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Abstract

The generalized functional equations describing a wide class of different
self-similar processes are derived. These equations follow from the obser-
vation that microscopic function describing an initial self-similar process
increases monotonically or even cannot have a certain value. The last case
implies the behavior of trigonometric functions cos(z£"),sin(z£") at £ > 1
and n >> 1 that can enter to the microscopic function and when the lim-
its of the initial scaling region are increasing and becoming large. The
idea to obtain the desired functional equations is based on the approxi-
mate decoupling procedure reducing the increasing microscopic function to
the linear combination of the same microscopic functions but having smaller
scales. Based on this idea the new solutions for the well-known Weierstrass-
Mandelbrot function were obtained. The generalized functional equations
derived in this paper will help to increase the limits of applicability in de-
scription of a wide class of self-similar processes that exist in nature. The
procedure that is presented in this paper allows to understand deeper the
relationship between the procedure of the averaging of the smoothed func-
tions on discrete self-similar structures and continuous fractional integrals.
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1. Introduction and formulation of the problem

With the appearance of the book B. Mandelbrot [6] many researches are
trying to apply the ideas of fractal geometry and self-similarity principles
for description and generalization of different phenomena and processes that
exist in nature. In order to obtain the desired power-law exponents many
authors simply replace the integer values of derivatives/integrals by similar
non-integer differentiation/integration operators in many basic equations
of physics, including diffusion, wave and other equations. Many exam-
ples of replacements of such kind can be found in books [15] 2] [17], also
paper [4] and references therein, reflecting the modern state of the interdis-
ciplinary direction having acronym “FDA” (Fractional Derivative and its
Applications). Despite of the essential progress that was achieved by many
researches actively working in the field of the Fractional Calculus (FC)
applications, many authors leave aside the questions of validity and justi-
fication of this replacement and the natural reasons of appearance of the
non-integer differential /integral operators in basic equations that pretend
on the description of dynamical processes taking place in fractal media. So,
the basic question is remained and can be formulated as follows: What kind
of equations (differential, integral, matrix and others) initially not having
the power-law exponents have solutions containing the desired power-law
functions with real or even complex-conjugated exponents? A similar ques-
tion can be formulated in another form: Is there any relationship between
self-similar (scaling) properties of the fractal medium (considered on the
mesoscale region) with non-integer derivative/integral or not? The clear
and well-justified answers for these questions are important for further ap-
plications of the apparatus of the fractional calculus in physics and other
natural sciences. The basic motivation of this paper is to show how to ob-
tain the general solutions containing a linear combination of the power-law
exponents (including real and complex-conjugated values) that follow from
a certain class of the functional equations. These generalized functional
equations can describe a wide class of processes having a fractal nature.

The results of this survey will serve as a guideline in understanding
of the relationship between non-integer operators and self-similar processes.
The content of the paper is organized as follows. In Section [2] we consider
the model of self-similar process that includes the simplest case consid-
ered earlier in [7, 8]. The approximate analytical solutions found in Sec-
tion [2]are verified numerically in Section Blby application to the well-known
Weierstrass-Mandelbrot (WM )-function. The results obtained in Section
allow us to find new solutions for the WM-function that were not known
before. The results and some further generalizations are summarized in the
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last Section [4l We include as illustration several fugures, and two Appen-
dices (Sections [Bll6]) that gives some mathematical details.

2. The model of the self-similar process

In order to understand better the new results we should remind the
previous result that has been obtained in [7,[8] by one of the authors (RRN).
Let us suppose that we consider a process that can be described by some
variable z. This variable can accept real or even complex value (in the
last case it can coincide with the argument associated with the Laplace or
Fourier transformations). If in the result of the scaling transformation z —
z€ this process is not changed, then one can write the following functional
equation

S(26) = })5(2) +co. (2.1)

Here z defines a current variable that can be real or complex, the
real/complex values &, b and ¢( define the parameters of this simplest func-
tional equation. The general solution of this functional equation was ob-
tained in [7, ] and can be written as

1
Co In( b)
S(z) = PR,(Inz)z" + , V= )
' 1=3) In(€)

PR,(Inz) = Ay + Z Acy, cos(27rk:l z) + Asy, sin(Zwkan),

- In& In&
PR,(In(z) £In(€)) = PR,In(2). (2.2)

The second and the third rows in (2.2) determine a unknown log-periodic
function having the real period coinciding with the value [n(§). Let us

consider the sum of the type
N-1

Sn(z) = > bf(EY). (2.3)

n=—N+1
It appears in the result of averaging of some physical value (described
by the microscopic function f(z)) over discrete fractal structure (when the
volume V;, = ¢pb™ ). The value N in (2.3) determines the limits of a self-
similar region. This sum for any finite N has the following scaling property

Sw(s€) =, Sw(e) + 0V EY) — b N ()

If the function f(z) is chosen in a way that the contribution of the last two
terms in the limit N — oo becomes negligible, then we obtain the scaling
equation (2.1) with general solution (2.2). The description of some self-
similar process in the form of additive combination of microscopic processes
distributed over a fractal structure or in the form of the strongly-correlated
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product (considered in [7], [§]) was turned to be very constructive. Later,
based on this idea one of us enabled to find the physical meaning of the
temporal fractional integral [§] with real and complex-conjugated power-law
exponents and develop the theory of dielectric relaxation in the mesoscale
region based on the fractional kinetics [9, 10] including its experimental
confirmation [I1, [12]. It is interesting to note also that the solution of the
functional equation (2.1) at ¢ = 0 given in the book [3] is not complete.
As it was shown in [7, 8], the log-periodic function (defined by relationship
(2.2)) is reduced to the constant Ay when the averaging procedure over
the period In(a) is introduced. In other words, the values ¢ should be
distributed over the continuous set of scales. When the distribution of the
values &,(n = 1,2...) is discrete, then the log-periodic function appearers.
The French scientist D. Sornette was the first who noticed this peculiarity
and now the log-periodic oscillations were discovered in many real physical
processes. More details are given in his paper [16]. In our paper [13] the
linear principle for the strongly-correlated variables has been formulated
in order to modify the simplest functional equation (2.2) and to find new
regions of its application. But in this paper the modified functional equa-
tions were written on the intuitive level without their proper derivation.
The basic aim of this paper is to generalize the simplest functional equa-
tion (2.2) and to increase the limits of its applicability for a wide class of
different self-similar processes that can take place in the mesoscale region.

We choose the following model of some general self-similar process.
Let us suppose that this process on the subatomic level is described by
some microscopic function f(z). For this concrete case the current variable
z can be associated with temporal variable and corresponds to the z =
th, where 7. determines a characteristic time of the dynamic/relaxation
process considered. The geometrical and dynamical properties associated
with some self-similar region are characterized by the parameters b and &,
correspondingly. From the mathematical point of view, the total process
covering all self-similar regions can be expressed as

N
S(z)=co Y bf(2£"). (2.5)
=—Np

In contrast with the previous case (2.3), we consider more general expres-
sion. Here ¢y determines the value of the geometric variable at n = 0,
the values Ny and N determine the limits of the mesoscale corresponding
to the whole self-similar process. We suppose that the low limiting value
No(Ng < N,N >> 1) corresponds to the beginning of some self-similar
process both in space and time. The geometrical parameter b can be pos-
itive or even negative. Before it was supposed that microscopic function
f(z) had the finite limits at small and large values of the variable z. For
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this case the contribution of two terms in (2.3) is negligible and we come
to solution (2.2) considered earlier. In this paper we want to consider the
case when the contribution of two terms in (2.3) is essential. It means that
in the limit N >> 1 the values of the function f(z) at z >> 1 become large
or does not exist. The last case implicates the behavior of trigonometric
functions cos(2£N), sin(2¢V) at N >> 1 that can enter to the microscopic
function f(z) as factors or argument. So, mathematically the behavior of
f(z) can be written as

lim f(ZEN) — ¢ does not exist,

N—oo0

0o, £>1 (2:6)

For the first case one can imply the combination of trigonometric func-
tions (for example, the Mandelbrot-Weierstrass function). The second case
can be associated with any microscopic function that is unbounded at
z> 1. So, we want to find the general form of the functional equation for
the Case-1: (b, > 1). The Case-2: (b,£ < 1) can be considered in complete
analogy with the Case-1, making the simple replacement b — b1, & — ¢1.
Other two possible cases determined as Case-3: with (b > 1, < 1), and
Case-4: (b < 1,£ > 1) lead to the simple functional equation (2.1) with
solution (2.2). These cases have been considered earlier in [7, [§]. If we re-
place z for z£ on the left-hand of relationship (2.5), then after some simple
algebraic manipulations one can obtain the following identity

S(2) =, S(2) + PV FEEN) — NNy ()

In contrast with condition (2.6) specifying the behavior of the microscopic
function at z >> 1, we suppose that at small values of z there is a limit

lim f(x~) !

m =1 Ly €51 (2.8)

From identity (2.7) replacing z — 26971, we obtain easily

S(£)= | ST+ 0 FE ) - N (N g =19, k-1

(2.9)

Taking into account condition (2.6) we cannot eliminate the large term

b f(2N+9) from (2.9). In general, the infinite set of equations (2.9) con-

tains two types of different variables S(z£9), b f(26N*1)(q = 1,2,--- , k)

and cannot be reduced to the system containing only one type of variable.

In order to close the infinite chain of equations (2.9) relatively unknown

function S(z) (or equally for the unknown microscopic function f(z)) we

should make a reasonable supposition (it will be justified below numeri-
cally)



THE DERIVATION OF THE GENERALIZED ... 723

k—1
FENT) =Y "0y (26N, (2.10)
q=1
Here Cy,(¢ = 1,2,---k — 1) a set of constants that approximate the
function figuring on the left-hand side. These unknown constants can be
found numerically with the help of the linear-least square method (LLSM).
From the system of equations (2.9) we have

B JEH) = S0 — ) ST + g =120 k=1, (20)

p~No—1 f(zeNotayl«No<N o, (2.12)
Here we took into account the limit (2.12) describing approximately the
behavior of f(z) for small values of z. For ¢ = k we have from (2.9)

S(a6") = | S(641) + 0V (6V) — Iy, (213)

Taking into account the decoupling (2.10) and relationships (2.11) we
have

k—1
be(Zé-N-‘rk) ~ bNZqu(Z§N+q)

q 1

k—1
= Zcq (2€7) — S(zgq—l)] +) CyLy (2.14)
q=1
After some simple algebralc transformations of expression (2.13) and sub-
stitution into it expression (2.14), we obtain finally the closed functional
equation relatively the remaining variable S(z)

S = () +Ce)SeE +Z( ) s

C
- bl S(z) + Z CyLy — Ly. (2.15)
q=1

So, for a wide class of self-similar processes when the condition (2.6) is
essential we obtain more general functional equation (2.15) in comparison
with the previous case (2.1), when the influence of the function f(z) for
the both limits (z >> 1,2z << 1) remains certain and finite (and in the
previous cases considered two terms in (2.4) had negligible values). In
the complete analogy with Case-1, one can consider Case-2: (b, < 1).
The algebraic manipulations for this case are similar and so the detailed
consideration of this case is omitted. The limits of applicability of the
functional equation (2.15) can be increased if we replace the initial variables
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(In(z) — t,In(§) — T) and consider the similar processes that are shifted
relatively each other to the past/future interval of time. For this case we
have

k—2
SE+KT) = ar1S(t+ (k—1DT)+ Y agS(t+qT) + apS(t) + By,
q=1
k-1
By = Y Cylg— L. (2.16)
q=1
Here the values of the constants a,(¢ = 0,1,--- ,k —1) coincide completely

with the corresponding constants figuring in (2.15). The formal solutions
of these functional equations (2.15) and (2.16) have been considered in the
paper [13] (and in brief are listed in Mathematical Appendix 1 here, Sect. [5])
and so it is not necessary to repeat these solutions again. But the functional
equations (2.15) and (2.16) were written in [13] on an intuitive level without
their accurate derivation and proper justification. In this paper we show
how to derive them from the model of self-similar process formulated above
together with intrinsic reasons that can produce the functional equations of
the type (2.15) or (2.16). What kind of additional physical interpretation
one can give for the function S(z)?

The function S(z) describes some dynamical one-dimensional (1D) self-
similar process that takes place on a set of geometrical objects that are
distributed randomly in the space and described by a set of geometric
parameters V,, = cob” (n = =Ny, —Ng+ 1,--- N).

This value, for example, can be associated with a volume or another
extensive statistical parameter. The microscopic dynamical process is de-
scribed by the function f(z). The dynamical scale of the process is deter-
mined by parameter £. It can be associated, for example, with a set of
relaxation times that obey to the scaling hypothesis. In the case when the
function f(z) satisfying to condition (2.6) is predominant, the description
of the averaged self-similar process associated with one dynamic fractal di-
mension is not sufficient. For Case-1 considered above, it is necessary to
have a numerable set of fractal dimensions that are defined from equations

Uy = l?n(()g“)), r=1,2---, (2.17)

where the set of the parameters )\, in turn, are calculated as the roots of
the polynomial

k-1
1
P(\) = A — Zaq)\q —ag, a1 =Cp_1+ b
q=1
k—
Cot1 S

q=1,2,--+ k=2, By=> CyLs— Ly. (2.18)
q=1

ag=Cq—

b
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If the set of the roots (2.17) can be calculated analytically then the
general solution of the functional equation (2.15) can be presented in the
form of linear combination of power-law and log-periodic functions

k
= Z PR, (In(z)) 2" + L,, (2.19)
when all roots of the polynomial P(\) are supposed to be different (the non-

degenerate case). The set of PR, (In(z)) defines the unknown log-periodic
functions and they can be presented by the infinite Fourier series

PR,(In(2)) = A}

= (r) In(z) () In(z)
T T .
kZ::lAck cos(27rkln(£)) + As,, s1n(27rkln(£) )] .

(2.20)
with period In(§). The decomposition coefficients of the series (2.20) should
be found from initial or other conditions. When a root v, figuring in (2.17)
accepts the negative value then (as it has been shown in [13]) it is necessary
to replace the root by its modulus value and the periodic function in (2.20)
should be replaced by some anti-periodic function having the following
decomposition

PR

¢;.’ cos(m in(2) s(r) sin(7 in(2)
ZA . (é))+A o sin( kln(é))]. (2.21)

The constant Lj figuring in (2.19) is determined by the free variation
constant method and depends totally on the constant value By figuring in
(2.18). If one of the roots of polynomial (2.18) v, is degenerated then the
solution for this root can be written as

ZPRS 1(In(2))(In(2))* 1] 2v9, (2.22)

where the value ¢ determmes the degree of degeneracy. Here, again the un-
known log-periodic functions entering into (2.22) are determined by decom-
positions (2.20), (2.21). If we replace the variables (In(z) — ¢,in(§) — 1)
figuring in general solution (2.19) then one can obtain the solution of the
functional equation (2.16). It is considered in the Mathematical Appendix
1, and not given here because it is obtained from (2.19) by simple replace-
ment. Before to start considering some interesting example it is instructive
to give the solution for the case k = 2. As we will see below this case can be
met frequently in possible applications. For this case we have the simplest
decoupling

F(zENT2) 2= O f (V). (2.23)

The functional equation has the following structure
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1 C
S(2€%) = (, + C1)S(28) - bIS(z) + B,. (2.24)
The desired polynomialland the constant from (2.24) are defined as
P() =X~ (, +C)A+ ', By=CiLli— Ly, (2.25)

The corresponding roots and power-law fractal dimensions are calculated
easily and given by expressions

_ 1 o _ ln()\l,g)
)\1 = b, )\2 = Cl, V172 = ln(&) (2.26)

The general solution of the functional equation (2.24) for the nonde-
generate case (C1,b # 1) is written as

S(2) = PRy(In(2))2" + PRa(In(2))2" + k1, by = B

(1-3)1-C)
The general solution of the functional equation (2.24) for another case
when (C; = 1,b # 1) is written as

S(z) = PRi(In(2))2"* + PRy(In(2)) + kiln(z), k1 =

. (2.27)

By
(1= )in()

And, at last, we give the solution of (2.24) for the degenerate case
(Cr= b=1,9g=2):

S(z) = PRy (Inz).In(2) + PRoln(2) + koln?(2), ky =

(2.28)

By
2ln2¢’
Finishing this section we should stress here that the set of fractal dimensions
calculated from (2.17) is always discrete and does not coincide with the
continuous set of dimensions associated with a multi-fractal structure [5].

(2.29)

3. Verification of decoupling for the generalized
Weierstrass-Mandelbrot function

We like to test and demonstrate the effectiveness of the decoupling
(2.10) using as an example the Weierstrass-Mandelbrot (WM)-function

ol n . 9 e
W(zx) = co Z b" sin <0+ 5 > . (3.1)
n=—Np

For Nog, N1 >> 1,6 > 1,1 < D < 2,b= 5(2313) < 1 this function coincides
with the real part of the WM-function that is determined, for example, in
the book [5]. It is easy to see that for this case when (b < 1,£ > 1) (defined
above as Case-4) the influence of two last terms figuring in (2.7) at Ny and
N7 >> 1 is negligible. For this case we have the standard scaling equation
of the type (2.1) with solution (2.2),

W (x) B ln(ll))

W) ="y = )

=2-D, Cy =0,
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W(z) = PR,(In(x))z", PR,(In(z) £In(§)) = PR,(In(z)). (3.2)

Other properties of this function (corresponding to Case-4) can be found
in the corresponding references given in the book [5].

3.1. Analysis of the WM-function for (b > 1,{ > 1,0 <¢)

Figures 1 (a, b, c) show the behavior of this function for N=25, 100,

1000 reference points. The concrete values of the parameters are taken as:
0

co=10"%b=1.25¢=1.5Ny=10,N; = 60,0 = L (3.3)

Verification of the hypothesis (1.8): For the given value of Ny = 60 direct
numerical calculations of the function

f($£N1+k) = Sin2(9 + W2x£N1+k)7 k= 07 17 U 7K7 (34)
lead to the following relationship:
f(z£N1+k) = f(z£N1+k_1)7 Ok—l = 17 Oq = 07 for q= 17 27 e 7k' (35)

Figures 2 (a,b,c) clearly demonstrate the validity of relationship (3.5)
for all possible values of k if the value of N; is sufficiently large. Number
of calculated points (N = 25, 100, 1000) and the values of parameters
from (3.3) used for verification of relationship (2.12) conserve their values.
So, this simple test leads us to the functional equation (24) where we put
Ci=1,Cy=0:

S(=€2) = (1 + Z)S(zg) _ 25(,2) ALy (3.6)

The constant AL is obtained as a difference between the arithmetic
mean values of the limiting functions

ALy = mean [b~ N7 (f (26 NoH2) — f(zg Mot (3.7)

These functions are plotted in Figure 3. As one can see from this
figure, their deviations are really small and this observation helps us to
replace them by their mean values in order to obtain the desired value
AL;y. The value of this constant lies in the interval [0.01, 0.03] for all range
of the reference points considered and so its influence is not important for
further analysis. Following to the general result expressed by relationship
(2.28), we rewrite the solution (3.6) for the numerical tests as

S(z) = PRyln(z) + PR,In(z)z" + kiln(z). (3.8)
Here v = In(1/b)/In(€) is one of the roots of the scaling equation

1 1 1
2

A —( +b)A+b 0, A2 e
ln(}))

In(§)

vi2 =0,
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The value of the constant k; figuring in (3.8) (obtained as before by the
variation of a free constant method) is determined by expression

—ALy
(1= 3)in(€)

The unknown periodic functions PRy, (In(z)) from (3.8) are given by
expression (2.20). The amplitudes A(()O’V), Ac,ﬁo’y),As]E:OW) can be found from
the given initial conditions or from the direct fitting of the solution (3.8)
to W(z) from (3.1) by the linear least square method (LLSM). We realized
the numerical test of solution (3.8) for the given reference points (25, 100,
1000) using the set of constants from (32). The results of the fitting are
illustrated by Figures 4 (a,b,c). We want to stress here the following fact.
With increasing of number of reference points the results of the fitting are
becoming worse and number of the fitting constants (figuring in expression
(2.20) in order to achieve an acceptable accuracy are increased essentially.
We are not giving them because their concrete values are not important for
this test analysis. Additional details related to the application of the fitting
procedure are explained in the captions to Figures 4(a,b,c). Finishing this
section one can say that new solution (3.8) found for the WM-function
increases our understanding of some hidden features that can be found for
self-similar processes covering by expression (2.5).

L = (3.10)

3.2. Analysis of the WM-function for (b=1,¢ > 1)
(The degenerate case)

It is useful to write the solution of the scaling equation for the WM-
function for the degenerate case. It follows from expression (2.29)

S(z) = [PRY(In(2))]In(z) + Pri” (In(2)) + ky In?(2). (3.11)

Here, again we have two unknown log-periodic functions PRJ1(In(z))
that can be decomposed to the Fourier series (2.20). The value k2 can be
found again by the variation of a free constant method and is written as

AL

20n(€)
So, for this case we do not have the power-law behavior (as it might ex-
pect) and for this degenerate case the power-law exponent is reduced to
the logarithmic function. For the given reference points (25, 100, 1000) the
results of the fitting are illustrated by Figures 5 (a,b,c). Other features
are remained the same and so similar figures that we had for the previous
case are omitted.

ky = (3.12)
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4. Results and new possibilities

The basic result obtained in this paper can be formulated as follows.
Based on a simple (1D) model of self-similar process presented by expression
(1.5) and taking into account the different behavior of the microscopic
function f(z) (2.6) one can derive more general functional equation (2.15).
This generalized equation contains a countable set of dimensions and so
description of a self-similar process by one fractal dimension is not complete.
The different asymptotic behavior of the microscopic function f(z) requires
for description of a general self-similar processes the finite set of dimensions.
Here we want to pay attention of a potential reader for new possibilities
and possible generalizations of these results. If the self-similar process takes
place in two directions then instead of equation (2.5) we have the following
sum

N1 No
Sy =co ) D BPBRS(ATE?). (4.1)
n1=—N1 ng=—N>

The detailed consideration of this important case (closely associated with
practical applications) merits a special research because it needs to consider
6 different cases. The simplest case of the functional equation obtained for
the variable S(z) has been derived and considered in paper [I] and has the
form

S(261&2) = apoS(2) + a105(2&1) + a1 S(262) + Fo. (4.2)

The solutions of the functional equation (4.2) were applied successively
for consideration of the properties of 2D self-similar (fractal) circuits con-
taining RC-elements. The generalization of (4.1) when Fp in (4.2) is not
a constant merits a separate research. Another interesting possibility in
deeper understanding of different self-similar processes is related to con-
ception of the quasi-fractals (Q-fractals). These fractals with another type
of scaling were defined on intuitive level (without their proper justification)
in paper [14]. So, here we want to show how to consider the self-similar
processes and derive the corresponding functional equation that can take
place in structures having another type of scaling. Let us suppose that the
total self-similar process that takes place in a fractal medium describing by
the Q-fractals can be presented by the sum of the type

N
S(z) =0 > 7 F (). (4.3)
j=1

Here the constants ¢y have the same meaning as before but the type of
scaling (in comparison with the sum from (2.5)) is totally different. In
expression (4.3) the value b numerates the geometrical objects while index
¢ is associated with dynamic process that can take place in the region of
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the mesoscale. The argument z as before can accept the real or complex
values. The index j numerates the number of objects obeying this scaling
hypothesis. These Q-fractals has logarithmic scaling. In order to see it we
present the last sum in the equivalent form

—COZblnu 2€M9) b= exp(b), €= exp(£). (4.4)

If we replace formally the summation index n=In(j), then we obtain
expression similar to the sum (2.3) but with one principle difference (all
index values j (j = 1,2,...,N) figuring in the modified sum (4.4) should
keep their integer values). In order to apply the same idea for obtaining
the scaling equation for the sum (4.4) we present it in the following form

S(6%) = co 3 B f(agintesn(o) (4.5)
j=1
In the expression (4.5) a is unknown constant. If we put a = [n2, then mak-
ing the replacement of initial index j for j = exp(a)j = 27, we transform
(4.5) to the following form

~ S(z) o
in(2 7in(5)
Sz bln(2 Z i V) = iin) e BT RN ),

Rn(z) = bw Z b'm0) f(zEm0)), (4.6)
j=N+1

The evaluation of the last sum Ry (%) is given in Mathematical Appen-
dix 2, Section So, the further investigation of the last expression (4.6)
can be realized with complete analogy of the sum (2.7). So, one can see
that the mixed (geometry/dynamics) scaling properties of sums (2.5), (4.1)
and (4.3) contain new possibilities for modeling of a wide class of different
self-similar processes.

5. Mathematical Appendix 1.
The general solutions of functional equation (2.16)

The solutions of this functional equation is closely related with well-
known solutions of difference equations with constant coefficients
Yi=ap1Yr—1+ar_2Yr o+ - aoYo. (5.1)
The solution of this equation (when all roots are different) can be writ-
ten as

Yk :Kl)\]f—FKQ)\I;—I-'“Kk)\I]z. (5.2)
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If one of the roots is degenerate then the solution is (the integer value
g defines the degeneracy order)
g-
S
=0

For both cases the desired roots are found from the polynomial
PA) =N —ap M —ap oA = —ag =0, (5.4)

In complete analogy with these well-known solutions one can write the
general solution of the functional equation (2.16) for nondegenerate case
(making the formal replacement Ky — PRy(z),k — z/T)

k k
=Y PR =Y PR() exp 57 (5.5)
1 —

Vi = (5-3)

and for the case, when one of the roots is g-fold degenerated,

g—1 .
> PRS(z)zs] A (5.6)
s=0

In expressions (5.5]) and (5.6) the constants K are replaced by periodic
functions PR,.(z +T) = PR,(z), which can be presented by the following
decomposition to the Fourier series

PR,(z) = Ay +

o0
ZACI(:) cos(ﬂ‘k‘;) + ASI(:) Sin(ﬂ'k;)] ,r=1,2--- k(5.7)
k=1

The general solution for the functional equation (2.15) can be obtained

from expressions (5.0)), (5.6) and (5.7) with the help of formal replacement
In(Ar)

z —=In(z), T — &, v, = In(€) -

6. Mathematical Appendix 2

The evaluation of the sum in expression (4.6), namely

ln(] cin(j
Ry bl” Z 'm0 f (€m0, (6.1)
j=N+1
is presented below.

For evaluation of the sum (6.1]) one can use the following estimation:

_ 0 (7in(N+1) Fln(N+1)

Rx(z)= oty (B0 f (€ OD)

Fooo o DINNER) p(EIn(NHR)Y o +51n(2N)f(Zg2N))
N

~ €0 ~ln(N FIn(2N) 7k

 pin(2) (b Zé ZbN>

k=1
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N>1 (zmm 1-b FIn(2N)
> (b o ) ). (6.2)
In the last expression we used the following approximation
In(N + k) k
~ 1 .
In(N) * Ny T (63)

and replaced approximately the function
F (€AY 22 p (262

for all k € [1, N] by its maximal value.

é-ln(2N)

) (6.4)
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Fig. la: The plot of the WM-function for N=25 reference points. The
solid line gives the plot of the smoothed WM-function. The value of the
smoothing window w =0.025 and so the smoothed WM-function
practically coincides with the initial one. Other parameters determining
the behavior of this function are given in the text.

See expression (3.3) for details.
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Fig. 1b: The plot of the WM-function for N=100 reference points. The
solid line gives the plot of the smoothed WM-function. The value of the
smoothing window keeps the same value w = 0.025. Other parameters
determining the behavior of this function are given by expression (3.3)
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Fig. 1c: The plot of the WM-function for N=1000 reference points. The
white solid line gives the plot of the smoothed WM-function for this case
with the same value of the smoothing window w = 0.025. Other
parameters determining the behavior of this function
are given by expression (3.3)
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Fig. 2a: The verification of the supposition (2.23) for N=25 points. The
verified function is presented by points. The function located on the
left-hand side of expression (2.23) is given by solid line. For all tested
functions we obtain the following result: the basic contribution comes
from the nearest function. The others give the negligible contribution.
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Fig. 2b: The verification of the supposition (2.23) for N=100 points.
Again, the verified function is presented by points, the function located on
the left of (2.23) is given by solid lines. The test leads to the same
conclusion: the basic contribution comes from the nearest function
Ci—1 = 1. The others give the negligible contribution.
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Fig. 2c¢: The verification of the hypothesis (2.23) for N=1000 points. The

test leads to the same conclusion: the basic contribution comes
from the nearest function Cj_1 = 1.

The contribution of other functions is negligible.
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Fig. 2d: The verification of the hypothesis (2.23) for N=100 (small frame
above) and 1000 points in another presentation. These functions being
plotted with respect to each other give perfect straight lines with the

value of the slope equaled one.



736

0724

066

060

Func ons Lf(N; k) and Lf(N, k )

R.R. Nigmatulllin, D. Baleanu

—m—Lf(N, k)
—A—LfN, K 1)

N 25 N, 10 k 2

00
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Fig. 3: The low limit verification of the behavior of the function f(x) at
x << 1. See expression (2.12). This segment is located in a small interval
and so it can be expressed approximately by its mean value as it is
expressed by relationship (3.7) The values of this constant lies in the
interval [0.01, 0.03] for all range of the reference points considered and so
it is not important to give other similar figures for N=100, 1000.
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Fig. 4a: This figure demonstrates the result of the WM-function fitting to
expression (3.8) For small number of reference points (N=25) the fitting
quality is high but in order to provide this high accuracy we took the
total number of the fitting constants entering into
log-periodic functions (2.20) equaled Nm = 24.
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Fig. 4b: This figure demonstrates the result of the WM-function (3.1)
fitting to expression (3.8) for N=100. The fitting quality is becoming low
and in order to provide accuracy with relative error 14% and provide the

visual coincidence with the smoothed function (see Fig.1(b) above) we

took the total number of the fitting constants entering
into log-periodic functions (2.20) equaled Nm = 44.

N=1000 Nm=64 RelErr=20% WM(fit) fn
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0 T T T
00 04 08 12

Fig. 4c: This figure demonstrates the result of the WM-function (3.1)
fitting to expression (3.8) for N=1000. The fitting quality is becoming
worse and in order to provide accuracy with relative error at least 20%
and provide the visual coincidence with the smoothed function (see Fig.1
(c) above), we took the total number of the fitting constants
entering into log-periodic functions (2. 20) equaled Nm = 64.
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Fig. 5a: This figure shows the behavior of the WM-function for b = 1, its
smoothed value (shown by grey points) and the fit of this function to
expression (3.11) For small number of reference points the quality of the
fit is very high (RelErr is equaled to 0.01%). The smoothed function with
the same value of the smoothing window (w=0.025) coincides also with
this expression. The total number of the fitting constants entering into
log-periodic function (2.20) is equaled to Nm = 24.
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Fig. 5b: This figure shows the behavior of the WM-function for N=100
and b=1, its smoothed value (shown by small red points) and the fit of
this function to expression (3.11) is shown by bold navy line. For N=100
the quality of the fit achieves the value RelErr = 4.3%. In order to have a
visual coincidence of the fitting function with the smoothed one we used
the total number of the fitting constants equaled to Nm = 44.
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1l }:l' | W( M“I I I | MI\ “4 WN
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Fig. 5c¢: This figure shows the behavior of the WM-function for N=1000
and b=1. Its smoothed value (shown by bold red line) and the fit of this
function to expression (3.11) is shown by bold yellow line. For N=1000
the quality of the fit is decreased and the value RelErr = 6.5%.
Again, in order to have at least a visual coincidence of the fitting function
with the smoothed one we used the total number of the
fitting constants from expression (2.20) equaled Nm = 64.
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