while
some of the models are able to explain various features they fail, with few
exceptions, to account for rather consistently recorded characteristics. This
situation is the reason to generalize the rate of change from an integer value
to a fractional adsorption rate governed by the equation

Dγ
0,ty(t) = −α∂u(t, 1)

∂r
with 0 < γ ≤ 1. (7)

The fractional model of adsorption assumes that the rate of adsorption is
determined by the gradient of the diffusing quantity at the boundary of the
region. This however means that we assume the existence of a first kind
fractional Fick law on the surface.

We will first examine the normal adsorption process (Fickian) in one,
two and three dimensions to establish a reference model. Afterwards we
discuss the influence of fractional diffusion and the influence of fractional
adsorption on the solution. Finally we will combine both fractional diffusion
and fractional adsorption in a common model.
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3. Adsorption Models

3.1. Normal Adsorption in 1, 2 and 3 Dimensions

The adsorption problem with diffusion originally given as a boundary
value problem can be re-written to a nonlinear integral equation of Volterra
type using a difference kernel. To have a model let us assume that a chemi-
cal is diffusing in a restricted space governed by the radial diffusion equation

∂tu(t, r) = β

(
∂2u

∂r2
+
d− 1
r

∂u

∂r

)
with 0 < r < 1, t > 0, and d = 1, 2, 3

(8)
satisfying the nonlinear boundary conditions

u(t, 1) = b(y(t)) for t > 0 (9)

∂u(t, 0)
∂r

= 0, t > 0 (10)

and the initial condition

u(0, r) = 0 for 0 < r < 1. (11)

In addition, let us assume that there is an adsorption process governed at
the surface of the restricted region with radius r = 1 described by

dy(t)
dt

= −α∂u(t, 1)
∂r

(12)

with initial condition y(0) = y0.
The procedure to convert this system of boundary and initial conditions

to an integral equation goes as follows. First Laplace transform equations
(8) to (10) and (12). From these transforms the following equations follow
in the Laplace space

su(s, r) = β

(
u ′′ +

d− 1
r

u ′
)
, (13)

u(s, 1) = b(s), (14)

u ′(s, 0) = 0. (15)

Depending on the dimension of the space the Laplace transformed rep-
resentation of the solution and the derivative has different representations.
The solution for the different dimensions are given below.

For d = 1

u(s, r) =
b(s)e

√
s√
β
− r

√
s√

β

(
e

2r
√

s√
β + 1

)

e
2
√

s√
β + 1

, (16)
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for d = 2

u(s, r) =
b(s)J0

(
ir
√

s√
β

)
J0

(
i
√

s√
β

) (17)

where J0(x) is Bessel’s zeroth order function. In case of d = 3,

u(s, r) =
b(s)e

√
s
β
−r

√
s
β

(
e
2r

√
s
β − 1

)

r

(
e
2
√

s
β − 1

) . (18)

For r = 1, we have the condition for the first order derivative for d = 1

u ′(s, 1) =

√
s

(
e

2
√

s√
β − 1

)
b(s)

√
β

(
e

2
√

s√
β + 1

) , (19)

d = 2

u ′(s, 1) = −
i
√
sb(s)J1

(
i
√

s√
β

)
√
βJ0

(
i
√

s√
β

) , (20)

with J0(x) and J1(x) Bessel’s function of order zero and one. The derivative
at the boundary for d = 3 is

u ′(s, 1) =

⎛
⎜⎜⎝

√
s

(
e

2
√

s√
β + 1

)
√
β

(
e

2
√

s√
β − 1

) − 1

⎞
⎟⎟⎠ b(s) (21)

which is the right hand side of the absorption equation (12). Laplace trans-
formation of this equation then delivers

sy(s) − y0 = −αu ′(s, 1) = −αK(s)b(s) (22)

with K(s) the Laplace factor of the equation following from expressions
(19), (20), and (21) for the different dimensions, respectively. Finally the
determining equation in Laplace space reads

sy(s) − y0 = −αK(s)b(s), (23)

or prepared to invert the Laplace transform

y(s) − y0

s
= −α1

s
K(s)b(s) = −αk(s)b(s). (24)

The right hand side represents a convolution in Laplace space while
the left hand side is the representation of the first derivative. Inverting
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the Laplace transform results formally to the nonlinear Volterra integral
equation (Hammerstein equation) of second kind

y(t) = y0 − α

∫ t

0
K(t− τ)b(y(τ))dτ. (25)

The representation of the Hammerstein integral equation assumes that
the inversion of the kernel and the nonlinearity is possible. For a simplified
kernel Gavrilyuk et al derived such kind of equation and demonstrated
the existence and uniqueness of a continuous and non increasing solution
[11]. However, in most of the cases the explicit representation of K is rarely
possible. Thus the kernel is not known as an explicit function of t. This lack
of knowledge is a real obstacle in analytic solutions of (25) [3]. In addition
the analytic inversion might be not possible due to the nonlinearity of the
function b. However, for practical applications it is frequently sufficient to
know a numerical approximation of the Hammerstein equation (25). To find
such a reasonable approximation of (25), we use Sinc methods allowing us
to solve the singular Hammerstein equation. It turns out that it is sufficient
at this stage to know the Laplace representation of the kernel because the
Sinc approximation of the convolution integral in (25) is actually based on a
Laplace representation and separation of the integrand [2]. To demonstrate
that Sinc methods are not only useful for boundary value problems but also
for the fractional formulation of such kind of boundary value problems we
introduce different fractional variants of the original model in the following
sections.

3.2. Fractional Diffusion and Normal Adsorption

For a model with fractional diffusion and normal adsorption the as-
sumption is that the diffusion takes place in a limited space where the tem-
poral motion is governed by a fractional derivative of Liouville-Riemann or
Caputo type [4], [14]. The origin of such kind of diffusion can be either a
crowded environment as in cells [9], [2] or the result of a continuous time
random walks [24]. However, the spatial diffusion is still formulated using
ordinary differentiation. The fractional diffusion in a spherical beat is thus
given by

CDμ
0,tu(t, r)=β

(
∂2u

∂r2
+
d− 1
r

∂u

∂r

)
with 0<r<1, 0 < μ < 1, and t > 0,

(26)
satisfying the nonlinear boundary and initial conditions given in equations
(9) to (12).

The procedure to convert this system of equations, boundary condi-
tions, and initial condition to an integral equation is the same as for the
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case discussed in Section 3.1. First Laplace transform equation (26). From
this transform the following equations follow in Laplace space

sμu(s, r) − sμ−1u(0, r) = β

(
u ′′ +

2
r
u ′

)
(27)

which simplifies due to the initial value of u(0, r) = 0 to

sμu(s, r) = β

(
u ′′ +

2
r
u ′

)
. (28)

The remaining boundary conditions given by (14) and (15) are used to solve
the two point boundary value problem (28). This boundary value problem
in Laplace space has for the different dimensions d the solution:
for d = 1

u(s, r) =
b(s)e

sμ/2√
β

− rsμ/2√
β

(
e

2rsμ/2√
β + 1

)

e
2sμ/2√

β + 1
, (29)

d = 2

u(s, r) =
b(s)J0

(
irsμ/2√

β

)
J0

(
isμ/2√

β

) , (30)

and d = 3

u(s, r) =
b(s)e

√
sμ

β
−r

√
sμ

β

(
e
2r

√
sμ

β − 1
)

r

(
e
2
√

sμ

β − 1
) . (31)

For the surface of the beat at r = 1 we derive the condition for the
first order derivative used in (12) to describe the adsorption process for
dimension
d = 1

u ′(s, 1) =
b(s)sμ/2

(
e

2sμ/2√
β − 1

)
√
β

(
e

2sμ/2√
β + 1

) , (32)

d = 2

u ′(s, 1) = −
ib(s)sμ/2J1

(
isμ/2√

β

)
√
βJ0

(
isμ/2√

β

) , (33)
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and d = 3

u ′(s, 1) =
(

b(s)
(
e
2
√

sμ

β

(√
sμ

β
− 1

)
+

√
sμ

β
+ 1

))
/

(
e
2
√

sμ

β − 1
)
.

(34)
The Laplace transformation of equation (12) and incorporating the ini-

tial condition for this equation then delivers

sy(s) − y0 = −αu ′(s, 1) = −αK(s)b(s) (35)

which simplifies to

y(s) − y0

s
= −α1

s
K(s)b(s) = −αk(s)b(s). (36)

The right hand side represents a convolution in Laplace space while the
left hand side is the representation of the function and its initial condition.
Inverting the Laplace transform results again to the nonlinear Hammerstein
equation

y(t) = y0 − α

∫ t

0
K(t− τ)b(y(τ))dτ. (37)

Here the singular kernel includes a complicated relation of the fractional
behavior of the diffusion process. However, the type of Volterra integral
equation is the same as derived in Section 3.1 but with a changed kernel
given by (36). Again it is not important to know the temporal behavior
of the kernel because the Laplace representation of the kernel will be used
in the Sinc approximation. A similar extension to a fractional equation
of the original equations can be done by introducing fractional derivatives
into equation (12) on the left hand side. We will skip this sub model in the
presentation here and go to the combination of both fractional models in a
common model in the next section.

3.3. Fractional Diffusion and Fractional Adsorption

For such a combination of fractal models let us assume that not only
the diffusion process is a fractional process but also the interaction of the
chemicals with the adsorption surface. This means that we replace the
adsorption relation (12) by its fractional representation using a Caputo
derivative. In this extended model relation (12) reads

CDγ
0,ty(t) = −α∂u(t, 1)

∂r
(38)

with initial condition y(0) = y0. The boundary and initial conditions are
the same as before. So that we can use the conversion process in Laplace
space as discussed. The solution of the diffusion boundary problem is given
by (29) to (34). What actually changes is the Laplace transform of the
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fractional adsorption equation becoming in Laplace space the representa-
tion

sγy(s) − sγ−1y0 = −αu ′(s, 1) = −αK(s)b(s). (39)
So that finally the determining equation is

y(s) − y0

s
= −α 1

sγ
K(s)b(s) = −αk(s)b(s) (40)

with k(s) = K(s) /sγ . The right hand side represents again a convolution in
Laplace space while the left hand side is a representation of the function and
its initial value. Inverting the Laplace transform results to the nonlinear
Hammerstein integral equation

y(t) = y0 − α

∫ t

0
K(t− τ)b(y(τ))dτ. (41)

As a result in all approaches to generalize the diffusion adsorption pro-
cess to a fractional diffusion and fractional adsorption model we end up with
a nonlinear second kind Hammerstein integral equation. The differences of
the models are encoded in the structure of the kernel which includes the
total information about the underlying physical and chemical processes.

In the next section we will discuss how to solve such Hammerstein in-
tegral equations via use of Sinc indefinite convolution [28], Section 1.5.9.
We mention, in passing that an alternative method of solution is also pos-
sible by applying the inverse Laplace transform procedure of [28], Section
1.5.10, to the above derived Laplace transform identities. However, we will
not pursue this alternative procedure in this paper.

4. Sinc Methods for Hammerstein Integral Equations

In this section we introduce the Sinc representation of the Hammer-
stein integral equation. An extensive discussion of the solution of singular
integral equations is available in [2]. The analytic solution of Hammerstein
integral equations (HIE) are extensively discussed by Brunner [3]. We start
out from the HIE introduced in the last section. This type of equation can
be generally written as

y(t) = g(t) − α

∫ t

0
K(t− τ)b(y(τ))dτ, (42)

where K(t−τ) is a difference kernel and b(y) represents a generic nonlinear
function of the unknown y. The external function g(t), we introduce here,
simplifies in the adsorption models to a constant. We note that the kernel
K(τ) has different representations according to the models discussed in
Section 3.

Sinc methods originally introduced by Frank Stenger [18], [26], [28] use
a Cardinal approximation based on shifted Sinc functions collocated by
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conformal maps [26]. The major idea of a Sinc approximation is to use a
conformal map φ and its inverse ψ(z) = φ−1(z) to generate so called Sinc
points zn = ψ(nh) where h = π

/√
N is the step length and m = 2N + 1

the total number of Sinc points. The Sinc approximation of a function is
then given by

f(x) ≈
N∑

k=−N

f (xk) sinc
(
φ(x) − kh

h

)
= VVV m(f).wwwm (43)

with Vm(f) = (f (x−N ) , . . . , f (xN )) T a vector of discrete function val-
ues and wwwm a collection of basis functions wwwm =

(
sinc

(
φ(x)+Nh

h

)
, . . . ,

sinc
(

φ(x)−Nh
h

))
. φ(z) is the conformal map for a finite or infinite inter-

val [26]. Convolution integrals of the type (37) can be approximated by
Sinc methods as follows [27]. For collocating a convolution integral and for
obtaining explicit approximations of a functions p defined by

p(x) =
∫ x

a
f(x− t)g(t)dt with x ∈ (a, b), (44)

where x is part of an finite interval (a, b) = Γ ⊆ R, unless otherwise in-
dicated. Before we start to present the collocation of equation (44) we
mention that there is a special approach to evaluate the convolution inte-
grals by using a Laplace transform. In fact, Lubich [16], [17] introduced
this way of calculation by the following idea

p(x) =
∫ x

0
f(x− t)g(t)dt =

1
2πi

∫
C
f̂ (s)

∫ x

0
estg(x − t)dtds (45)

for which the inner integral solves the initial value problem y′ = sy + g
with g(0) = 0. We assume that the Laplace transform (Stenger-Laplace
transform)

f̂ (s) =
∫

E
f(t)e−t/sdt (46)

with E any subset of R such that E ⊇ (0, b − a), exists for all s ∈ Ω+ =
{s ∈ C|	(s) > 0}. In this notation we get

p = f̂ (J )g ≈ f̂ (Jm) g (47)

which is an accurate approximation, at least for g in a certain space [28].
The procedure to calculate the convolution integrals is now as follows. The
collocated integral Jm = wwwm.AmVVV m, upon diagonalizing of Am in the form

Am = Xm.diag [sm,−M , . . . , sm,N ] .X−1
m (48)
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with Σ = diag [s−M , . . . , sN ] as the eigenvalues arranged in a diagonal ma-
trix for each of the matrices Am. Then the Stenger-Laplace transform (46)
delivers the square matrices f̂ (Am) defined via the equations

f̂ (Am) = Xm.diag
[
f̂ (sm,−M) , . . . , f̂ (sm,N )

]
.X−1

m = Xm f̂ (Σ).X−1
m . (49)

Thus the approximation of (47) is given by

f̂ (J )g ≈ f̂ (Jm) g = wwwm.f̂ (Am)VVV m(g) = www.Xm f̂ (Σ).X−1
m .VVV m(g). (50)

This formula delivers a finite approximation of the convolution integrals p.
The convergence of the method is exponential as was proved by Stenger
[27]. Using (44) as basis we know now how to collocate (37) by applying
Sinc methods. The approximation of equation (37) follows from

y + f̂ (J )b(y) = g ⇔ Vm(y) + f̂ (Am)VVV m(b(y)) = VVV m(g), (51)

representing a non-linear system of equations for the unknowns VVV m(y)

VVV m(y) + f̂ (Am) .VVV m(b(y)) = VVV m(g) (52)

which based on (49) has the detailed representation

VVV m(y) +Xm.diag
[
f̂ (sm,−M ) , . . . , f̂ (sm,N )

]
.X−1

m .VVV m(b(y)) = VVV m(g).
(53)

If the integral operator J in (52) is defined for (0, T ), then the norm
of Am is proportional to T , and hence the IE use a contraction for all T
sufficiently small, so that the IE can then be solved using successive approx-
imation. We note that the approximation VVV m(b(y)) is accurate under the
assumption that b(z) is analytic on an interval that contains the solution
y. Analyticity directly implies that we get exponential convergence for y,
[28], [26].

Equation (53) represents a non-linear system of equations for the un-
knowns VVV m(y). The diagonal matrix diag[] includes the discrete Laplace
transform at the eigenvalues of Am. This matrix is the key to solve the
HIE creating the separation of kernel and nonlinearity. In addition the
use of the Laplace representation of the kernel avoids to derive the explicit
representation of the kernel in original variables. This feature is an impor-
tant key in the solution of nonlinear boundary value problems based on
Sinc methods. Solving the system (53) delivers the coefficients for a Sinc
approximation of the function y by

y(t) ≈ wwwm.VVV m(y). (54)

This approximation again shows exponential convergence, [27].
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Figure 1. Solution of the HIE equation using the nonlin-
earity b(y) = y

/(
1 + y3/4

)
, α = 1, β = 10−2, and y0 = 10.

The number of Sinc points m = 129. Shown are the so-
lutions for the 1, 2, and 3 dimensional case (bottom up on
the right side of the graph, left panel). The right panel
shows the normalized ratio Mt/M∞ experimentally acces-
sible. The asymptotic slope (dashed line) for small times
for all dimensions is Mt/M∞ ∼ t1/2 expected for a diffusion
governed process.

5. Examples

The following examples demonstrate the application of Sinc methods
to HIE in connection with the fractional and non-fractional adsorption dif-
fusion problem.

5.1. Normal Adsorption in 1, 2 and 3 Dimensions

Using the approximation scheme (52) we are able to derive the solution
for y(t). To be more specific we fix the parameters and functions in the
model [17] by

α = 1, β = 10−1, y0 = 10, and b(y) = y
/(

1 + y3/4
)
, (55)

where b(y) represents a Redlich-Peterson isotherm [23]. Under these condi-
tions we solved equation (37) by a Sinc approximation. The results of the
approximation are shown in Figure 1. We observe that for all dimensions
there exist a stable value y∞. This value and the initial value is used to de-
fine the experimental accessible quantity Mt/M∞ = (y(t) − y0) / (y∞ − y0).
This quantity is also known as the total amount of diffusing substance en-
tering or leaving the sphere [5].

We observe that there is a common scaling region of the approxima-
tion of y for all dimensions around 1. However, for increasing dimension
we observe that the substances on the surface become constants after a
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Figure 2. Influence of the nonlinearity on the scaling be-
havior of Mt/M∞. The exponent κ of the nonlinearity
y /(1 + yκ) was changed in the range κ ∈ [0, 1] in steps of
δκ = 1/10. It is obvious from the graph (right panel) that
the nonlinearity does not change the scaling behavior of the
model. There is only a shift but not a change in the scal-
ing exponent.The calculation were carried out for the 1 dim.
case with α = 1, β = 10−2, and y0 = 10. The number of
Sinc points in the calculation is m = 129. The asymptotic
slope for small times for Mt/M∞ ∼ t1/2 as expected for a
diffusion governed process.

time of t ≈ 10 − 30. This means that saturation sets in. The adsorption
process becomes saturated at different levels for each dimension. In a real
experiment there is no access to measure the temporal change of concen-
tration y in the solution. However, the experimental accessible quantity is
the total amount of the diffusing substance. Since the process in the pores
of the beat are completely diffusion controlled we expect that this quantity
changes as Mt/M∞ ∼ t1/2 accordingly. The quantity Mt/M∞ corresponds
to the mean deviation of a diffusion process. The determination of the
scaling factor κ by means of a linear regression of the double logarithmic
data delivers in fact that η ≈ 0.5072 . . . which is in agreement with the
theoretical expectation.

We checked also the influence of the nonlinearity for the adsorption
process to the scaling region of Mt/M∞. For this reason we changed the
exponent in b(y) = y /(1 + yκ) in the region 0 ≤ κ ≤ 1. κ = 0 corresponds
to a linear model known as Henry’s model while κ = 1 represents the
Langmuir model. The observation is using the same parameters as before
there is no change of the scaling exponent. Only a shift in the log-log plot
is introduced in y. The results are shown in Figure 2.
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Figure 3. Solution of the HIE equation using the nonlin-
earity b(y) = y

/(
1 + y3/4

)
, α = 1, β = 10−2, μ = 1/3 and

y0 = 10. The number of Sinc points m = 129. Shown are
the solutions for the 1, 2, and 3 dimensional case (bottom
up left panel). The right panel shows the total amount of
diffusing substance entering or leaving the sphere. The scal-
ing exponent of Mt/M∞ ∼ t0.8647 is η = 0.8647 . . . which is
different from the normal diffusion controlled model.

The results demonstrate that the calculations are consistent with the-
oretical expectations of diffusion controlled adsorption processes. In addi-
tion we note that there is no influence of the nonlinearity on the scaling
exponent.

5.2. Fractional Diffusion and Normal Adsorption

For this type of model we examined the fractional diffusion in the d-
dimensional sphere with normal adsorption on the surface. The calculations
are shown in a double logarithmic plot in Figure 3. The left panel shows y
as a function of time while the right panel shows the total amount of the
diffusing substance Mt/M∞ in a double logarithmic plot.

The result of the approximation is that a fractional diffusion changes
the asymptotic behavior for all dimensions in the same way. Instead of a
constant value we observe a scaling region over several decades for y. The
scaling region of the three solutions sets in at t ≈ 20−100. While the higher
dimensions start earlier with the scaling the one dimensional model starts
later. However, for all three dimensions the scaling exponent of the solution
y is numerically the same with a scaling exponent of about δ ≈ 0.71517 . . ..
For short times the total amount of the diffusing substance Mt/M∞ shows
also a scaling region over several decades. Here the scaling exponent for
the specific choice of parameters is η ≈ 0.8647 . . .. larger than the scaling
exponent for a normal diffusion η = 1/2.
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Figure 4. Scaling behavior of the fractional model if we
change the nonlinear exponent κ and the fractional differ-
entiation order. From top left panel where κ is changed we
conclude that a change in the nonlinear interaction has no
influence on the scaling behavior of Mt/M∞here η = 0.8256
is always constant. If we change the fractional differentia-
tion order μ (right top panel) we observe a linear change of
the scaling exponent η = 1 − μ/2.

For fractional diffusion we also checked the change of the scaling if
we change the nonlinearity parameter κ and the fractional differentiation
order μ. The results are shown in Figure 4. The top row shows the scaling
behavior if we change κ (left panel) and μ (right panel). The bottom row
shows the scaling exponents η if we change the fractional differentiation
order μ. The graph shows that η = 1 − μ/2 is connected by a linear
relation. This is consistent with the limit μ → 1 delivering η = 1/2 for a
normal diffusion.

The numerically derived relations are in accordance with the scaling
exponents discussed for fractional diffusion processes. In addition we note
that the type of nonlinear adsorption process does not affect the scaling
behavior of fractional diffusion. The derived results are consistent with the
discussion given in literature [20].
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Figure 5. Solution of the HIE equation using the nonlin-
earity b(y) = y

/(
1 + y3/4

)
, α = 1, β = 10−2, γ = 1/3 and

y0 = 10. The number of Sinc points m = 129. Shown are
the solutions for the 1, 2, and 3 dimensional case (bottom
up left panel). The right panel shows the experimentally ac-
cessible quantity Mt/M∞ ∼ t−0.6724 representing the same
asymptotic behavior for all three dimensions.

5.3. Normal Diffusion and Fractional Adsorption

This model examines a fractional adsorption process controlled by a
normal diffusion in a d-dimensional sphere. The approximations for y and
Mt/M∞ are shown in a double logarithmic plot in Figure 5. The 1 dim.
case is represented by the lower curve while the 3 dim. case is given by
the top curve. For the 1 dim. diffusion model we observe a dip before the
saturation of the adsorption at the pre-specified level of y0 = 10. The dip
for the 1 dim. case occurs around t ≈ 1. For short times t 
 1 there
is a common scaling region extending over several decades. The common
slope for all three dimensions is δ = 0.22031 . . . represented in Figure 5
by a dashed line (left panel) to demonstrate the asymptotic behavior for
short times. The solutions were generated by a finite integration on the
domain t ∈ [

0, 106
]
. On the left panel we calculated the total amount of

the diffusing substance. The log-log plot shows that for large times there
exists a scaling region extending over several decades. The scaling exponent
for this region is η ≈ −0.6724 . . .. Although the curves are separated for
each dimension the slope of the scaling region is the same.

The change of the nonlinearity as before was checked again. We observe
that the solution y itself changes in a certain way. However, the quantity
Mt/M∞ keeps the same scaling behavior with the same scaling exponent
for the different nonlinearity parameters κ. This again demonstrates that
the adsorption diffusion model is insensitive with respect to the change
of nonlinearity. This is only true for the experimentally accessible value
Mt/M∞ but not for the solution y (see Figure 6).



754 G. Baumann, F. Stenger

Figure 6. Variation of the nonlinear exponent κ for purely
fractional adsorption. Parameters for the calculation are
b(y) = y /(1 + yκ) , and κ ∈ [0, 1], α = 1, β = 10−2,
γ = 1/3, and y0 = 10. The number of Sinc points m = 259.
The right panel shows the experimentally accessible quan-
tity Mt/M∞ ∼ t−0.6789 representing the same asymptotic
behavior (dashed line) for all variations of the nonlinearity.

We also examined the influence of the fractional dimension on the scal-
ing exponent of Mt/M∞. For this reason we changed γ ∈ [0, 1/2] the results
of the calculations are shown in Figure 7. For γ > 1/2 the same scaling
behavior is observed so that the total range for γ is 0 ≤ γ ≤ 1. Again we
determined the relation between η and γ following the relation η = γ − 1
(see Fig. 7 bottom right).

5.4. Fractional Diffusion and Fractional Adsorption

This fourth example considers a fractional diffusion and a fractional
adsorption at the same time. The solution of the complete fractional model
is shown in Figure 8. Since there are two processes competing the fractional
diffusion and the fractional adsorption we have to distinguish the cases
μ > γ, μ < γ, and μ = γ. The three cases are arranged from top left, top
right to bottom left. Examples for a specific choice of values are shown in
Figure 8. In Figure 9 we show for the same choice of parameters for the
measurable quantity Mt/M∞.

The solutions y shown in Figure 8 are that for μ > γ (top left) there
is no scaling region in y for the adsorbed quantity. In case that μ <
γ we observe for large times a scaling behavior with a common scaling
factor independent of the geometric dimension of the model. However,
there is also a region for small times where saturation sets in. This is also
observed in the calculations with equal fractional exponents μ = γ. An
example with equal exponents μ = γ is shown in Figure 8 lower left panel.
The total amount of the diffusing substance Mt/M∞ is shown in Figure
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Figure 7. Variation of the fractional derivative γ for purely
fractional adsorption. Parameters for the calculation are
b(y) = y

/(
1 + y3/4

)
, and α = 1, β = 10−2, γ ∈ [0, 1/2],

and y0 = 10. The number of Sinc points m = 259. The
right panel shows the experimentally accessible quantity
Mt/M∞ ∼ t−η.

9. We measured for the three different cases of fractional differentiation
choices three different scaling exponents. This observation encouraged a
more detailed examination for the three different cases μ > γ, μ = γ, and
μ < γ. The calculations for these cases are shown in Figures 10 to 12. Since
μ and γ can be changed independently with the constraint 0 ≤ γ ≤ 1/2 we
expect that there exists a relation among the scaling exponents η, μ, and γ.
These relations were derived by numerical calculations similar to the one
shown in Figures 10 to 12. A summary of the derived relations is given in
Figure 13. Figure 13 shows that we have to distinguish three regions for the
choice of μ and γ. For each of these regions there exists a scaling relation
different from the others. Specifically we found that for μ > γ the scaling
relation is η = γ−μ, for equal orders of fractional derivatives μ = γ we find
η = γ/2, and for μ < γ the relation is given by η = 2γ − μ. These scaling
relations are numerically represented in the lower right panel of Figures 10
to 12 for a specific choice of μ. The range for the fractional differentiation
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Figure 8. Solution of the HIE equation using the nonlin-
earity b(y) = y

/(
1 + y3/4

)
, α = 1, β = 10−2, y0 = 10, and

μ = 2/3, γ = 1/3 left panel, and μ = 1/5, γ = 1/3 right
panel. Panel left bottom shows the solution for μ = γ = 1/3
the other choices for parameters are the same as before.
The number of Sinc points is m = 257. Shown are the so-
lutions for the 1, 2, and 3 dimensional case (bottom up in
each graph). The dashed line indicates that the asymptotic
scaling behavior follows a law y ∼ t−1/5 which is the same
for all dimensions.

order is in all cases 0 ≤ μ, γ ≤ 1. However, in Figures 10 to 12, only a
subset of this range is shown.

The results about scaling are summarized in Figure 13. The graph and
the table of Figure 13 collect information about the different scaling regimes
of an adsorption diffusion process governed by two fractional derivatives μ
and γ. We detected in our calculations three regimes for the selection of
μ and γ. For all regimes we found that 0 ≤ μ, γ ≤ 1 including the normal
adsorption diffusion process with μ = γ = 1. The three different regimes are
μ < γ, μ = γ, and μ > γ. Each of these regimes possesses a characteristic
scaling law of the quantity Mt/M∞ ∼ tη. The scaling exponent η is a
function of the fractional derivatives tabulated in Figure 13. For μ < γ
we found η = 2γ − μ, for μ = γ the relation η = γ/2 exists, and for
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Figure 9. The total amount of the diffusing substance
Mt/M∞ using the nonlinearity b(y) = y

/(
1 + y3/4

)
, α = 1,

β = 10−2, y0 = 10, and μ = 2/3, γ = 1/3 left panel,
and μ = 1/5, γ = 1/3 right panel. Panel left bottom
shows the solution for μ = γ = 1/3 the other parameter
choices are the same as before. The number of Sinc points
is m = 257. Shown are the solutions for the 1, 2, and 3 di-
mensional case (bottom up). The dashed lines indicate that
the asymptotic scaling behavior follows a law Mt/M∞ ∼ tη

which is the same for all dimensions. The scaling exponent
η is given for the different fractional differentiation orders by
η = −0.33 . . ., η = 0.233 . . ., and η = 0.1561 for the panels
from top to bottom and left to right, respectively.

μ > γ the scaling exponent η is given by η = γ − μ. If we apply a similar
classification given for diffusion processes by Metzler and Klafter [21] to
adsorption diffusion processes, we can distinguish four different cases. For
μ < γ we can classify based on the magnitude of η the following cases
super adsorption diffusion processes for η > 1/2, sub adsorption diffusion
for η < 1/2, and normal adsorption diffusion for η = 1/2. However, there
is a region where η becomes negative which we call negated adsorption
diffusion. According to this classification we can identify different regions
in the μγ-plane corresponding to these regimes. For μ > γ there exists a
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Figure 10. The solution and the total amount of the dif-
fusing substance Mt/M∞ using the nonlinearity b(y) =
y

/(
1 + y3/4

)
, α = 1, β = 10−2, y0 = 10, and μ = 7/8,

γ ∈ [.05, 7/8] in steps of 0.05. The lower panel shows the
relation for γ < μ as η = γ − μ. The dots are the scaling
exponents determined from the calculations. Triangles use
the formula η = γ − μ based on the given data for γ. The
number of Sinc points is m = 257.

single domain while for μ < γ we have three sub domains (see Figure 13).
In addition the case μ = γ separates these domains.

5.5. Experimental Observations

To check the outlined fractional adsorption diffusion model we analyzed
a set of data taken from [31]. The experimental setup is concerned with
adsorption in polymeric composites. The data was acquired from Fig. 1
and Fig. 2 of [31] by digitizing the plots and reading the records from this
digital version. The data acquisition was done on a screen of 1280×800
pixels resolution. Thus the gained data are not of high accuracy but serve
to test the validity of the model. Since the time domain of the data record-
ing is limited to a finite range we used the available data and derived an
estimation of the scaling exponents for these data. The normalization of
the experimental data also limited the range to the unit interval with a
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Figure 11. The solution and the total amount of the dif-
fusing substance Mt/M∞ using the nonlinearity b(y) =
y

/(
1 + y3/4

)
, α = 1, β = 10−2, y0 = 10, and μ = γ,

γ ∈ [.05, 0.4] in steps of 0.05. The lower panel shows the
relation for γ = μ as η = γ. The dots are the scaling expo-
nents determined from the calculations. Triangles use the
formula η = γ based on the given data for γ. The number
of Sinc points m = 129.

lower resolution point. These limitations must be taken into account if
we interpret the derived results. However, we verified the scaling behavior
of our calculated solutions at very small times delivering nearly the same
asymptotic slope as was estimated for larger time intervals. The results of
our fitting are shown in Figure 14. The experimentally determined scaling
behavior is indicated in all plots by dashed lines.

Knowing the scaling exponents we used the classification given in Figure
13 to fix the diffusion type. Since we have positive slopes we are on the
diagonal or below the diagonal line of the phase diagram. Assuming that
both fractional exponents are the same we have sub-diffusive processes. On
the other hand if we assume that μ < γ then we have super diffusion. In
both cases we are able to fix the differentiation orders μ and γ according the
relations given in Figure 13. In all cases the experimental scaling exponents
are reproduced. The alignment of data points on the theoretical curve
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Figure 12. The solution and the total amount of the dif-
fusing substance Mt/M∞ using the nonlinearity b(y) =
y

/(
1 + y3/4

)
, α = 1, β = 10−2, y0 = 10, and μ = 1/10,

γ ∈ [.1, 0.45] in steps of 0.05. The lower panel shows the
relation for μ < γ as η = 2γ − μ. The dots are the scaling
exponents determined from the calculations. Triangles use
the formula η = 2γ − μ based on the given data for γ. The
number of Sinc points m = 129.

is consistent. However, the selection of the fractional exponents is not
unique. There exist a variety of choices delivering the same exponent.
At the moment we are not able to distinguish which of these parameter
selections is the most appropriate one. Comparing theory with experiment
we can of course minimize the deviation of both but this does not resolve
the selection procedure of fractional derivatives.

6. Conclusions

We demonstrated that a fractional adsorption diffusion process can be
modelled by a fractional diffusion equation and a fractional Fick law on
the surface. The combined model is equivalent to a Hammerstein inte-
gral equation with a nonlinear kernel representing the adsorption isotherm.
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Figure 13. Classification of diffusion regimes. Shown are
three specific combinations of fractional derivative orders
for μ and γ. The cases are tabulated in the table on the
right. The ranges for μ and γ are 0 ≤ μ, γ ≤ 1. The major
cases are μ > γ, μ = γ, and μ < γ. For each region we
derived the scaling law for Mt/M∞ ∼ tη. The different
cases correspond to μ > γ with η = γ − μ, for μ = γ we
find η = γ/2, and for μ < γ we have η = 2γ − μ. If we
apply the classification of diffusion processes [21], we can
identify normal diffusion, sub diffusion and super diffusion,
as well as a non classified regime. Super adsorption diffusion
is represented by the yellow region. Sub adsorption diffusion
occurs in the brown region and normal adsorption diffusion
is given by the separation line between the yellow and brown
region. The orange region represents a non-classified region
in the scheme of diffusion processes. We will call it negated
adsorption diffusion because the slope changes its sign.

The model is solvable by using Sinc methods in connection with Stenger-
Laplace transforms. The explicit numerical schemes are given to determine
the numerical approximation based on collocation. A classification of the
different models demonstrate that different kind of diffusion processes are
connected with fractional adsorption.
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Figure 14. Experimental evaluation of the fractional ad-
sorption diffusion model by two sets of data taken from [31]
Fig. 1 and Fig. 2, respectively. The data were measured on
Uni-directional AS4/3501−−6 gr/ep coupons in sea water
at 23C◦ (top) and 50C◦ (bottom). For estimating the scal-
ing exponents the first eleven records were used starting at
record two. These sets of data delivered scaling exponents
η23 = 0.48 and η50 = 0.31, respectively. The solid lines were
calculated based on equations (2) and (7). Since the equa-
tions are scaled the solid lines are invariant with respect to
scaledings of the time and Mt/M∞ scales. Left column
μ < γ and right column with μ = γ. The parameters for
the fractional model are as follows: μ = γμ = γμ = γ: μ = γ = 0.96
(top), μ = γ = 0.62 (bottom). μ < γμ < γμ < γ: μ = 0.85, γ = 0.905
(top) super diffusion , μ = 0.25, γ = 0.441 (bottom) sub-
diffusion.
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