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Abstract

We study the fractional integral (fI) and fractional derivative (fD), at-
tained by the analytic continuation (AC) of Liouville’s fI (LfI) and Riemann-
Liouville fI (RLfI). On the AC of RLfI, we give a detailed summary of Lavoie
et al’s review. The ACs of RLfI are expressed by means of contour integrals.
Two of them use the Cauchy contour, and one is using the Pochhammer
contour. In this case, the latter is AC of all the others for the functions
treated. For the AC of LfI, one can find studies in Campos’ papers and in
Nishimoto’s books, where the AC is using only the Cauchy contour. Here
we present also an AC using a modified Pochhammer’s contour. In this
case, we see that any of these two ACs is not the AC of the other for all the
functions treated. This fact leads to difficulties, if a careful study taking
care of the domains of existence of each AC is not adopted. By taking
account of this fact, we resolve the difficulties which occur in Nishimoto’s
formalism.
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1. Introduction

The notions and tools of fractional derivative (fD) and fractional dif-
ferential equation (fDE) have been discussed since long time ago; see e.g.
[4, 9, 13, 14]. When we have an initial value problem for a fDE where
the initial values at a finite point are given, usually the Riemann-Liouville
fD (RLfD) is used. When the solution decays to zero at ∞ or −∞, the
Liouville fD (LfD) is used. These fD are defined in terms of the respective
fractional integrals (fI), which are the RLfI and LfI. In the present paper,
we survey some studies on the analytic continuations (AC) of RLfI and LfI.

For AC of RLfI, we have a review by Lavoie et al. [6]. There, the AC
are expressed by contour integrals. Two of them, which we call CfD and
C′fI, use generalized Cauchy contours. The other, which we call PfD, uses
the Pochhammer contour which appears in the AC of the beta function.
We recall it in Section 2. It is important to note, for a function of variable
z in the form za or zγ ·∑∞

k=0 akz
k, that CfD and C′fI are AC of RLfI, and

PfD is an AC of CfD as well as of C′fI.
For the AC of LfI, we have the papers [2, 3], where Campos studied

the AC using the Cauchy contour, which he called Hankel’s contour. We
call this AC of LfI as HfD. In a series of books [11, 12], Nishimoto gave
a survey of his work on fractional calculus, where he started with HfD
using the Cauchy contour and then defined his fractional differentiation
and integral, which he called the differintegration (fDI). His fDI is defined
as the AC of HfD.

In these works on the AC of LfI, there appears HfD using the Cauchy
contour, but no comments are given on the one related with the Pochham-
mer contour. In Section 3, we discuss the LfI, HfD and also the AC using
a modified Pochhammer contour, which we call mPfD. Taking account of
these, we clarify what happens with the AC of the LfI.

For the power function of the form za, HfD is an AC of LfI, and mPfD
is an AC of HfD. When the function is the exponential function in the form
e−az, HfD is an AC of LfI, but mPfD is not an AC of HfD.

We note that the situation is simple for the AC of RLfI, since for all
the functions treated, PfD is the AC of all the other AC of RLfI and may
be called RLfD. The situation is not simple for the AC of LfI, since for all
the functions treated, any of mPfD and HfD is not the AC of the other.

In Sections 4∼6, we give additional studies on the AC of LfI. In Sec-
tion 4, we discuss the index law of the AC of LfI and of RLfD. We have to
pay special attention to the condition for which the index law of the mPfD
is valid. Then a comment is given on the use of the index law in solving a
simple fDE. As to RLfD, we call attention to the relation with distribution
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theory. In Section 5, remarks are given of the fD of the cosine and sine
functions. In Section 6, remarks are given on the definition of mPfD.

We use the notations Z, R and C to denote the sets of all integers, of
all real numbers and of all complex numbers, respectively. We also use

Z>0 := {n ∈ Z| n > 0}, Z≤0 := Z\Z>0, Z≥0 := {n ∈ Z| n ≥ 0},
Z<0 := Z\Z≥0, R>0 := {x ∈ R| x > 0},
−C := {z ∈ C| Re z < 0}, +C := {z ∈ C| Re z > 0}.

Here Z\Z>0 denotes the set {n ∈ Z|n /∈ Z>0}. Let X be a path on the
complex plane. We use notations f ∈ L1(X) and f ∈ L1

loc(X) to denote
that a function f is integrable and locally integrable, respectively, on X.
The notation f (n)(z) is used to represent dn

dzn f(z) for n ∈ Z≥0, as usual.

2. Riemann-Liouville fI and its Analytic Continuations

Let c, z ∈ C, and let P (c, z) be the path from c to z, as shown in
Fig. 1(a). For f(z) ∈ L1(P (c, z)), the RLfI is defined in [5, 6] by

RLD
−λ
c f(z) =

1
Γ(λ)

∫ z

c
(z − ζ)λ−1f(ζ)dζ. (2.1)

When f(z) is analytic on a neighborhood of P (c, z), the RLD
ν
c f(z)

defined by (2.1) for λ = −ν is analytic as a function of ν in the domain −C;
see e.g. [19, Section 5.31]. In [5, 6], three analytic continuations expressed
by contour integrals are considered. In Introduction, they are called resp.
CfD, C′fI and PfD.

The first one, CfD, is the fD given by

CD
ν
c f(z) =

Γ(ν + 1)
2πi

∫
C(c,z+)

(ζ − z)−ν−1f(ζ)dζ, (2.2)

for ν ∈ C\Z<0, where the contour C(c, z+) is shown in Fig. 1(b), which
starts from c, encircles the point z counterclockwise, and then goes back to
c, without crossing the path P (c, z). When −n ∈ Z<0, we put CD−n

c f(z) =
limν→−n CDν

c f(z), which is confirmed to be equal to RLD
−n
c f(z).

By this definition, we confirm that CDν
c f(z) is an analytic continuation

of RLD
ν
c f(z) as a function of ν, so that for every ν for which the latter

exists, the former also exists and they are equal with each other.
Let f1(z) be analytic on a neighborhood of P (0, z), and let γ ∈ R. If

f(z) = zγf1(z) and γ /∈ Z, the second one C′fI is defined by

TD
ν
0f(z) = e−iπγ

1
2iΓ(−ν) sin(πγ)

∫
C(z,0+)

(ζ − z)−ν−1f(ζ)dζ, (2.3)
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for ν ∈ −C, and the third one PfD by

PD
ν
0f(z) = e−iπγ

Γ(ν + 1)
4π sin(πγ)

∫
CP (z)

(ζ − z)−ν−1f(ζ)dζ, (2.4)

for ν ∈ C\Z<0. Here the contour CP (z) is z times of the contour CP (1)
which is shown in Fig. 2. When −n ∈ Z<0, we put PD−n

0 f(z) =
limν→−n PDν

0f(z) = TD
−n
0 f(z).

Figure 1. (a) Path of integration P (c, z) in (2.1), (b)
Cauchy contour C(c, z+) in (2.2), and (c) C(z, 0+) in (2.3).

Figure 2. The Pochhammer contour CP (1) of integration.
The four horizontal pathes are labeled by a, b, c and d from
the top to the bottom.

When f(z) = znf1(z) for n ∈ Z≥0, we adopt

TD
ν
0f(z) = lim

γ→n
TD

ν
0 [zγ−nf(z)] = RLD

ν
0f(z),

PD
ν
0f(z) = lim

γ→n
PD

ν
0 [zγ−nf(z)] = CD

ν
0f(z).

We now confirm that TDν
0f(z) and PD

ν
0f(z) are analytic continuations

of RLDν
0f(z) and CD

ν
0f(z), respectively, as functions of γ. We confirm also

that PD
ν
0f(z) is an analytic continuation of TDν

0f(z) as a function of ν.
Table 1 illustrates these relations.

Here we use symbols ∗Dν
c f(z) with different subscript ∗ which is either

RL, C, T or P . Usually such a discrimination is not adopted. They are
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γ + 1 ∈ +C γ ∈ C\Z<0

ν ∈ −C RLD
ν
0f(z) TD

ν
0f(z)

ν ∈ C CD
ν
0f(z) PD

ν
0f(z)

Table 1. The domains of ν and of γ in which RLD
ν
0f(z)

for f(z) = zγf1(z) and its analytic continuations exist.

simply denoted by RLD
ν
c f(z) and called RLfD as a whole, even though

when Re ν < 0, it is equal to RLfI or to fI given by TD
ν
c f(z).

In the discussion of RLfD, the basic function is usually the power func-
tion. When f(z) = za for a ∈ C, we have

RLD
ν
0z
a =

Γ(a+ 1)
Γ(a− ν + 1)

za−ν , (Re ν < 0, Re a > −1). (2.5)

This result is obtained with the aid of Euler’s integral of the first kind for
the beta function:

B(λ, κ) =
Γ(λ)Γ(κ)
Γ(λ+ κ)

=
∫ 1

0
tλ−1(1 − t)κ−1dt, (λ, κ ∈ +C). (2.6)

By putting γ = a and f1(z) = 1 in Table 1, we see the domains of ν
and of a, where RD

ν
0z
a and its analytic continuations exist.

In [19, Section 12.43], Pochhammer’s formula for B(α, β) is given.
When we put λ = α and κ = β, the formula is

B(λ, κ) = − e−iπλ−iπκ

4 sin(πλ) sin(πκ)

∫
Cp(1)

tλ−1(1 − t)κ−1dt. (2.7)

The contour Cp(1) is shown in Fig. 2, which consists of four pathes labeled
by a, b, c and d. We may write this contour as C(P, 1+, 0+, 1−, 0−) in a
similar way to C(c, z+), that is shown in Fig. 1(b) for the Cauchy contour.
By this formula, B(λ, κ) is defined for λ, κ ∈ C\Z≤0 as an analytic function
of λ as well as of κ [19, Section 12.43], where B(λ, κ) for λ, κ ∈ Z>0 is
assumed to be defined by analytic continuation. By using this formula,
PD

ν
0z
a is shown to be the analytic continuation of RLDν

0z
a in the domains

shown in Table 1 for γ = a. In fact, the argument deriving (2.7) from (2.6)
is used to derive the analytic continuation given by (2.4).
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The RLfD of
∑∞

n=0 anz
n and zγ · ∑∞

n=0 anz
n are calculated by means

of term-by-term integration; see e.g. [6]. For instance,

CD
ν
0e
z =

∞∑
n=0

1
n!

· CDν
0z
n =

∞∑
n=0

1
Γ(n− ν + 1)

zn−ν

=
z−ν

Γ(1 − ν)
· 1F1(1; 1 − ν; z), ν ∈ C\Z>0. (2.8)

Here 1F1(α;β; z) is a hypergeometric function.

3. Liouville’s fI and its Analytic Continuations

3.1. Liouville’s fI

Liouville [7, 8] started his study on fractional differentiation with the
following formula for μ ∈ R and m,x ∈ R:

dμ

dxμ
emx = mμemx. (3.1)

He presented its integral form for λ ∈ +C, by∫ λ

f(x)dxλ =
1

(−1)λΓ(λ)

∫ ∞

0
f(x+ α)αλ−1dα. (3.2)

Later, he presented also the following formula [8]:∫ λ

f(x)dxλ =
1

Γ(λ)

∫ ∞

0
f(x− α)αλ−1dα. (3.3)

Formula (3.1) for μ ∈ −C follows from (3.2) or (3.3) for λ = −μ, according
to as m < 0 or m > 0, with the aid of Euler’s integral of the second kind:

Γ(z) =
∫ ∞

0
tz−1e−tdt, z ∈ +C. (3.4)

In the review of Liouville’s works [8, Chapter VIII], it is mentioned that
(3.2) is equal to∫ λ

f(x)dxλ =
1

(−1)λΓ(λ)

∫ ∞

x
(ζ − x)λ−1f(ζ)dζ, (3.5)

which is equal to RLD
−λ
c f(x) given by (2.1) if c = ∞.

For z ∈ C and φ ∈ R, let Pφ(z) be the path from z to z + ∞ · eiφ, as
shown in Fig. 3. For f(z) ∈ L1(Pφ(z)), we define LD

−λ
φ f(z) by

LD
−λ
φ f(z) = ei(φ+π)λ 1

Γ(λ)

∫ ∞

0
tλ−1f(z + teiφ)dt (3.6)

= ei(φ+π)λ 1
Γ(λ)

∫ ∞

0
tλ−1f(z − tei(φ+π))dt. (3.7)
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We call this Liouville’s φ-dependent fI.

Figure 3. Pφ(z).
LfI given by (3.2) and (3.3) are now expressed resp. by LD

−λ
0 f(x) and

LD
−λ
−πf(x), for x ∈ R.
In [16, Section 22.1], Samko et al. define LfI: (Iλ+,φf)(z) by

(Iλ+,φf)(z) = RLD
−λ
c f(z) for c = z + ∞ · eiφ

and mention that it is equal to LD
−λ
φ f(z) given by (3.6). There (Iν−,φf)(z)

is defined by (Iν−,φf)(z) = eiνπIν+,φf . In some articles [9, Chapter VII], the
right-hand side of (3.5) multiplied by (−1)λ, that is equal to (Iν−,φf)(z), is
called Weyl’s fI, see [16, p. xxxii].

The right-hand sides of (3.6) and (3.7) are Mellin transforms as func-
tions of λ, and hence they have two abscissas of convergence, [20, Chapter
VI, Section 9]. The abscissas are 0 and the other, which we express by
−s1[f ] > 0. Here s1[f ] is defined as follows.

Definition 3.1. Let φ, s ∈ R, f(z) ∈ L1
loc(Pφ(z)), and let s1 ∈ R or

s1 = −∞ be the greatest lower bound of s for which Is :=
∫ ∞
1 t−s−1|f(z +

teiφ)|dt converges. We then denote this s1 by s1[f ] or s1[f(z)].

When Is converges, there exists a series {tl}l∈Z>0 of tl ∈ R such that
t−sl |f(z + tle

iφ)| → 0 and tl → ∞ as l → ∞. We express this fact simply
by t−sl |f(z + tle

iφ)| → 0 as tl → ∞. As a consequence, if s1[f ] < 0,
|f(z + tle

iφ)| → 0 as tl → ∞.

Definition 3.2. Let φ ∈ R, f(z) ∈ L1
loc(Pφ(z)), and s1[f ] < 0. Then

for λ ∈ C satisfying 0 < Re λ < −s1[f ], we define Liouville’s φ-dependent
fI: LD−λ

φ f(z) by (3.6) or (3.7).

Lemma 3.1. LD
−λ
φ f(z) exists only when |f(z+ tle

iφ)| → 0 as tl → ∞.

Lemma 3.2. LD
ν
φf(z) is an analytic function of ν in the domain s1[f ] <

Re ν < 0.



LIOUVILLE AND RIEMANN-LIOUVILLE . . . 637

Let f(z) = e−az for a ∈ C satisfying Re (aeiφ) > 0. Then s1[f ] = −∞
and we obtain

LD
ν
φe

−az = e−iπνaνe−az, Re ν < 0, (3.8)

by using the formula (3.4).
Let f(z) = za for a ∈ C. Then we have s1[f ] = Re a and

LD
ν
φz
a = e−iπν

Γ(ν − a)
Γ(−a) za−ν , if Re a < Re ν < 0. (3.9)

To obtain this, we use the following formula for the beta function B(λ, κ):

B(λ, κ) =
Γ(λ)Γ(κ)
Γ(λ+ κ)

=
∫ ∞

0
xλ−1(1 + x)−λ−κdx, (λ, κ ∈ +C). (3.10)

This formula is obtained from (2.6), by the change of variable x = t
1−t .

In Sections 3.2 and 3.3, we define HD
ν
φf(z) and MD

ν
φf(z), which are

analytic continuations of LDν
φf(z), called HfD and mPfD in Section 1, and

study their basic properties.

3.2. Contour integral with Hankel’s contour

The gamma-function Γ(z) defined by (3.4) exists in the domain z ∈ +C.
We know Hankel’s formula which defines Γ(z) in the whole complex plane,
[19, Section 12.22]. We write the formula as

Γ(z) = eiπz
1

2i sinπz

∫
CH

ζz−1e−ζdζ, z ∈ C. (3.11)

Here CH is the limit of X,Y → ∞ of the contour CH∗ shown in Fig. 4.

Figure 4. The contour of integration CH∗ , from X, to δ,
to δ∗ = δe2iπ , and then to Y ∗ = Y e2iπ, where δ,X, Y ∈ R>0

satisfy δ < X, Y .

By applying the method of Hankel to the integral given in (3.6), we
define HD

ν
φf(z) as follows.
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Definition 3.3. Let f(ζ) be analytic on a neighborhood of Pφ(z).
Then for ν ∈ C\Z<0 satisfying Re ν > s1[f ], we define the φ-dependent fD,
HD

ν
φf(z), by:

HD
ν
φf(z) = e−iφν

Γ(ν + 1)
2πi

∫
CH

η−ν−1f(z + ηeiφ)dη, (3.12)

which can be expressed also as (3.13) given below. When −n > s1[f ] for
n ∈ Z>0, we put HD−n

φ f(z) = limν→−n[HDν
φf(z)].

The proofs of the theorems given in Sections 3.2 and 3.3 are presented
in Appendix A.

Theorem 3.1. If HD
ν
φf(z) for Re ν < 0 exists, then LD

ν
φf(z) also

exists and HD
ν
φf(z) = LD

ν
φf(z) for Re ν < 0.

Lemma 3.3. HD
ν
φf(z) is an analytic function of ν in the domain

Re ν > s1[f ].

This follows from the fact that the integral in (3.12) is an analytic
function of ν when it converges [19, Sections 5.31 and 5.32]. We also use
Theorem 3.1 and Lemma 3.2.

Usually HD
ν
φf(z) is defined as a generalization of the Cauchy integral

formula of differentiation [11, 12, 2, 3], by

HD
ν
φf(z) =

Γ(ν + 1)
2πi

∫ (z+)

z+∞·eiφ

f(ζ)
(ζ − z)ν+1

dζ. (3.13)

Campos [2] called the contour in this expression the Hankel contour, where
he defined HD

ν
φf(z) only for ν /∈ Z<0.

Theorem 3.2. If HD
n
φf(z) for n ∈ Z≥0 exists, HD

n
φf(z) = f (n)(z).

3.3. Contour integral with a modified Pochhammer’s contour

In Section 2, we use Pochhammer’s formula (2.7) which gives the beta
function B(λ, κ) in the whole complex plane as a function of λ as well as of
κ. That formula is obtained as the analytic continuation of Euler’s integral
of the first kind (2.6). We now give a modified Pochhammer’s formula
which corresponds to (3.10).

Formula (3.10) is obtained from (2.6) by the change of variable x = t
1−t .

We now give a formula from (2.7) by the same change of variable η = t
1−t .
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As a result, we obtain the modified Pochhammer’s formula for B(λ, κ):

B(λ, κ) = −e−iπλ−iπκ 1
4 sin(πλ) sin(πκ)

∫
C̃
ηλ−1(1 + η)−λ−κdη, (3.14)

which applies for all λ, κ ∈ C\Z≤0. Here C̃ is the closed contour shown in
Fig. 5.

Figure 5. The contour of integration C̃, from δ, to X, to
X− = Xe−2iπ, δ−1 = δ1e

−2iπ, δ1, Y , Y + = Y e2iπ, δ+ =
δe2iπ, and then back to δ. The four horizontal pathes are
called a, b, c and d from the top to the bottom.

In this place, we give a definition of MDν
φf(z) in a restricted condition.

Condition A. f(z) is expressed as f(z) = zγf1(z), where γ ∈ R and
f1(z) is an entire function.

In Section 6, we introduce more general conditions, which are Condi-
tions B and C.

Definition 3.4. Let Condition A or Condition B (see Section 6) be
satisfied for γ ∈ R. If γ /∈ Z, ν ∈ C\Z<0 and ν−γ /∈ Z, we define MD

ν
φf(z)
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of order ν by

MD
ν
φf(z)=e−iφν−iπν+iπγ

Γ(ν+1)
4π sin(π(γ−ν))

∫
C̃
η−ν−1f(z + ηeiφ)dη, (3.15)

where max(δ, δ1) < |z| < min(X,Y ) and (arg z + φ − π) 	≡ 0 (mod 2π)
are assumed for the contour C̃. If γ /∈ Z, the value of MD

ν
φf(z) at ν ∈

C satisfying ν ∈ Z<0 or ν − γ ∈ Z should be determined by analytic
continuation. If γ = n ∈ Z, it is defined by

MD
ν
φf(z) = lim

γ′→n
MD

ν
φ[z

γ′−nf(z)]. (3.16)

Lemma 3.4. MD
ν
φf(z) is analytic as a function of ν ∈ C, as far as

ν /∈ Z<0 and γ − ν /∈ Z.

This follows from the fact that the integral in (3.15) is analytic as a
function of ν, as is confirmed by [19, Section 5.21].

In discussing the relation between MD
ν
φf(z) and HD

ν
φf(z), s2[f ] defined

below plays an important role.

Definition 3.5. We denote by s2[f ], the least of s2 ∈ R such that
sup−π<θ≤π t

−s
l |f(z + tle

iθ)| → 0 as tl → ∞ for all s ∈ R satisfying s > s2.

Theorem 3.3. Let s2[f ] <∞ and let MD
ν
φf(z) exist. Then HD

ν
φf(z)

also exists, and MD
ν
φf(z) = HD

ν
φf(z), for ν ∈ C satisfying Re ν > s1[f ].

Theorem 3.4. Let f(z) be an entire function. Then, (i) MDν
φf(z) = 0

for ν ∈ C\Z. (ii) If s2[f ] <∞, HD
ν
φf(z) = 0 for Re ν > s1[f ].

Theorem 3.5. If MD
n
φf(z) exists for n ∈ Z≥0, MD

n
φf(z) = f (n)(z).

3.4. Comparison of Liouville’s fI and its analytic continuations

In Table 2, we summarize the domains of ν in which LD
ν
φf(z) and its

analytic continuations exist and are analytic as a function of ν. The rows
for LDν

φf(z) and HD
ν
φf(z) are due to Lemmas 3.2 and 3.3, respectively. The

row for MD
ν
φf(z) for s2[f ] <∞ is due to Lemma 3.4 and Theorem 3.3.

Let f(z) = e−az for a ∈ C satisfying Re (aeiφ) > 0. Then s1[f ] = −∞
and s2[f ] = ∞. By using (3.8), Table 2 and Theorem 3.4, we obtain the
column for e−az in Table 3.
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s2[f ] <∞ s2[f ] = ∞
LD

ν
φf(z) s1[f ] < Re ν < 0 s1[f ] < Re ν < 0

HD
ν
φf(z) Re ν > s1[f ] Re ν > s1[f ]

MD
ν
φf(z) ν ∈ C, ν /∈ {n ∈ Z<0|n ≤ s1[f ]}, −−−−−

ν /∈ {ν ′ ∈ C|Re ν ′ ≤ s1[f ], b− ν ′ ∈ Z}
Table 2. Domains of ν in which LD

ν
φf(z), HDν

φf(z) and
MD

ν
φf(z) exist and are analytic.

f(z) = e−az f(z) = za

s1[f ] = −∞, s2[f ] = ∞ s1[f ] = s2[f ] = Re a
Domain of ν Domain of a Domain of ν Domain of a

LD
ν
φf(z) −C aeiφ ∈ +C Re a < Re ν < 0 −C

HD
ν
φf(z) C aeiφ ∈ +C Re ν > Re a C

MD
ν
φf(z) MD

ν
φe

−az = 0 C, a− ν /∈ Z≥0 C

Table 3. Domains of ν and a in which LD
ν
φf(z), HDν

φf(z)
and MD

ν
φf(z) exist and are analytic as functions of ν, for

f(z) = e−az , za.

Let f(z) = za for a ∈ C. Then s2[f ] = s1[f ] = Re a, and in place of
(3.9), in the case of a /∈ Z≥0, we obtain

MD
ν
φz
a = e−iπν

Γ(ν − a)
Γ(−a) za−ν , (ν ∈ C, a ∈ C\Z≥0), (3.17)

HD
ν
φz
a = e−iπν

Γ(ν − a)
Γ(−a) za−ν , (Re ν > Re a, a ∈ C\Z≥0). (3.18)

Formula (3.17) is obtained with the aid of (3.14), and (3.18) follows from
it by Theorem 3.3. We note that MDν

φz
a is uniquely determined by (3.17)

for all ν ∈ C if a /∈ Z≥0.
In the case of a = n ∈ Z≥0, by using (3.17) in (3.16), we obtain

MD
ν
φz
n = 0, ν ∈ C\Z, (3.19)

MD
m
φ z

n= lim
a′→n

MD
m
φ z

a′ =
{ n!

(n−m)!z
n−m, (m ∈ Z, m ≤ n),

0, (m ∈ Z, m > n).
(3.20)

Then in particular, MD0
φz

n = zn.
In Appendix B, a remark is given on nonstandard analysis related with

this calculation.
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By (3.19), (3.20) and Theorem 3.3, we have

HD
ν
φz

n = 0, (n ∈ Z≥0, Re ν > n). (3.21)

Formulas (3.19) and (3.21) are in accordance with Theorem 3.4.

Remark 3.1. When n ∈ Z≥0 and m ∈ Z, in place of (3.20), we
could adopt M̄D

m
φ z

n := limν→mMD
ν
φz
n. Then by (3.19), we would get

M̄D
m
φ z

n = 0 and hence M̄D
0
φz
n = 0.

The column for za in Table 3 is obtained by using (3.9), (3.18), (3.21),
(3.17), (3.19) and (3.20).

Remark 3.2. By definition of ez, we have e−az =
∑∞

k=0
1
k!(−az)k. By

(3.8) and Table 3, HDν
φe

−az = (−a)νe−az for Re (aeiφ) > 0. On the other
hand, by (3.21), we would have

∑∞
k=0[

1
k! · HDν

φ(−az)k] = 0 if there existed
a ν ∈ C satisfying Re ν > k for all k ∈ Z≥0, but there exists no such a ν. If
we ignored the condition Re ν > n in (3.21), there would occur a conflict.

Let f(z) = e−az . Then s1[f ] = −∞ and s2[f ] = ∞. By Theorem 3.4,
we have MD

ν
φe

−az =
∑∞

k=0[
1
k! · MDν

φ(−az)k] = 0 for ν ∈ C\Z. When
ν = m ∈ Z≥0, we have MD

m
φ e

−az = (−a)me−az =
∑∞

k=0[
1
k! · MDm

φ (−az)k],
by using Theorem 3.5 and (3.20). Theorem 3.3 states that MD

ν
φe

−az and
HD

ν
φe

−az are not related analytically.
We find discussions on the consistency of analytic continuations of Li-

ouville’s fI of exponential function in [3, p. 360].

3.5. Remarks on Nishimoto’s fDI

In a series of books [11, 12], Nishimoto gave a survey of his work on
fractional calculus, where he defined the fractional differintegration (fDI),
respresenting the fractional differentiation and integration as a whole, with
the aid of a generalization of the Cauchy integral formula of differentiation,
by (3.13), which is equivalent to (3.12),

He denote Nishimoto’s fDI by (f)ν , which he defined as follows.

(i) When HD
ν
φf(z) exists for φ = 0 or φ = −π, (f)ν is equal to it.

(ii) When s1[f ] 	= −∞ and the analytic continuation of HDν
φf(z) as a

function of ν for φ = 0 or φ = −π exists, (f)ν for ν ∈ C\Z is equal
to the analytic continuation.

(iii) When m ∈ Z>0, (f)−m = limν→−m(f)ν .
(iv) When m ∈ Z≥0, (f)m = f (m)(z).
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As a consequence, we have (e−az)ν = HD
ν
φe

−az by (3.8) and Table 3,
for Re (aeiφ) > 0, and (za)ν = MD

ν
φz
a given by (3.17) and (zn)ν = 0 for

n ∈ Z≥0 and for ν ∈ C excluding ν = m satisfying m ≤ n. Because of
this choice, a consistency is lost as seen from Remark 3.2. Nishimoto’s
fractional calculus is very interesting in taking advantage of the analyticity
and the index law, but there exist some inconsistencies to be clarified.

By (3.17) and (3.18), Nishimoto’s fDI of f(z) = za is given by (za)ν =
MD

ν
φz
a = HD

ν
φz
a for Re (ν − a) > 0, and its analytic continuation to

Re (ν − a) ≤ 0. We see that (za)ν = MD
ν
φz

a for all ν, a ∈ C, including
ν = m ∈ Z and a = n ∈ Z≥0.

Formula (3.19) shows that, if n ∈ Z≥0, MDν
φz
n = 0 for ν ∈ C satisfying

n−ν /∈ Z≥0. The singularities are isolated ones at ν = n, n−1, · · · . If we
remove them, regarding them as removable singularities, we would obtain
MD

ν
φz
n = 0 for all ν ∈ C. In the above definition, (iii) states that Nishimoto

makes this choice at ν = −m for m ∈ Z>0, but he states that (z2)−1 =
limν→−1(z2)ν = 1

3z
3 in [12, p.47]. The result is consistent with (3.20), but

the last equality does not hold.

4. Index Law of fD and HD
ν
φg(t) = z−b

In this section, we use Dnf(z) to represent f (n)(z) for n ∈ Z≥0. When
n = 0 or = 1, we put D0f(z) = f(z) and D1f(z) = Df(z) = f ′(z).

4.1. Index law of LD
−λ
φ f(z)

Theorem 4.1. Let λ, κ ∈ +C, and let LD
−λ−κ
φ f(z) exist. Then the

index law LD
−λ
φ [LD−κ

φ f(z)] = LD
−λ−κ
φ f(z) holds.

A customary proof is given at the end of Appendix A.

Lemma 4.1. If LD
−κ
φ f(z) exists, LD

−κ
φ f(z + tle

iφ) → 0 as tl → ∞.

This follows from Lemma 3.1 and Theorem 4.1.

Lemma 4.2. If n ∈ Z>0 satisfies −n > s1[f ], Dn[LD−n
φ f(z)] = f(z).

P r o o f. When n = 1, this is confirmed by taking differentiation of

LD
−1
φ f(z) = − ∫ z+∞·eiφ

z f(ζ)dζ, which is given by (3.6) for λ = 1, taking
account of Assumption A. The same equation for n > 1 is then confirmed
with the aid of Theorem 4.1. �
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4.2. Index law of HD
ν
φf(z)

We now adopt the following assumption.

Assumption B. Let f (n)(ζ) for n ∈ Z>0 exist on Pφ(z). Then s1[f (n)] ≤
s1[f ] − n.

This implies that t−sl |f (n)(z+ tle
iφ)| → 0 as tl → ∞ when s > s1[f ]−n.

Lemma 4.3. Let n ∈ Z>0, and let HD
ν
φf(z) exist. Then HD

ν
φf(z) =

HD
ν−n
φ f (n)(z).

P r o o f. We apply the partial integration to (3.12), and then we note
that we can choose the boundary values of the integration to be 0 by As-
sumption B. �

Theorem 4.2. Let m ∈ Z>0 satisfy m > s1[f ], and ν ∈ C satisfy
s1[f ] < Re ν < m. Then

HD
ν
φf(z) = LD

ν−m
φ f (m)(z). (4.1)

This is due to Lemma 4.3 and Theorem 3.1.

Lemma 4.4. Let n ∈ Z≥0, and let φ ∈ R, z ∈ C satisfy |φ− arg z| < π.
Then s1[zn log z] = n, and

HD
ν
φ(z

n log z) = n! e−iπ(ν−n−1)Γ(ν − n)z−ν+n, Re ν > n. (4.2)

P r o o f. When Re ν > n, by using Theorem 4.2, we obtain
HD

ν
φ(z

n log z) = LD
ν−n−1
φ [Dn+1(zn log z)] = LD

ν−n−1
φ (n!z−1). By using

(3.9) in the last member, we confirm (4.2). �

Lemma 4.5. If HD
ν
φf exists, then HD

ν
φf(z + tle

iφ) → 0 as tl → ∞.

This follows from Theorem 4.2 and Lemma 4.1.

Theorem 4.3. Let φ ∈ R and μ, ν ∈ C. If Re ν > s1[f ] and Re (μ+
ν) > s1[f ], then the index law

HD
μ
φ [HDν

φf(z)] = HD
μ+ν
φ f(z) (4.3)
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holds. In particular, either if s1[f ] < 0 and Re ν ≤ 0, or if Re ν > 0 and
s1[f ] < −Re ν,

HD
ν
φ[HD

−ν
φ f(z)] = f(z). (4.4)

P r o o f. By using Theorems 4.2 and 4.1 and Lemma 4.2, we obtain

HD
μ
φ[HD

ν
φf(z)] = LD

μ−m
φ Dm[LDν−n−m

φ Dn+mf(z)]

= LD
μ+ν−n−m
φ [Dn+mf(z)] = HD

μ+ν
φ f(z),

for m = max{�Re μ
+ 1, 0} and n = max{�Re ν
+ 1, 0}. (4.4) is obtained
from the index law (4.3) by using Theorem 3.2. Here �x
 for x ∈ R denotes
the greatest integer not greater than x. �

In [2], we find a proof of the index law (4.3) for μ, ν ∈ +C, where
Campos stated that the case when ν ∈ Z<0 is excluded in (4.3).

Theorem 4.4. Either if s1[f ] < 0 and Re ν ≤ 0, or if Re ν > 0 and
s1[f ] < −Re ν, then a particular solution of HD

ν
φg(z) = f(z) is given by

g(z) = HD
−ν
φ f(z).

We confirm this by using (4.4).

Definition 4.1. If s1[f ] ≤ −1, Liouville’s fD for Re ν ≥ 0 is usually
defined by

LD
ν
φf(z) = Dm[LDν−m

φ f(z)], (4.5)

if the righthand side exists, where m = �ν
 + 1.

Lemma 4.6. If s1[f ] ≤ −1 and HD
ν
φf(z) exists, then LD

ν
φf(z) defined

by Definition 4.1 also exists, and LD
ν
φf(z) = HD

ν
φf(z) for Re ν > s1[f ].

This is confirmed by using Theorem 4.3, 3.2 and 3.1.

4.3. Index law of MD
ν
φf(z)

Lemma 4.7. Let f(z) satisfy Condition A or B for γ /∈ Z, and let
g(z) = MD

ν
φf(z). Then g(z) satisfies the same condition with γ replaced

by γ − ν.

P r o o f. If f(ze2iπ) = e2iπγf(z), we confirm g(ze2iπ) = e2iπ(γ−ν)g(z)
by using (3.15). �
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Theorem 4.5. Let Condition A or Condition B (see Section 6) be
satisfied for γ /∈ Z, let s2[f ] <∞, and μ, ν ∈ C. If ν− γ /∈ Z, μ+ ν− γ /∈ Z

and μ, ν, μ+ ν /∈ Z<0, then the index law

MD
μ
φ [MDν

φf(z)] = MD
μ+ν
φ f(z) (4.6)

holds. In particular, if ν − γ /∈ Z and ν /∈ Z,

MD
−ν
φ [MDν

φf(z)] = f(z), (4.7)

MD
−ν
φ [HDν

φf(z)] = f(z), if Re ν > s1[f ]. (4.8)

P r o o f. The index law is due to Lemmas 4.7, 3.4, Theorems 3.3 and
4.3. (4.7) is due to Theorem 3.5. (4.8) is due to Theorem 3.3. �

Theorem 4.6. Let f(z) satisfy Condition A or Condition B (see
Section 6), and let s1[f ] < 0. Then a particular solution of HD

ν
φg(z) = f(z)

is given by g(z) = MD
−ν
φ f(z), if s2[g] <∞.

P r o o f. The condition s1[f ] < 0 is required by Lemma 4.5. We re-
place f and γ by g and γ + ν, respectively, in (4.8). �

4.4. Solution of HD
ν
φg(t) = z−b

We study the problem of solving the linear equation:

HD
ν
φg(z) = z−b, (4.9)

for b ∈ C. When a solution exists, the solution g(z) is given by a particular
solution satisfying this equation, added by a complementary solution h(z),
which satisfies the homogeneous equation HD

ν
φh(z) = 0.

If Re ν > 0, by (3.21), a polynomial of degree m = �Re ν� − 1, h(z) =
pm(z), satisfies HD

ν
φh(z) = 0. Here �x� for x ∈ R denotes the least integer

not less than x.

Theorem 4.7. A solution of (4.9) exists if and only if Re b > 0. A
particular solution g0(z) of (4.9) is then given by

g0(z) = eiπν Γ(b−ν)
Γ(b) zν−b, if ν − b /∈ Z≥0, (4.10)

g0(z) = eiπ(b−1) 1
n! Γ(b)z

n log z, if ν − b = n ∈ Z≥0. (4.11)

These are confirmed by using (3.18) and Lemma 4.4, respectively.
We now give a derivation of (4.10) and (4.11) with the aid of Theo-

rems 4.4 and 4.6.
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P r o o f. The condition Re b > 0 is required by Lemma 4.5. By Theo-
rems 4.6 and (3.17), a particular solution of (4.9) is given by

g(z) = MD
−ν
φ z−b = eiπν

Γ(b− ν)
Γ(b)

z−b+ν , if ν − b /∈ Z≥0. (4.12)

When Re (ν − b) < 0, (4.10) is obtained by using g(z) = HD
−ν
φ z−b, which

is due to Theorem 4.4 and (3.18). In deriving (4.11), we put ν− b = n+ ε.
Then (4.12) gives g(z) = C(ε)zn+ε, where C(ε) = eiπν Γ(−n−ε)

Γ(b) . When ε ∼ 0,
we note that HDν

φz
n = 0 by (3.21), since Re ν = Re b+n+ Re ε > n. Now

as a particular solution of (4.9), we may adopt g(z) = C(ε)zn+ε − C(ε)zn,
so that we have

g(z) = eiπν
Γ(−n− ε)

Γ(b)
(zn+ε − zn)

= −eiπ(b+ε) Γ(1 + ε)Γ(1 − ε)
Γ(b)Γ(n + 1 + ε)

[zn log z +O(ε)].

In the limit of ε→ 0, we obtain (4.11). �

4.5. Index law of RLD
ν
0f(x) and distribution theory

We denote the Heaviside step function by H(x). When f(x) is defined
for x ∈ R>0, we assume that

f(x)H(x) =
{

0, x ∈ R≤0,
f(x), x ∈ R>0.

(4.13)

For a function f(x) satisfying f(x)H(x) ∈ L1
loc(R), RLfI: RLD−λ

0 f(x)
for λ ∈ C+ is defined by (2.1) and the fD of order ν ∈ C satisfying Re ν ≥ 0
is ordinarily defined by RLD

ν
0f(x) = Dm[RLDν−m

0 f(x)], where m = �ν
+1.
We now adopt this definition.

Lemma 4.8. If CD
ν
0f(x) defined by (2.2) exists, then RLD

ν
0f(x) also

exists, and RLD
ν
0f(x) = CD

ν
0f(x).

P r o o f. This is confirmed by using CD
ν
0f(x) = D[CDν−1

0 f(x)] which
follows from (2.2). �

For RLfD, the index law does not always hold. In [5], the example given
is f(x) = 1, when RLD

−1
0 [RLD1

01] = 0 	= RLD
1
0 [RLD

−1
0 1] = 1, and use of

generalized function or distribution is mentioned.
In [10], we define the distributions in the space D′

R which is dual to
the space DR of infinitely differentiable functions in R, having a support
bounded on the right. Then distributions in D′

R are regular distributions
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which belong to L1
loc(R) and have a support bounded on the left, and their

derivatives. We denote the fD of a distribution h(x) by D̃νh(x).
Let f(x)H(x) ∈ L1

loc(R), and let s0 be the greatest of s ∈ R such that
RLD

ν
0f(x) is absolutely continuous on R for all ν satisfying Re ν < s − 1.

Then we denote this s0 by s0[f ]. Then

D̃ν [f(x)H(x)] = [RLDν
0f(x)]H(x), Re ν < s0[f ]. (4.14)

If f(x) = 1, s0[f ] = 1 and we have D̃−1[D̃1H(x)] = D̃−1δ(x) = H(x).
In the distribution theory, we have the index law D̃μ[D̃νh(x)] = D̃μ+νh(x).
Hence if we use D̃ν [f(x)H(x)] in place of RLDν

0f(x), the problem of viola-
tion of the index law does not occur.

5. fD of Cosine and Sine Functions

In this section, we consider LDν
φf(z) for φ = 0 and φ = −π. For φ = 0,

we give WD
ν
0f(z), and then LD

ν
0f(z) is obtained by

LD
ν
0f(z) = e−iπν ·WDν

0f(z). (5.1)

The equation given below for LDν
φf(z) and WD

ν
0f(z) are valid for ν ∈ −C.

The corresponding equations where subscript H appears in place of L are
valid for all ν ∈ C.

When a ∈ +C and x ∈ R, we have WD
ν
0e

−ax = aνe−ax and LD
ν−πeax =

aνeax, by (3.8). Here we do not consider the fD of the sum eax + e−ax.
Let b, c, r, ψ ∈ R>0, x ∈ R, and let b± ic = re±iψ. Then we have

WD
ν
0e

−(b±ic)x = rνe−bx∓i(cx−νψ), LD
ν
−πe

(b±ic)x = rνebx±i(cx+νψ),

WD
ν
0 (e−bx cos cx) = rνe−bx cos(cx− νψ),

LD
ν
−π(e

bx cos cx) = rνebx cos(cx+ νψ). (5.2)

LD
ν
φe

∓az are given for Re (±aeiφ) > 0. The case where ±aeiφ is pure
imaginary, is excluded from our study, because of Assumption B. In that
case, we can consider the limit of Re (±aeiφ) → 0+. By taking the limit of
b→ 0 in (5.2), we obtain

WD
ν
0 cos cx = cν cos(cx− π

2
ν), LD

ν
−π cos cx = cν cos(cx+

π

2
ν), (5.3)

and these equations with cos replaced by sin.
The above derivation of the two expressions in (5.3) follows Liouville’s

argument for ν ∈ −C, given in Lützen’s review [8, p.327].
In the original paper by Weyl [18, 17], the fD is given by W νf(x) =

WD
ν
0f(x), and it is applied to a periodic function of period 1 of the form

f(x) =
∑∞

n=−∞ cne
2πinx, and its fD is given byW νf(t) =

∑∞
n=−∞(2πin)νcn

× e2πint, when c0 = 0 and
∑∞

n=−∞ |nνcn|2 converges. We can confirm this
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in a similar way as above. In [1, p. 426], a proof of the above formula is
given for the case when W νf(t) is defined by W νf(t) = LD

ν−πf(t).
6. Remarks on the Definition of MD

ν
φf(z)

In Section 3.3, MDν
φf(z) is defined for f(z) satisfying Condition A or

B. Here we give the latter condition and also another condition.
We now assume that f1(z) is analytic on a neighborhood of Pφ(z), and

is a one-valued analytic function on a neighborhood of infinity, except a
possible isolated singularity at infinity.

We choose C̃ shown in Fig. 5 such that f1(z) is analytic in the regions
given by min(X,Y ) ≤ |z| < ∞ and 0 < |z| ≤ max(δ, δ1), and also in a
region enclosing the pathes a, b, c and d.

Condition B. f(z) is expressed as f(z) = zγf1(z) where γ ∈ R, so
that f(ze2iπ) = e2iπγf(z).

Condition C. There exists an m ∈ Z>0 for which f (m)(z) satisfies
Condition B.

Definition 6.1. Let MD
ν
φf(z) defined by Definition 3.4 with Condi-

tion B be denoted by M̃D
ν
φf(z). Then when Condition C is satisfied, we

put MDν
φf(z) = M̃D

ν−m
φ f (m)(z).

The following lemma and two theorems follow from Lemma 3.4, Theo-
rems 3.3 and 3.5, respectively.

Lemma 6.1. MD
ν
φf(z) defined by Definition 6.1 is analytic as a func-

tion of ν ∈ C, if ν −m /∈ Z<0 and γ − ν /∈ Z.

Theorem 6.1. For MD
ν
φf(z) defined by Definition 6.1, Theorem 3.3

holds valid.
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Theorem 6.2. Let MD
ν
φf(z) defined by Definition 6.1 exist for n ∈ Z

satisfying n ≥ m. Then MD
n
φf(z) = f (n)(z).

Lemma 6.2. Let n ∈ Z≥0, and let φ ∈ R and z ∈ C satisfy |φ−arg z| <
π. Then s2[zn log z] = n, and for ν ∈ (C\Z) ∪ {m ∈ Z|m > n},

MD
ν
φ(z

n log z) = n! e−iπ(ν−n−1)Γ(ν − n)z−ν+n. (6.1)

This follows from Theorems 4.2, Lemma 4.4 and Theorem 6.1.

Appendix A: Proofs of Theorems 3.1 ∼ 3.4 and 4.1

Let δ, r, R ∈ R>0 satisfy δ ≤ r ≤ R, and

Iδ,R=
∫ R

δ
ηλ−1f(z + ηeiφ)dη, Jr=

∫ 2π

0
(reiθ)λf(z + reiθeiφ)idθ. (A.1)

We use IH∗ to denote the integral which is obtained from the one in (3.12)
for ν = −λ, by replacing CH by CH∗ shown in Fig. 3. Then

IH∗ = −Iδ,X + Jδ + e2πiλIδ,Y . (A.2)

Let IL be the integral in (3.6), and IH and Ĩ be those in (3.12) and (3.15),
respectively, for ν = −λ. Hence

IL = lim
δ→0

lim
X→∞

Iδ,X , IH = lim
X→∞

lim
Y→∞

IH∗ . (A.3)

P r o o f o f Theorem 3.1. When IL exists, by taking the limits of
δ → 0, X,Y → ∞ in (A.2), we obtain

IH = −IL + e2iπλIL = eiπλ · 2i · sin(πλ) · IL. (A.4)

We then use sin(πλ) = π
Γ(λ)Γ(1−λ) . Note that this relation between IL and

IH is the same as the relation (3.11) between the integrals in (3.4) and
(3.11) for λ = z. �

P r o o f o f Theorem 3.2. Now ν = −λ = n ∈ Z≥0. When IH exists,
by taking the limits of X,Y → ∞ in (A.2), we obtain

IH = Jδ, Jδ =
2πi
n!
eiφnf (n)(z), (A.5)

We use these in (3.12). �

The contour C̃ shown in Fig. 5 consists of {a,∞+, b, 0+, c,∞−, d, 0−},
in this order. We divide the contour into two parts

C̃(1) := {∞−, d, 0−, a}, C̃(2) := {∞+, b, 0+, c}. (A.6)

Their contributions are

Ĩ(1) := e−2πiγJY − IH∗ , Ĩ(2) := e−2πiλ−2πiγ(−JX + IH∗). (A.7)
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P r o o f o f Theorem 3.3. From (A.7), we have

Ĩ = −(1 − e−2πiλ−2πiγ)IH∗ − e−2πiλ−2πiγJX + e−2πiγJY . (A.8)

When s2[f ] <∞ and IH exists, in the limit of X,Y → ∞, we have

Ĩ = −(1 − e−2πiλ−2πiγ)IH = −2ie−iπλ−iπγ sin(π(λ+ γ))IH . (A.9)

We then use sin(πλ) = π
Γ(λ)Γ(1−λ) . When IL exists, we have a relation

between IL and Ĩ by using (A.4) in the righthand side of (A.9). Note that
this relation between IL and Ĩ is the same as the relation between the
integrals in (3.10) and (3.14) if γ = −λ− κ. �

Lemma A.1. Let f(z) be an entire function. Then

(i) Ĩ = Ĩ(1) = Ĩ(2) = 0, and (ii) if s2[f ] <∞ and Re ν > s2[f ], IH = 0.

P r o o f. In (A.6), the contour is divided into two. In the domain
enclosed by either of them, the integrand of the integral Ĩ is analytic.
Hence we have (i). By (A.7), Ĩ(1) = JY − IH∗ = 0. We conclude (ii) from
this. �

P r o o f o f Theorem 3.4. In this case, we use (3.16) for n = 0.
We then note that zγf(z) converges uniformly to f(z) on C̃ as γ → 0, and
that, when γ = 0, Ĩ = 0, as shown in (i) of Lemma A.1. (ii) follows from
(i) and Theorem 3.3 or from (ii) of Lemma A.1 and Lemma 3.3. �

P r o o f o f Theorem 3.5. Now ν = −λ = n ∈ Z≥0. We first assume
that Condition A or B is satisfied and γ /∈ Z. Then by putting X = Y in
(A.8) and (A.2), we obtain IH∗ = Jδ and

Ĩ = −(1 − e−2πiγ)Jδ . (A.10)

Using this with Jδ given in (A.5), in (3.15), we finish the proof. When
r = m ∈ Z, we use (3.16) with n replaced by m. �

P r o o f o f Theorem 4.1. Using (3.6), we write LD
−λ
φ [LD−κ

φ f(z)] as

ei(φ+π)λ 1
Γ(λ)

∫ ∞

0
tλ−1

[
ei(φ+π)κ 1

Γ(κ)

∫ ∞

t
(x− t)κ−1f(z + xeiφ)dx

]
dt.

We confirm that this is equal to LD
−λ−κ
φ f(z), by exchanging the order of

integrations and using
∫ x
0 t

λ−1(x− t)κ−1dt = xλ+κ−1B(λ, κ). �
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Appendix B: Application of Nonstandard Analysis

Formula (3.17) shows that MD
ν
φz
a is an analytic function of ν ∈ C if

a /∈ Z≥0, with poles at ν satisfying a− ν ∈ Z≥0, and the equation in (3.17)
is valid for a /∈ Z≥0. Regarding n ∈ Z≥0 as n + ε with ε satisfying ε � 0,
we obtain (3.16) in Definition 3.4. This results in (3.20).

In nonstandard analysis [15], we consider the set of real numbers,
which we denote by R

n∗, in addition to R. In the set R
n∗, there ex-

ists the infinitesimal neighborhood of a ∈ R, which we denote by R
n∗
a.

If x ∈ R
n∗
a, 0 < |x − a| < δ for all δ ∈ R>0. We also consider the

corresponding sets of complex numbers, C
n∗ = {x + iy|x, y ∈ R

n∗} and
C
n∗
a = {a + x + iy|x, y ∈ R

n∗

0} for a ∈ C. The fact that a1 ∈ R

n∗
a or
a1 ∈ C

n∗
a, is denoted by a1 � a, a1 − a � 0, and a = St[a1]. We assume
that, if either a ∈ R

n∗ or a ∈ C
n∗ and a 	= 0, then 1/a ∈ R

n∗ or 1/a ∈ C
n∗,

accordingly. When a � 0, we say that a is infinitesimal and 1/a is unlimited
(or, “illimited” as the notion used by Robert [15]).

We propose to adopt (3.16) in Definition 3.4. In the language of non-
standard analysis, it is stated as follows. We assume that (3.17) is used for
a ∈ C

n∗\Z, and adopt the following definition.

Definition B.1. For n ∈ Z≥0 and ν ∈ C, we define MD
ν
φz

n by
MD

ν
φz
n = St[MDν

φz
a], if a � n.
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