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Abstract

We study the fractional integral (fI) and fractional derivative (fD), at-
tained by the analytic continuation (AC) of Liouville’s fI (LfI) and Riemann-
Liouville fI (RLfT). On the AC of RLfI, we give a detailed summary of Lavoie
et al’s review. The ACs of RLAT are expressed by means of contour integrals.
Two of them use the Cauchy contour, and one is using the Pochhammer
contour. In this case, the latter is AC of all the others for the functions
treated. For the AC of LfI, one can find studies in Campos’ papers and in
Nishimoto’s books, where the AC is using only the Cauchy contour. Here
we present also an AC using a modified Pochhammer’s contour. In this
case, we see that any of these two ACs is not the AC of the other for all the
functions treated. This fact leads to difficulties, if a careful study taking
care of the domains of existence of each AC is not adopted. By taking
account of this fact, we resolve the difficulties which occur in Nishimoto’s
formalism.
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1. Introduction

The notions and tools of fractional derivative (fD) and fractional dif-
ferential equation (fDE) have been discussed since long time ago; see e.g.
[4, 9, 13, 14]. When we have an initial value problem for a fDE where
the initial values at a finite point are given, usually the Riemann-Liouville
fD (RL{D) is used. When the solution decays to zero at oo or —oo, the
Liouville fD (LfD) is used. These fD are defined in terms of the respective
fractional integrals (fI), which are the RLfI and LfI. In the present paper,
we survey some studies on the analytic continuations (AC) of RLfI and LfI.

For AC of RLfI, we have a review by Lavoie et al. [6]. There, the AC
are expressed by contour integrals. Two of them, which we call CfD and
C'fI, use generalized Cauchy contours. The other, which we call PfD, uses
the Pochhammer contour which appears in the AC of the beta function.
We recall it in Section [2l It is important to note, for a function of variable
z in the form z% or 27 - Y7, aiz", that CfD and C'fI are AC of RLfI, and
PfD is an AC of CfD as well as of C'fI.

For the AC of LfI, we have the papers [2, 3], where Campos studied
the AC using the Cauchy contour, which he called Hankel’s contour. We
call this AC of Lfl as HfD. In a series of books [I1], 12], Nishimoto gave
a survey of his work on fractional calculus, where he started with HfD
using the Cauchy contour and then defined his fractional differentiation
and integral, which he called the differintegration (fDI). His fDI is defined
as the AC of HfD.

In these works on the AC of LfI, there appears HfD using the Cauchy
contour, but no comments are given on the one related with the Pochham-
mer contour. In Section B], we discuss the LfI, HfD and also the AC using
a modified Pochhammer contour, which we call mPfD. Taking account of
these, we clarify what happens with the AC of the LAI.

For the power function of the form z%, HfD is an AC of Lfl, and mPfD
is an AC of HfD. When the function is the exponential function in the form
e~ HID is an AC of Lfl, but mPfD is not an AC of HfD.

We note that the situation is simple for the AC of RLfI, since for all
the functions treated, PfD is the AC of all the other AC of RLfI and may
be called RLfD. The situation is not simple for the AC of LI, since for all
the functions treated, any of mPfD and HfD is not the AC of the other.

In Sections [46l, we give additional studies on the AC of LfI. In Sec-
tion [, we discuss the index law of the AC of LfT and of RLfD. We have to
pay special attention to the condition for which the index law of the mPfD
is valid. Then a comment is given on the use of the index law in solving a
simple fDE. As to RLfD, we call attention to the relation with distribution
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theory. In Section [B remarks are given of the fD of the cosine and sine
functions. In Section [6] remarks are given on the definition of mPfD.

We use the notations Z, R and C to denote the sets of all integers, of
all real numbers and of all complex numbers, respectively. We also use

T~ = {’I’L € Z| n > 0}, ZSO = Z\Z>0, ZZO = {’I’L S Z| n > 0},
Ley = Z\Zzo, Ry := {a: € ]R| x > O},
_C:={2z€C|Rez<0}, 4C:={z€C|Rez>0}.

Here Z\Z~( denotes the set {n € Z|n ¢ Z~¢}. Let X be a path on the
complex plane. We use notations f € £(X) and f € £},.(X) to denote
that a function f is integrable and locally integrable, respectively, on X.

The notation f((z) is used to represent d‘fn f(z) for n € Z>, as usual.

2. Riemann-Liouville fI and its Analytic Continuations

Let ¢,z € C, and let P(c,z) be the path from ¢ to z, as shown in
Fig. M(a). For f(z) € LY(P(c,z)), the RLAT is defined in [5] 6] by

L[ A—1
roy L G0 (2.1)
When f(z) is analytic on a neighborhood of P(c,z), the rrDYf(z)
defined by (2.1)) for A = —v is analytic as a function of v in the domain _C;
see e.g. [19, Section 5.31]. In [5 [6], three analytic continuations expressed
by contour integrals are considered. In Introduction, they are called resp.
CfD, C'fT and PfD.
The first one, CfD, is the fD given by

P +1) | e (2.2)
C(c,zt)

RLDMf(2) =

v —
CDC f(Z) - 20
for v € C\Z«g, where the contour C(c,2") is shown in Fig. (b), which
starts from ¢, encircles the point z counterclockwise, and then goes back to
¢, without crossing the path P(c, z). When —n € Zq, we put ¢ D" f(z) =
lim,_,_,, ¢D¥ f(z), which is confirmed to be equal to rr. D" f(2).

By this definition, we confirm that ¢ DY f(z) is an analytic continuation
of rr. DY f(z) as a function of v, so that for every v for which the latter
exists, the former also exists and they are equal with each other.

Let fi1(z) be analytic on a neighborhood of P(0,z), and let v € R. If
f(2) =27 f1(2) and v ¢ Z, the second one C'fl is defined by

1 o
/C(zm)(c )OS, (2.3)

Do f(2) = e 2iI'(—v) sin(77y)
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for v € _C, and the third one PfD by

—imry F(V+1)

PDyf(z) = € 47 sin(my)

|- 2
Cp(2)

for v € C\Zo. Here the contour Cp(z) is z times of the contour Cp(1)
which is shown in Fig. 2l When —n € Z.q, we put pDy" f(2) =

lim, ., pD§ f(2) = 7Dy " f(2).

FIGURE 1. (a) Path of integration P(c,z) in (1), (b)
Cauchy contour C(c,27) in ([22), and (¢) C(z,07) in (23).

FIGURE 2. The Pochhammer contour Cp(1) of integration.
The four horizontal pathes are labeled by a, b, ¢ and d from
the top to the bottom.

When f(z) = 2" f1(z) for n € Z>o, we adopt
PDf(2) = lim DY F(2)) = DA (2),
pDyf(2) = lim pDg[7"[(2)] = D5 f(2).

We now confirm that rD{ f(z) and pDf f(z) are analytic continuations
of rr.D§ f(z) and ¢ Dg f(z), respectively, as functions of . We confirm also
that pD{ f(z) is an analytic continuation of 7D{ f(z) as a function of v.
Table [[] illustrates these relations.

Here we use symbols , DY f(z) with different subscript * which is either
RL, C, T or P. Usually such a discrimination is not adopted. They are
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vy+1€,C ve€C\Ze
ve_C RLDgf(Z) TDgf(Z)
veC cDgf(2) rDg f(2)

TABLE 1. The domains of v and of v in which rzDf f(2)
for f(z) = 27 f1(2) and its analytic continuations exist.

simply denoted by rrDYf(z) and called RLfD as a whole, even though
when Re v < 0, it is equal to RLfI or to fI given by 7 DY f(z).

In the discussion of RLfD, the basic function is usually the power func-
tion. When f(z) = 2% for a € C, we have

Pla+1) .y

F(a—y+1)z , (Rer <0, Rea > —1). (2.5)

v_a
RLDOZ =

This result is obtained with the aid of Euler’s integral of the first kind for
the beta function:

AT (%)

BOK) = by )

_ /1 A1 — )l (A ke LC).  (2.6)
0

By putting v = a and fi(z) = 1 in Table [Il, we see the domains of v
and of a, where pDfz* and its analytic continuations exist.

In [19, Section 12.43], Pochhammer’s formula for B(a,3) is given.
When we put A = « and k = 3, the formula is

e—ur)\—wm

k) = — A=1r1 _ p\x—1 ) )
B x) 4sin(mA) sin(7k) /Cp(l)t (I —2)"dt (2.7)

The contour Cp(1) is shown in Fig. 2l which consists of four pathes labeled
by a, b, ¢ and d. We may write this contour as C(P,1t,07,17,07) in a
similar way to C(c, z1), that is shown in Fig. Ib) for the Cauchy contour.
By this formula, B(\, ) is defined for A\, k € C\Z<( as an analytic function
of X as well as of k [19, Section 12.43], where B(\, k) for A,k € Z~g is
assumed to be defined by analytic continuation. By using this formula,
pDgz% is shown to be the analytic continuation of gy Dfz* in the domains
shown in Table [l for v = a. In fact, the argument deriving ([2.7)) from (2.6])
is used to derive the analytic continuation given by (2.4]).



LIOUVILLE AND RIEMANN-LIOUVILLE ... 635

The RLID of >~7° janz™ and 27 - >">° ja,z™ are calculated by means
of term-by-term integration; see e.g. [6]. For instance,

o0 o0

1 1
vz § : . v.n __ § : n—v
cDoe” = n! cDoz" = F'n—-v+ 1)Z
Z_V
= r1-v) 1Fi(1;1 —v52), veC\Zso. (2.8)

Here 1 F1(a; (3; 2) is a hypergeometric function.
3. Liouville’s fI and its Analytic Continuations
3.1. Liouville’s fI

Liouville [7, 8] started his study on fractional differentiation with the
following formula for © € R and m,z € R:

dr mx w, mz
g€ = miem (3.1)
He presented its integral form for A € ;. C, by
A o9
1
f(x)da = / f(z +a)a* tda. (3.2)
/ (=DAT(N) Jo
Later, he presented also the following formula [8]:
A 00
1
f(z)dz = / f(z — a)a’ da. 3.3
| @it = [ =) (33)

Formula (B.1]) for u € _C follows from (B.2]) or (3.3) for A\ = —pu, according
to as m < 0 or m > 0, with the aid of Euler’s integral of the second kind:

I'(z) :/ t*“te7tdt, ze .C. (3.4)
0

In the review of Liouville’s works [8, Chapter VIII], it is mentioned that

B2 is equal to
A 1 0o
[ @t = S [ e a6

which is equal to r, D7 f(2) given by @1 if ¢ = oo.
For z € C and ¢ € R, let P4(z) be the path from z to z + oo - e'?, as
shown in Fig. Bl For f(z) € L1(Py(2)), we define LD;’\f(z) by

LD;Af(Z) _ ei(¢+7r))\r(1>\) /OOO t)\—lf(z + t6i¢)dt (36)

; 1 o0 .
i(p+m)A / t)\—lf ¢ i(¢p+m) dt 3.7
=€ z (& . .
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We call this Liouville’s ¢-dependent fI.

z+ooel®

Py (:

FIGURE 3. Py(z).

LfT given by (32) and (33) are now expressed resp. by Dy f(z) and
D2 f(z), for z € R.

In [I6, Section 22.1], Samko et al. define LAI: (Ii@f)(z) by

(L};’qbf)(z) = p D2 f(2) for ¢=z2400-€

and mention that it is equal‘ to LD;)‘f(z) given by [B.6). There (I” ,f)(z)
is defined by (I” ,f)(z) = e™™IY ,f. In some articles [9, Chapter VII], the
right-hand side of (3.5 multiplied by (—1)*, that is equal to (1Y f)(2), is
called Weyl’s fI, see [10, p. xxxii].

The right-hand sides of (8:6) and ([B.1) are Mellin transforms as func-
tions of A\, and hence they have two abscissas of convergence, [20, Chapter

VI, Section 9]. The abscissas are 0 and the other, which we express by
—s1[f] > 0. Here s1[f] is defined as follows.

DEFINITION 3.1. Let ¢, s € R, f(z) € £}, .(Ps(2)), and let s1 € R or

s1 = —oo be the greatest lower bound of s for which I, := [t f(z +
te'?)|dt converges. We then denote this s1 by s1[f] or s1[f(2)].

When I, converges, there exists a series {t;};cz., of t; € R such that
70| f (2 + tie?)] — 0 and ¢; — oo as | — oo. We express this fact simply
by t;°|f(z + t1e")] — 0 as t; — oco. As a consequence, if s1[f] < 0,
|f(z +€?)] — 0 as t; — oo.

DEFINITION 3.2. Let ¢ € R, f(z) € L], .(Ps(2)), and s1[f] < 0. Then

loc

for A € C satisfying 0 < Re A < —s1[f], we define Liouville’s ¢-dependent

fl: LD;*f(2) by @B8) or B1).

LEMMA 3.1. LD;)‘f(z) exists only when |f(z +t;¢'®)| — 0 as t; — oo.

LEMMA 3.2. [ D{f(2) is an analytic function of v in the domain s;[f] <
Rev <0.
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Let f(z) = e~ for a € C satisfying Re (ae’®) > 0. Then s1[f] = —o0
and we obtain

LDge " = e ™a’e™ % Rewv <0, (3.8)

by using the formula ([B.4]).
Let f(z) = 2® for a € C. Then we have s;[f] = Re a and

F(V —CL) a—v

Duza — e—im/ > ’
b I(-a)

if Rea <Rev <0. (3.9)

To obtain this, we use the following formula for the beta function B(\, k):

B — T

o :/0 A1+ 2) Fde, (A, ke LC). (3.10)

t
1—t-

In Sections and 3.3 we define D7 f(2) and Dy f(2), which are
analytic continuations of Dy f(z), called HfD and mPfD in Section [} and
study their basic properties.

This formula is obtained from (2.6]), by the change of variable x =

3.2. Contour integral with Hankel’s contour

The gamma-function I'(z) defined by (8.4]) exists in the domain z € 4 C.
We know Hankel’s formula which defines I'(z) in the whole complex plane,
[19, Section 12.22]. We write the formula as

1

[(z) = €™
(2) 2isinmz Jo,

¢lemCd¢, zeC. (3.11)
Here Cp is the limit of X, Y — oo of the contour Cy+ shown in Fig. @4l

Cy*

A

Y

O‘ 8* Y*
FIGURE 4. The contour of integration Cg+, from X, to 4,

to 6" = €™, and then to Y* = Ye?™, where 6, X,Y € Ryg
satisfy § < X, Y.

By applying the method of Hankel to the integral given in (B.6), we
define Dy f(z) as follows.
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DEFINITION 3.3. Let f(¢) be analytic on a neighborhood of Py(z).
Then for v € C\Z< satisfying Re v > s1[f], we define the ¢-dependent {D,

HDgf(z), by:

6—i¢l/ F(V + 1)

aDgf(z) = 9

/ n_”_lf(z + nei¢)dn, (3.12)
Cr

which can be expressed also as (B.I3) given below. When —n > s1[f] for
n € Zso, we put g Dy" f(z) = limy—, g D f(2)].

The proofs of the theorems given in Sections and [3.3] are presented
in Appendix A.

THEOREM 3.1. If gDy f(z) for Rev < 0 exists, then Dy f(z) also
exists and gDy f(z) = 1 D{f(z) for Re v <0.

LEMMA 3.3.  pDyf(2) is an analytic function of v in the domain
Re v > s1[f].

This follows from the fact that the integral in (B.I2]) is an analytic
function of v when it converges [19] Sections 5.31 and 5.32]. We also use
Theorem [3.1] and Lemma

Usually HDg f(2) is defined as a generalization of the Cauchy integral

formula of differentiation [11], 12] 2, [3], by
L(v+1) /“” £(¢)
2mi z+00-et® (C - Z)V+1

Campos [2] called the contour in this expression the Hankel contour, where
he defined Dy f(z) only for v ¢ Zo.

uDif(z) = dc. (3.13)

THEOREM 3.2. If gD f(z) for n € Zxq exists, pDy f(z) = F™(2).

3.3. Contour integral with a modified Pochhammer’s contour

In Section 2] we use Pochhammer’s formula (277) which gives the beta
function B(A, k) in the whole complex plane as a function of A as well as of
k. That formula is obtained as the analytic continuation of Euler’s integral
of the first kind (2.6). We now give a modified Pochhammer’s formula
which corresponds to (B.10]).

Formula (B10) is obtained from (2.6]) by the change of variable z = |

t
¢

»
We now give a formula from (2.7)) by the same change of variable n = ,
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As a result, we obtain the modified Pochhammer’s formula for B(\, k):

1 _ N
/é P ), (3.14)

B — _ ,ITAITR
(A, k) ¢ 4sin(m\) sin(7k)

which applies for all A,k € C\Z<. Here C is the closed contour shown in
Fig. Bl

FIGURE 5. The contour of integration C, from 4, to X, to
X~ = Xe %™ §; = 61e7H", 5, Y, YT = Ye¥T 5t =
de?™ and then back to §. The four horizontal pathes are
called a, b, c and d from the top to the bottom.

In this place, we give a definition of mDy (z) in a restricted condition.

CONDITION A. f(z) is expressed as f(z) = 27 f1(z), where v € R and
f1(z) is an entire function.

In Section [6, we introduce more general conditions, which are Condi-

tions B and C.

DEFINITION 3.4. Let Condition A or Condition B (see Section [6]) be
satisfied for v € R. If v ¢ Z, v € C\Z<o and v — ¢ Z, we define y; D f(2)



640 T. Morita, K. Sato

of order v by

I(v+1)

DY _ plgr—imrtiny
uDgf(z)=e 4 sin(m(y—v

/~ " (2 + ne?)dn, (3.15)
) Je

where max(d,91) < |z| < min(X,Y) and (argz + ¢ — 7) # 0 (mod 2m)
are assumed for the contour C. If v ¢ Z, the value of mDgf(z) at v €
C satisfying v € Z.g or v — v € Z should be determined by analytic
continuation. If v =n € Z, it is defined by

MDGf(2) = lim w D" (2)) (3.16)

LEMMA 3.4. uDyf(2) is analytic as a function of v € C, as far as
v leoandy—v ¢ Z.

This follows from the fact that the integral in ([B.15]) is analytic as a
function of v, as is confirmed by [19, Section 5.21].

In discussing the relation between Dy f(2) and gD f(2), s2[f] defined
below plays an important role.

DEFINITION 3.5. We denote by sa[f], the least of sy € R such that
SUP_rcp<r by °|f(z + 1€")] — 0 as t; — oo for all s € R satisfying s > so.

THEOREM 3.3. Let so[f] < oo and let Dy f(2) exist. Then gDy f(2)
also exists, and v Dy f(z) = uDyf(z), for v € C satisfying Re v > s1[f].

THEOREM 3.4. Let f(z) be an entire function. Then, (i) m Dy f(z) =0
for v € C\Z. (ii) If s2[f] < 0o, uD{f(2) = 0 for Re v > s1[f].

THEOREM 3.5. If p Dy f(2) exists for n € Z>o, mDj f(2) = ™ (2).

3.4. Comparison of Liouville’s fI and its analytic continuations

In Table 2, we summarize the domains of v in which D} f(z) and its
analytic continuations exist and are analytic as a function of v. The rows
for LDgf(z) and HDgf(z) are due to Lemmas[3.2]and [3.3] respectively. The
row for p Dy f(2) for sa[f] < oo is due to Lemma [3.4] and Theorem [3.3]

Let f(z) = e~ for a € C satisfying Re (ae’®) > 0. Then s1[f] = —oc0
and so[f] = oco. By using (8.8]), Table 2] and Theorem [3.4] we obtain the
column for e~** in Table [Bl
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so[f] < o0 so[f] = o0
tDgf(z) si[f] <Rev <0 s1[f] <Rev <0
HD(‘;f(z) Re v > s1[f]
mDyf(2)

Re v > s1[f]
veCvéneZan<slfly, — ————-
vé{v eClReV <s[f],b—1v €Z}

TABLE 2. Domains of v in which Dy f(z), uDyf(z) and
mDy f(2) exist and are analytic.

f(z) =™ f(z) = 2°
s1[f] = —o0, s2[f] = 00 si[f] = s2[f] =Rea
Domain of ¥ Domain of a Domain of v Domain of a
LDgf(z) _C ae’® € ,C Rea<Rev<0 _C
uD3 f(2) C ae’® € ,C Rev > Rea C
mDy f(2) mDge™* =0 C,a—v¢Zso C

TABLE 3. Domains of v and a in which . D{f(2), uDg f(2)
and D f(z) exist and are analytic as functions of v, for
flz) =€, 22

Let f(z) = 2% for a € C. Then s3[f]

= s1[f] = Re a, and in place of
(39), in the case of a ¢ Z>(, we obtain

v_a —iqu(V_a) a—v

mDgz" = e I'(—a) , (veC, aeC\Z>y), (3.17)
. Ty —

HD(;VSZG — imy (V a) a—v

I'(—a) 27", (Rev >Rea, a € C\Z>p). (3.18)
Formula (B.I7) is obtained with the aid of (B.14]), and (BI8]) follows from
it by Theorem .3l We note that p/ D2 is uniquely determined by (3.17)
for all v € C if a ¢ Z>o.

In the case of a = n € Z>g, by using B.17)) in (3.16]), we obtain
D" =0, veC\Z, (3.19)
n! n—m
/ eZ, m< n)
Dm n__ 1 Dm a _ (n_m)!Z ’ (m I = ) 320
MPg = = A, MEe = {0 (meZ,m>n).( )
Then in particular, 5, D%2" = 2™.

In Appendix B, a remark is given on nonstandard analysis related with
this calculation.



642 T. Morita, K. Sato

By (319), (3:20) and Theorem [3.3] we have
gDgz" =0, (n€Zxo, Rev>n). (3.21)
Formulas (819]) and (B2I]) are in accordance with Theorem [3.4]

REMARK 3.1. When n € Zs¢ and m € Z, in place of (3.20]), we
could adopt y;Dg'z" = lim, ., yDyz". Then by (B.19), we would get
wDg'z" = 0 and hence MDgz” =0.

The column for 2% in Table [ is obtained by using (3.9), (318), (3.21),
BI7), 3I9) and (3:20).

REMARK 3.2. By definition of €7, we have e=%* = >"7° | I (—az)*. By
[.8) and Table B, yDje™** = (—a)”e”** for Re (ae?) > 0. On the other
hand, by (321)), we would have > % o[/} 'HDq’;(—az)k] = 0 if there existed
a v € C satisfying Re v > k for all k € Z>(, but there exists no such a v. If
we ignored the condition Re v > n in ([B.2I]), there would occur a conflict.

Let f(z) = e %. Then s1[f] = —oco and s3[f] = co. By Theorem [3.4]
we have prDfe** = S ol -MDg(—az)k] = 0 for v € C\Z. When
v =m € ZLxo, we have \yD'e” % = (—a)"e™ % = S ol MD$(—az)k],
by using Theorem and (3.20). Theorem 3.3l states that s Dfe™** and
HD;;e_“Z are not related analytically.

We find discussions on the consistency of analytic continuations of Li-
ouville’s fI of exponential function in [3, p. 360].

3.5. Remarks on Nishimoto’s fDI

In a series of books [I1, [12], Nishimoto gave a survey of his work on
fractional calculus, where he defined the fractional differintegration (fDI),
respresenting the fractional differentiation and integration as a whole, with
the aid of a generalization of the Cauchy integral formula of differentiation,

by (813), which is equivalent to (3.12)),
He denote Nishimoto’s fDI by (f),, which he defined as follows.

(1) When p D7 f(2) exists for ¢ =0 or ¢ = —m, (f), is equal to it.

(i) When s1[f] # —oo and the analytic continuation of gDy f(2) as a
function of v for ¢ = 0 or ¢ = —7 exists, (f), for v € C\Z is equal
to the analytic continuation.

(iii) When m € Z~o, (f)—m = limy—_p(f)o-

(iv) When m € Zsq, (f)m = f™(2).
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As a consequence, we have (e”*), = g Dge™** by (3.8) and Table [3]
for Re (ae’®) > 0, and (2%), = mDygz" given by B.17) and (2"), = 0 for
n € Z>o and for v € C excluding v = m satisfying m < n. Because of
this choice, a consistency is lost as seen from Remark Nishimoto’s
fractional calculus is very interesting in taking advantage of the analyticity
and the index law, but there exist some inconsistencies to be clarified.

By (B.17) and ([B.18)), Nishimoto’s fDI of f(z) = 2% is given by (z%), =
mDyz" = pDgz" for Re (v — a) > 0, and its analytic continuation to
Re (v —a) < 0. We see that (2?), = yDygz for all v, a € C, including
v=m¢€Zand a=n € L.

Formula (3.19) shows that, if n € Z>, mDg2" = 0 for v € C satisfying
n—v ¢ Z>o. The singularities are isolated ones at v = n,n—1,---. If we
remove them, regarding them as removable singularities, we would obtain
mDyz" = 0forallv € C. In the above definition, (iii) states that Nishimoto

makes this choice at v = —m for m € Zsq, but he states that (2%)_; =
lim,—,—1(2?), = 32° in [12] p.47]. The result is consistent with (3.20), but
the last equality does not hold.

4. Index Law of fD and yDyg(t) = z70

In this section, we use D™ f(z) to represent f(™)(z) for n € Z>o. When
n=0or =1, we put D°f(2) = f(2) and D' f(2) = Df(z) = f'(2).

4.1. Index law of LD(;)‘f(z)

THEOREM 4.1. Let \,x € ;C, and let LD(;)‘_”f(z) exist. Then the
index law LD(;)‘[LD;”f(z)] = LD;A_”f(z) holds.

A customary proof is given at the end of Appendix A.

LemMaA 4.1 If 1D, " f(z) exists, D" f(z + t1e'?) — 0 as t; — oo.

This follows from Lemma [3.1] and Theorem (4.11

LEMMA 4.2. Ifn € Zsq satisfies —n > s1[f], D"[LD;" f(2)] = f(=).

Proof. When n = 1, this is confirmed by taking differentiation of
LD(;lf(z) = —f;+oo'ei¢ f(€)d¢, which is given by ([B.6) for A = 1, taking

account of Assumption A. The same equation for n > 1 is then confirmed
with the aid of Theorem [4.11 O
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4.2. Index law of yDJf(2)

We now adopt the following assumption.

AsSUMPTION B. Let f(")(¢) for n € Zq exist on Py(z). Then s;[f(™] <
s1[f] —n.

This implies that ¢, | £ (2 +#,¢*?)| — 0 as ; — oo when s > s1[f] —n.

LEMMA 4.3. Let n € Zxo, and let gDy f(z) exist. Then pDyf(z) =
aDy ) (2).

P r o o f. We apply the partial integration to (3.12]), and then we note
that we can choose the boundary values of the integration to be 0 by As-

sumption B. O

THEOREM 4.2. Let m € Z~q satisfy m > si1[f], and v € C satisfy
s1[f] < Rev < m. Then

uD4f(z) = LDy " M (2). (4.1)
This is due to Lemma (.3 and Theorem [3.11

LEMMA 44. Letn € Z>q, and let ¢ € R, z € C satisfy |¢ —argz| < 7.
Then s1[z" log z] = n, and

a Dy (2" log z) = n! eIy — )V Rev > n. (4.2)
P r oo f When Re v > n, by using Theorem [4.2] we obtain
uDy (2" log z) = LD;_”_I[D”H(z" log z)] = LD;_”_I(n!z_l). By using
B9) in the last member, we confirm (4.2]). O
LEMMA 4.5. If gDy f exists, then HD(’;f(z + 4e'?) — 0 as t; — oo.

This follows from Theorem and Lemma [4.1]

THEOREM 4.3. Let ¢ € R and u, v € C. If Re v > s1[f] and Re (u +
v) > s1|f], then the index law

HDZ[HDZSJC(Z)] = HDZ—H/]C(Z) (43)
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holds. In particular, either if s1[f] < 0 and Rev < 0, or if Rev > 0 and
S1 [f] < —Re v,

wDglaDy” f(2)] = f(2). (4.4)

P r o o f. By using Theorems and [4.1] and Lemma [£.2] we obtain
aD4laDEf(2)] = LDy~ D™Dy "D f(2)]
= [DETVTTDMf(2)] = g DY f(2),

for m = max{|Re x| + 1,0} and n = max{|Re v| 4+ 1,0}. (44) is obtained
from the index law ([£3) by using Theorem 3.2l Here |z for 2 € R denotes
the greatest integer not greater than x. O

In [2], we find a proof of the index law (3] for p,v € +C, where
Campos stated that the case when v € Zg is excluded in (4.3).

THEOREM 4.4. Either if s1[f] < 0 and Rev <0, or if Re v > 0 and
s1[f] < —Rewv, then a particular solution of gDjg(z) = f(2) is given by

9(2) = uD;" ().
We confirm this by using (4.4).

DEFINITION 4.1. If s1[f] < —1, Liouville’s fD for Re v > 0 is usually
defined by

LDEf(2) = D™D f(2)) (45)
if the righthand side exists, where m = |v] + 1.
LEMMA 4.6. If s1[f] < —1 and gD} f(z) exists, then [ D{f(z) defined
by Definition 1l also exists, and Dy f(2) = n Dy f(z) for Re v > s1[f].
This is confirmed by using Theorem [4.3] and .11

4.3. Index law of y/Dyf(2)

LEMMA 4.7. Let f(z) satisfy Condition A or B for v ¢ 7, and let
9(z) = mDy f(2). Then g(2) satisfies the same condition with ~y replaced

by v —v.

Proof If f(ze™) = e*™ f(z), we confirm g(ze?™) = e2m(1—¥)g(z)

by using (B.15]). O
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THEOREM 4.5. Let Condition A or Condition B (see Section [6]) be
satisfied for v ¢ Z, let s3[f] < oo, and u, v € C. lf v—~y ¢ Z, p+v—~ ¢ 7Z
and p,v, 1w+ v ¢ Z<g, then the index law

DL DS f(2)] = mDL™ f(2) (4.6)
holds. In particular, ifv —~ ¢ 7 and v ¢ Z,
WD DL ()] = f(2), (47)

mDaDgf(2)] = f(z), if Rev>si[f].

P r o o f. The index law is due to Lemmas 7] [3.4] Theorems and
4.3l (A7) is due to Theorem (43)) is due to Theorem [3.3] O

THEOREM 4.6. Let f(z) satisfy Condition A or Condition B (see
Section[6]), and let s1[f] < 0. Then a particular solution of yD{g(z) = f(z)

is given by g(z) = mDy" f(2), if s2[g] < oc.

P r oo f. The condition s;[f] < 0 is required by Lemma We re-
place f and v by g and ~ + v, respectively, in (4.8]). O

4.4. Solution of ;Dyg(t) = z7b
We study the problem of solving the linear equation:
uDig(z) ==7", (4.9)
for b € C. When a solution exists, the solution g(z) is given by a particular
solution satisfying this equation, added by a complementary solution h(z),
which satisfies the homogeneous equation yDgh(z) = 0.
If Re v > 0, by (3:21)), a polynomial of degree m = [Re v] — 1, h(z) =
pm(2), satisfies g D{h(z) = 0. Here [z] for z € R denotes the least integer
not less than z.

THEOREM 4.7. A solution of (49) exists if and only if Reb > 0. A
particular solution go(z) of (£9) is then given by

go(z) = ™ F%b(;)”) v if v—0¢ Z>o, (4.10)
go(z) = (=1 nl %(b) 2" log z, ifv—b=ne€Zs. (411)

These are confirmed by using (3.I8]) and Lemma [£.4] respectively.
We now give a derivation of (£I0) and (@I with the aid of Theo-
rems [4.4] and
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P r o o f. The condition Re b > 0 is required by Lemma By Theo-
rems and (B.I7), a particular solution of (£9) is given by

g(z) = MD(;”z_b = e””r(ll:(;)y)z_bw, ifv—b¢ Zsy. (4.12)
When Re (v — b) < 0, (£I0) is obtained by using g(z) = HD;”z_b, which
is due to Theorem [4.4] and (3.18)). In deriving (£.I1)), we put v —b =n+e.
Then [{12) gives g(z) = C(€)2" "¢, where C(¢) = ™ F(;g))_e). When € ~ 0,
we note that yDygz" = 0 by (8.21]), since Re v =Re b+n+Re € > n. Now
as a particular solution of ([£9), we may adopt g(z) = C(€)2"1¢ — C(€)2",
so that we have

o iwur(_n - 6) n-+e n
o DL+ T (1 —¢)
_ _ gim(b+e) n]
¢ PO+ 14 ) 087+ O
In the limit of € — 0, we obtain ([IT]). 0

4.5. Index law of Dy f(z) and distribution theory

We denote the Heaviside step function by H(z). When f(x) is defined
for x € Ry, we assume that

0, x e Rgo,

f(:E)H(I‘) = { f(:L’), z € Royo. (4.13)

For a function f(z) satisfying f(z)H(z) € L], (R), RLL: rr Dy f ()
for A € C; is defined by (2.1]) and the fD of order v € C satisfying Re v > 0
is ordinarily defined by rr.Dj f(x) = D™ [rr. Dy~ ™" f(x)], where m = |v]+1.
We now adopt this definition.

LEmMMA 4.8. If ¢ Dy f(x) defined by ([2.2)) exists, then rr D f(x) also
exists, and rr,Df f(x) = cD§ f(z).

P r oo f. This is confirmed by using ¢ D§ f(x) = D[c Dy~ " f(x)] which
follows from (2.2)). O

For RLfD, the index law does not always hold. In [5], the example given
is f(x) = 1, when RLDO_I[RLDél] =0# RLDé[RLD()_ll] = 1, and use of
generalized function or distribution is mentioned.

In [I0], we define the distributions in the space Dy which is dual to
the space Dg of infinitely differentiable functions in R, having a support
bounded on the right. Then distributions in D/, are regular distributions
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which belong to E}OC(R) and have a support bounded on the left, and their
derivatives. We denote the fD of a distribution h(z) by D”h(z).

Let f(z)H(z) € L}, .(R), and let so be the greatest of s € R such that
rr.Dg f(x) is absolutely continuous on R for all v satisfying Re v < s — 1.
Then we denote this so by so[f]. Then

D[f(x)H(x)] = [re Dy f(x)]H(z), Rev < so[f]. (4.14)

If f(x) =1, so[f] = 1 and we have D~'[D'H(z)] = D~'6(z) = H(x).
In the distribution theory, we have the index law DH[D"h(z)] = D*tVh(x).
Hence if we use DY[f(z)H (z)] in place of gy, DY f(z), the problem of viola-
tion of the index law does not occur.

5. fD of Cosine and Sine Functions

In this section, we consider LDgf(z) for = 0 and ¢ = —m. For ¢ = 0,
we give wDg f(2), and then 1 D§ f(z) is obtained by

Do f(z) =™ - wDgf(2). (5.1)
The equation given below for 1 D{f(z) and w Dy f(2) are valid for v € _C.
The corresponding equations where subscript H appears in place of L are
valid for all v € C.
When a € 1C and z € R, we have y Dge™ " = a”e” %" and [ DY e =
a’e® by (B.8). Here we do not consider the fD of the sum e** + ¢~ %*.
Let b,c, 7,19 € Ryg, z € R, and let b+ ic = re™. Then we have

Dz/ —(bxic)x _ — Ve —bzFi(cz— 1/7,[)) LDiﬂ_e(b:l:ic)x _ Tuebw:ti(cz—i-m,l))’

wDY (e cos cx) = e cos(cx — v1h),
DY (" cos cx) = 1V eb™ cos(ca 4 vip). (5.2)

Dye™* are given for Re (+ae’®) > 0. The case where +ae'® is pure
imaginary, is excluded from our study, because of Assumption B. In that
case, we can consider the limit of Re (+ae’®) — 0+. By taking the limit of
b— 0 in (5.2]), we obtain

wDg cos cx = ¢” cos(cx — ;TV), DY coscx = ¢” cos(cx + ;TV), (5.3)

and these equations with cos replaced by sin.

The above derivation of the two expressions in (5.3)) follows Liouville’s
argument for v € _C, given in Liitzen’s review [8 p.327].

In the original paper by Weyl [18|, 17], the fD is given by W" f(x) =
wDg f(x), and it is applied to a periodic function of period 1 of the form
flx) =300 cne®™ ™ andits fD is given by WY f(t) = Y00 (2win)Ve,

x 2™ wwhen cg = 0 and S In¥c,|? converges. We can confirm this

n=—oo
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in a similar way as above. In [I, p. 426], a proof of the above formula is
given for the case when W f(t) is defined by W f(t) = 1, D” _f(¢t).

6. Remarks on the Definition of /D7 f(z)

In Section [B.3] mDgf (z) is defined for f(z) satisfying Condition A or
B. Here we give the latter condition and also another condition.

We now assume that fi(z) is analytic on a neighborhood of P4(z), and
is a one-valued analytic function on a neighborhood of infinity, except a
possible isolated singularity at infinity.

We choose C' shown in Fig. Bl such that fi(z) is analytic in the regions
given by min(X,Y) < |z| < oo and 0 < |z| < max(d,d;), and also in a
region enclosing the pathes a, b, ¢ and d.

CONDITION B. f(2) is expressed as f(z) = 27 f1(z) where v € R, so
that f(ze?™) = 2™ f(2).

CONDITION C. There exists an m € Zwq for which f™)(z) satisfies
Condition B.

DEFINITION 6.1. Let p/ Dy f(z) defined by Definition B.4 with Condi-
tion B be denoted by ;D f(z). Then when Condition C is satisfied, we
put ;1 DYF(2) = 5 DL FO(z).

The following lemma and two theorems follow from Lemma [3.4] Theo-
rems [B.3] and [3.5], respectively.

LEMMA 6.1. Dy f(2) defined by Definition is analytic as a func-
tion of v € C, if v —m ¢ Z.o and vy — v ¢ Z.

THEOREM 6.1. For v DY f(z) defined by Definition [6.1, Theorem [3.3]
holds valid.
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THEOREM 6.2. Let Dy f(2) defined by Definition[6.1 exist for n € Z
satistying n > m. Then yDg f(z) = F(2).

LEMMA 6.2. Letn € Z>o, and let ¢ € R and z € C satisty |¢p—arg z| <
7. Then s3[2"log z] = n, and for v € (C\Z) U {m € Z|m > n},

mDY(2"log z) = nl e ™D (y — p)zv (6.1)

This follows from Theorems [4.2] Lemma [4.4] and Theorem

Appendix A: Proofs of Theorems [3.1] ~ 3.4] and [4.7]
Let 6, r, R € Ryg satisfy § <r < R, and

R 2
L;’R:/ n)‘_lf(z + new)dn, J, :/ (rei‘g))‘f(z + rewei‘b)z’d& (A1)
P 0

We use I+ to denote the integral which is obtained from the one in (3.12))
for v = —\, by replacing Cy by Cpg+ shown in Fig. Bl Then

Iy = —Isx + Js + 7™ Iy y. (A.2)

Let I, be the integral in (3.6), and Iy and I be those in (312) and @I15),
respectively, for v = —\. Hence

Ingim im Ig7x, IH: lim lim IH*. (A3)

1
—0 X—o0 X—o00Y—00

Proof of Theorem 3.1l When [ exists, by taking the limits of
d—0,X,Y — oo in (A.2), we obtain

Iy = —Ip 4 ¥ = e™ . 2i-sin(w)\) - I, (A.4)

We then use sin(w\) = r(V)L(1—y) - Note that this relation between I1, and

Iy is the same as the relation (B.IT]) between the integrals in (3.4)) and

BI1) for A = . O

Proof of TheoremB.2l Now v = —\=n € Z>o. When Iy exists,
by taking the limits of X, Y — oo in (A:2), we obtain
2

i
In=Js, Js= :;, e f(2), (A.5)

We use these in (3.12). O
The contour C' shown in Fig. [l consists of {a,c0™,b,0",c,007,d,0™ },
in this order. We divide the contour into two parts
M .= {007,d, 07, a}, C® .= {oo™t,b,0", c}. (A.6)
Their contributions are
IW =72 gy — Ty, T3 = o7 2MAZ2T0 (_ Jo o T ). (A.7)
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Proof of TheoremB.3l From (A7), we have

I = —(1—e 2mA=2miny ., — e 2mAZ2T0 Jo 4 o720 I (AL8)
When s,[f] < oo and Iy exists, in the limit of X,Y — oo, we have

I = —(1—e A2y — 25 ™™ gin(r(A+~))Ig. (A.9)
We then use sin(m)) = rOT(—y - When Iy, exists, we have a relation
between I, and I by using (A.4) in the righthand side of (A.9). Note that

this relation between I;, and I is the same as the relation between the

integrals in (3.10) and (3.14) if v = -\ — k. O

LEMMA A.l. Let f(z) be an entire function. Then
(i) I =1M =T® =0, and (ii) if so[f] < co and Re v > s5[f], Iy = 0.

Proof. In (AG), the contour is divided into two. In the domain
enclosed by either of them, the integrand of the integral I is analytic.
Hence we have (i). By (A7), I = Jy — Iy = 0. We conclude (ii) from
this. )

Proof of Theorem[3.4l In this case, we use (B.10) for n = 0.
We then note that 27 f(z) converges uniformly to f(z) on C as v — 0, and
that, when v = 0, I = 0, as shown in (i) of Lemma Al (ii) follows from
(i) and Theorem 3.3l or from (ii) of Lemma [A] and Lemma [3.3 O

Proof of TheoremB.5l Now v = -\ =n € Z>g. We first assume
that Condition A or B is satisfied and v ¢ Z. Then by putting X =Y in

(A8) and ([A2]), we obtain Iy« = Js and

I=—(1—e 2™ ;. (A.10)
Using this with Js given in (A%, in (BI5), we finish the proof. When
r=m € Z, we use ([3.10]) with n replaced by m. 0

Proof of Theorem[4.dl Using (3.6]), we write LD;A[LD;”f(z)] as

rox L [T paferms Lo [T ! i

enerm / - [eZ e / (x = )" " f(z + ze' )dm] dt.
() Jo L(k) Ji

We confirm that this is equal to LD;)‘_” f(2), by exchanging the order of

integrations and using [; t*~!(z — t)"71dt = 2*TTIB(), k). 0
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Appendix B: Application of Nonstandard Analysis

Formula (3.17) shows that pyDyz" is an analytic function of v € C if
a ¢ Z>o, with poles at v satisfying a — v € Z>¢, and the equation in (B.17)
is valid for a ¢ Z>(. Regarding n € Z>( as n + € with e satisfying ¢ ~ 0,
we obtain (8.10) in Definition 3.4l This results in ([B3.20]).

In nonstandard analysis [I5], we consider the set of real numbers,
which we denote by R™, in addition to R. In the set R™, there ex-
ists the infinitesimal neighborhood of @ € R, which we denote by RZ} .
If v € R, 0 < |z —a|l < ¢ for all § € Ryg. We also consider the
corresponding sets of complex numbers, C™* = {x + iy|z,y € R™} and
Cx ={a+z+iylz,y € R} for a € C. The fact that a; € RZ or
a; € CZ, is denoted by a; ~ a, a; —a ~ 0, and a = St[a;]. We assume
that, if either a € R™ or a € C™ and a # 0, then 1/a € R™ or 1/a € C™,
accordingly. When a ~ 0, we say that a is infinitesimal and 1/a is unlimited
(or, “illimited” as the notion used by Robert [15]).

We propose to adopt ([B.16) in Definition B.4l In the language of non-
standard analysis, it is stated as follows. We assume that (3.17) is used for
a € C"™\Z, and adopt the following definition.

DEFINITION B.1. For n € Z>p and v € C, we define MDgz" by
mDyz" = Sty Dyz, if a ~mn.
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