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Abstract: Managing embedded system complexity and scalability is one of the most important problems in software de-
velopment. To better address this problem, it is very recommended to have an abstraction level high enough to
model such systems. Architectural description languages (ADLs) intend to model complex systems and manage
their structure at a high abstraction level. Traditional ADLs do not normally provide appropriate formalisms to sep-
arate any kind of crosscutting concerns. This frequently results in poor descriptions of the software architectures
and a tedious adaptation to constantly changing user requirements and specifications. AOSD (Aspect Oriented
Software Development) deals with these problems by considering crosscutting concerns in software develop-
ment. The effectiveness of considering an aspect-oriented architectural design appears when aspect concepts
are taken into account early in the software’s life-cycle.

In this paper, we propose a new aspect language called AO4AADL that adequately manipulates aspect oriented
concepts at architecture level in order to master complexity and ensure scalability. The abstract nature of our
proposed language allows the generation of aspect code for several programming languages and platforms.
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1. Introduction

Implementing and managing software embedded systems is a tedious task, due to complexity and strict requirements of
such systems. A possible solution to deal with these problems is to model such systems at architecture level. Software
architecture helps the designer to define the structure of the application in terms of architectural elements that compose
it and the definition of assembly. In fact, software embedded systems are defined as a set of components describing
the functional level. These components are connected through a set of architectural connectors. Thus the software
architecture allows to clearly separate the technical details from functional requirements.
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Architecture description languages (ADLs) [9, 30] are considered as an important tool for early analysis and feasibil-
ity testing. They can also support automatic generation of the functional code and allow easier management of the
configuration and the deployment of systems.

Software architecture can be presented as a set of functional and non-functional concerns. A concern is a problem and
a set of properties determining acceptable solutions. The functional concerns define what the system is supposed to do,
while non-functional concerns state the quality of service and the conditions under which the system correctly operates.
Traditional ADLs provide the same formalisms to describe both functional and non-functional concerns. They lack
appropriate formalisms to provide modularity, scalability and represent crosscutting concerns behaviors (behavior that
cuts across the typical divisions of responsibility).

This lack frequently results in poor descriptions of the architectures and a tedious adaptation to constantly changing
user requirements and execution context. The specification of non-functional concerns is not well-modularized, as it is
tangled with the specification of each component’s core functionality or scattered across the specification of different
components. The mixture of multiple concerns in an architectural model greatly increases the complexity of such a model.
Furthermore, when the designer modifies one of the concerns, he should manipulate all parts of the model related to
that concern which is challenging since these parts are mixed with the elements of other concerns.

AOSD deals with these problems by considering crosscutting concerns in software development. Several aspect based
approaches have been proposed to model crosscutting concerns from requirements to implementation. These approaches
describe architectural aspects as components, connectors, or new architectural abstractions and with either a symmet-
rical [3, 27] or an asymmetrical approach [11, 20].

On the one hand, the symmetrical approaches use the same module type to represent all concerns of a system (each
component of the architectural model is considered as a concern). Thus, all components are considered as first class
elements with the same structure, without any more important than another. The majority of these models does not
use the term aspect (no need to distinguish between entities which are aspects and those which are not), but require
other elements to represent this concept. For this reason, symmetrical models are often considered more flexible and
more abstract. However, the proposed symmetric aspect-oriented ADLs treat the behavior of a crosscutting concern
and the weaving mechanism in separate modules : the aspects are generally defined as components and the weaving
mechanism of these aspects with the basic components is defined in a section of composition outside the component. This
separation adds complexity to the maintenance and evolution phase. Then, it would be better to model the pointcuts and
the behavior of the aspect in the same section inside the components to make easier the evolution of the architecture.
In addition, it is not easy to visually distinguish aspects from non-aspectual components. All of this may hinder the
comprehensibility of the architecture.

On the other hand, however, an asymmetrical approach introduces a special type of module to represent aspects. The
asymmetry is manifested in the fact to explicitly distinquish aspects from non-aspectual components. Thus, components
and aspects have different structures. This visual asymmetry in such approaches allows to easily distinguish between
crosscutting concerns and non-crosscutting ones. In these approaches, the components define the initial structure
of the system and the aspects are complementary. Hence, the evolution of systems is becoming increasingly easy.
Asymmetrical approaches are more widely used than symmetrical approaches because they are easier to integrate into
current approaches of software development and put them into practice [15, 16]. However, the obtained aspect oriented
models in such approaches may not be analyzable and compatible with other tools manipulating the models described
using traditional languages. Moreover, the distinction between base components and aspects reduces the reusability of
the architectural elements in the sense that aspectual component cannot be reused as base component. Finally, none
of the symmetrical and asymmetrical approaches is intended to model real-time embedded systems.

To address these issues, we propose an aspect-oriented extension of AADL [30], a well known ADL for specifying the
architecture of real-time embedded systems. Our approach allows modeling the aspect-oriented architecture of such
systems using a hybrid approach that brings together the advantages of both symmetrical and asymmetrical approaches.
On the one hand, we keep the basic architectural elements without modification or extension to avoid introducing
additional complexity to the architectural description and to keep compatibility of the resulting models with existing
tools, which provides a symmetrical appearance to our approach. On the other hand, we defined a new formalism to
model aspects, which gives asymmetrical aspect to our approach.

The extension of AADL consists in defining a new language christened AO4AADL to integrate aspect-oriented concepts
in AADL. This lanquage contains most of the Aspect] constructs. It is an interesting contribution since AADL is a
standard unlike the other ADLs. Moreover, AADL allows modeling both hardware and software parts of the system and
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the resulting architecture enables simulation and analysis of architectural characteristics using precise execution and
communication semantics. Also, AADL is easily extendable thanks to two extension mechanisms : properties and annexes.
Hence, it becomes possible to enrich the AADL description with a new formalism different from AADL. Additionally, the
AADL language already has tool support and code generation capabilities that can be reused : different code generators
are developed to allow the generation of functional code ready to be executed from the AADL description using the
Ocarina tool suite [31]. This suite tool can be easily extended to support new concepts.

Our proposed language considers aspects as an extension concept of AADL using “annexes”, an intrinsic mechanism
to extend the AADL language. We consider that aspects can be specified in a lanquage other than AADL, and then
integrated inro AADL models as annexes. We define then a grammar for the new proposed language to rigorously
describe the aspects in the AADL descriptions.

Aspects are used to describe the non-functional properties. We classified such properties into two classes: the first one
includes the non-functional properties that represent the quality of software as liveness properties (like performance,
scalability, etc.), while the second class presents the non-functional properties that are directly related to the behavior
of the running system, like safety properties (like access control, security, consistency, etc.). In our work, we are
interested only in the second class (non-functional safety properties). These properties ensure the proper functioning
of software systems against undesirable behavior. We propose in our approach to specify as aspects the non-functional
safety properties that crosscut among multiple modules of the system (crosscutting non-functional safety properties).
The designer can also specify crosscutting functional concerns as aspects but we do not consider this in our work.

We also propose a code generation process from the aspect-oriented architectural description of the system. This process
is composed of two main phases: the first phase is to generate functional code from the AADL description of the system.
This type of code generation is available in the Ocarina tool suite. The second phase focuses on the generation of aspect
code which is one of our contributions as part of this work. For this purpose, we define the necessary transformation
rules for generating aspects written in an aspect-oriented programming language from aspects described in AO4AADL.
To facilitate the work of the designer, we offer as part of this work a graphical editor called "AADL Graphical Editor”
as an Eclipse plug-in. Our own editor allows modeling aspect-oriented architectures by integrating all AADL and
AO4AADL concepts. This graphical editor provides a global view of the modeled system with some level of abstraction
that facilitates its management.

We illustrate and evaluate our approach using two case studies (Automated Teller Machine (ATM) and Health Watcher
(HW)) that exhibit some traditional crosscutting concerns at the architectural level.

The remainder of this paper is organized as follows. Section 2 presents background concepts related to AADL and AOSD.
Section 3 introduces the case study of the ATM system used throughout the paper to explain our approach. Section 4
presents the syntax and the semantics of AO4AADL, our proposed aspect oriented language for AADL. Section 5 details
the AO4AADL compiler by presenting the Ocarina tool suite and some aspect generation rules. Section 6 presents the
development process from the architectural description until code generation. Section 7 presents an additional case
study (HW) to validate our approach. Section 8 details the related work and Section 9 presents the evaluation of our
approach and the associated tool. Section 10 presents the conclusion and the future work.

2. Background

In this section, we present the basic concepts of AADL through some examples and the main ideas of the AOSD paradigm.

2.1. AADL : Architecture Analysis & Design Language

AADL [30] (Architecture Analysis & Design Language) is an architecture description language for describing embedded
systems. The building blocks of AADL, as the majority of architectural description languages, are components and
connections. Components are used to define the structural system description, while connections are the focus of
interaction.

A component in AADL corresponds either to a hardware entity of the system such as a bus, a memory, a processor, etc.
or a software entity such as a thread, a process, a subprogram, etc. Each component is described by a type and several
implementations or none. A type defines an externally visible interface (i.e., ports) that allows the interaction between
components. Each type consists mainly of two parts : features, and properties. An implementation specifies the internal
structure of a component as an assembly of subcomponents and connections. Connections are established between the
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subcomponents features as well as between the features of the component and those of its own subcomponents.

IS

data Simple_Type
end Simple_Type;

subprogram Do_Ping_Spg
features

Data_Source : out parameter Simple_Type;
end Do_Ping_Spg;

subprogram Ping_Spg
features

Data_Sink : in parameter Simple_Type;
end Ping_Spg;

thread P
features

Data_Source : out event data port Simple_Type;
end P;

thread implementation P.Impl

calls
Mycalls: {
P_Spg : subprogram Do_Ping Spg;
¥
connections

parameter P_Spg.Data_Source -> Data_Source;
end P.Impl;

thread Q
features

Data_Sink : in event data port Simple_Type;
end Q;

thread implementation Q.Impl

calls
Mycalls: {
Q_Spg : subprogram Ping_Spg;
};
connections

parameter Data_Sink -> Q_Spg.Data_Sink;
end Q.Impl;

process A
features

Out_Port : out event data port Simple_Type;
end A;

process implementation A.Impl
subcomponents

Pinger : thread P.Impl;
connections

port Pinger.Data_Source -> Qut_Port;
end A.Impl;

process B
features

In_Port : in event data port Simple_Type;
end B;

process implementation B.Impl
subcomponents

Ping_Me : thread Q.Impl;
connections

port In_Port -> Ping Me.Data_Sink;
end B.Impl;

system PING
end PING;
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89 system implementation PING.Impl

90 subcomponents

91 Node_A : process A.Impl;

92 Node_B : process B.Impl;

93

94 connections

95 port Node_A.Out_Port -> Node_B.In_Port;
96 end PING.Impl;

Listing 1. Connections between AADL components

AADL consists of both a textual and graphical language. Listing 1 presents the AADL description of the software part
of the PING system inspired from the Ocarina tool suite [31]. This AADL description illustrates how to model a simple
interaction between threads. Figure 1 corresponds to the graphical representation of this system according to the AADL
language.
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Figure 1. The graphical representation of the PING system

The type of the PING system is presented in lines 86 and 87. Its implementation is given in lines 89-96. The system is
composed of two interconnected subcomponents Node_A and Node_B (lines 90-95). Node_A is an instance of the process
A.Impl presented in lines 58-68. Node_B is an instance of the process B.Impl presented in lines 70-80. Each node is
composed of a thread : a Pinger thread for the Node_A (lines 64-65) an a Ping_Me thread for the Node_B (lines 76-77).
The Pinger thread pings the Ping_Me thread, sending a data. The type of the used data is called Simple_Type and
defined in lines 5-6.

Each thread calls a subprogram that describes its behavior : the P_Spg subprogram called by the Pinger thread (line 34)
presents an instance of the Do_Ping_Spg subprogram (lines 12-15), and the Q_Spg subprogram called by the Ping_Me
thread (line 48) is an instance of the Ping_Spg subprogram (lines 17-20). Each thread is connected to its corresponding
process : the output port of the Pinger thread is connected to the output port of the process A (line 67), while the input
port of the process B is connected to the input port of the Ping_Me thread (line 79).

To support crosscutting properties such as the nature of the thread (periodicity, priority, etc.), AADL defines two main
extension mechanisms : properties and annexes.

e Properties are characteristics which can be associated to different entities (components, connections, features,
etc.). They are used to specify characteristics of components or constraints : processor frequency, worst case
execution time of a thread, etc. Their specifications are gathered into named sets which are used in analysis tools
in order to verify characteristics of the modeled system. A standard set of properties is already defined in AADL
but it's possible to define specific properties for a given application.
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e Annexes can contain annotations of components in a language different from AADL. Two types of annexes are
used in AADL : (1) Annex subclauses that allow annotations expressed in a sublanguage to be attached to com-
ponent types, component implementations, and feature group types, and (2) Annex libraries that contain reusable
declarations expressed in a sublanguage and which are declared in packages. These reusable declarations can
be referenced by annex subclauses.

2.2. Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) [8] is a development approach based on aspect oriented programming
concepts. The main idea of AOSD is to provide new architectural abstractions and composition mechanisms in order to
identify and model concerns that crosscut multiple modules in a software system. AOSD influences various phases of
the development process (requirement, modeling and development) within different application domains.

In traditional software development approaches, these concerns are treated inside the basic program code which leads
to a tangled and scattered code. The use of new abstractions in AOSD allows encapsulating these concerns into
separated modular units (aspects) which will be integrated later with other system modules at specific points of the code
(joinpoints). This separation of concerns improves modularization, reusability (reuse the same aspect in different system
units) and allows having a clean code easy to understand.

Using AOSD, an application is composed of two parts : the base program which implements the core functionality, and
aspects, which implement the crosscutting concerns. At architectural level, the core functionalities are presented with
basic components while aspects are presented with aspectual components. Aspects are new units of modularity, which
encapsulate crosscutting concerns in complex systems using joinpoints, pointcuts, and advices.

Joinpoints are well-defined points in the execution of a program. In Aspect] [18], which is an aspect-oriented extension
of Java, joinpoints correspond to method calls, constructor calls, etc. The pointcut allows selecting a set of joinpoints,
where some crosscutting functionalities should be executed.

The advice is a piece of code that implements a crosscutting concern, which is associated with a pointcut. This code
is executed whenever a joinpoint in the set identified by the pointcut is reached. There are three types of advices,
before, after, or in the place of the joinpoint at hand; this corresponds respectively to the advices types before, after and
around in Aspect]. While before and around advices are relatively not ambiguous, there can be three interpretations of
after advice: After the execution of a join point completes normally (after returning), after it throws an exception (after
throwing), or after it does either one (after).

Listing 2 presents an example of aspect in the Aspect) language. The aspect logs calls to objects of the class Pinger.

public aspect Logging

1

2 {

3 //where?

4 pointcut logPinger(Pinger p) : call(* Account.* (..)) && this(p);
5 //when?

6 after (Pinger a) : logPinger(p)

7 {

8 //what?

9 System.out.println("An activity was executed ... " );
10 }

1}

Listing 2. Example of aspect in AspectJ

In this aspect, the pointcut logPinger (line 4, Listing 2) specifies where exactly the logging concern will be executed.
This pointcut captures the call to any method of the class Pinger without specifying the return types and the input
parameters. The advice (lines 6-11) answers the questions about when and what behavior of the concern will be
executed. The advice will run after executing any jointpoint that is matched by the defined pointcut (line 6). In addition,
this advice prints a logging message (line 9) to show the value of the variable amount defined in the class Pinger.

In case the logging concern is required in other classes or modules, the developer can just modify the pointcut. If this
concern was not implemented as an aspect, the developer would have to localize all places where logging is required
and add the corresponding code there.

Similar to the aspect notion at the programming level, we denote the so-called architectural aspects to model concerns
that crosscut the basic components at the architectural level.
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N
3. Case Study: Automated Teller Machine (ATM)

In this section, we introduce the Automated Teller Machine (ATM) system that will be used throughout the paper to
illustrate and evaluate our approach. An ATM is an automated telecommunications device that allows customers to
access their bank accounts to make withdrawals in cash (or cash advances using a credit card), check their balances and
purchase prepaid credit for mobile phones. On most modern ATMs, the customer is identified by inserting a card with a
chip that contains a unique card number (NumCard) and some security information as an expiration date. Authentication
is performed by entering manually a personal identification number (code).

The architecture of the ATM is composed of three interconnected processes : the Customer process, the Account process
and the AccountData process. The Customer process is intended to manage the authentication step. It is composed
of three threads : PingerTh, GUITh and ValidationTh. PingerTh detects the inserted card, reads and sends the card
number to the ValidationTh thread to check the validity of the inserted card.

If the card has expired, it will be rejected and an explanatory message will be displayed to the customer. In the other
case (the card stills valid), the GUITh thread prompts the customer to enter his code. This thread presents the GUI
of the ATM allowing interaction between the customer and the banking system. It enables the customer providing the
requested information (code, how much to withdraw, etc.).

After that, the ValidationTh thread checks whether the code is wrong. We present in Listing 3 a part of the AADL
description of the ValidationTh thread. The full code of this description can be retrieved in'. Checking is performed
by calling the Check_Code_Spg.Impl subprogram (line 12, Listing 3). If the code is wrong, the subprogram sends the
information to the ValidationTh thread throw the RestoreCode_V_out port (line 18), to ask the customer to reenter the
code. The customer has only three authentication attempts. At the failure of the third attempt, the card is rejected by
the system and an explanatory message is displayed to the customer.

When the customer succeeds the authentication, the Customer process will connect to the AccountData process. This
process consists in a single thread AccountDataTh that manages the entire database of customers and their bank
accounts. Then, the customer is prompted to choose the operation he wants to perform and the amount to withdraw
(in the case of a withdrawal operation). The operation is performed by the AccountTh thread of the Account process.
Finally, a message is displayed to inform the customer if the transaction is successful or not.

1 thread ValidationTh

2 features

3 NumCard_in_V : in event data port Integer_Type;

4 Code_in_V : in event data port Integer_Type;

5 RestoreCode_out_V : out event data port String Type; // Port that to send a message to the
6 // customer when the code is wrong

7
8

end ValidationTh;

10 thread implementation ValidationTh.Impl
11 calls {
12 CC_Spg : subprogram Check_Code_Spg.Impl; // subprogram that checks if the code is wrong.

14 };

15 connections

16 parameter NumCard_in_V -> CC_Spg.NumCard;

17 parameter Code_in_V -> CC_Spg.Code;

18 parameter CC_Spg.RestoreCode_V -> RestoreCode_out_V;
19 -

20 end ValidationTh.Impl;

Listing 3. AADL description of the ValidationTh thread

In the automated teller machine, we identify three non-functional properties :

1. Code Verification : This property checks the number of authentication attempts made by the customer. If it
reaches the third attempt, the card will be rejected by the system and an explanatory message will be displayed
to the customer.

The authentication action is performed before the withdrawals in cash and before checking the balance. Hence,
the Code Verification property should be checked at these points.

v http: //www. redcad. org/projects/ A0444DL/ code/ Bank. aadl
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2. Shrinkage stresses : The withdrawal of money is determined by the two following constraints:

e A customer can not withdraw more than 1000 Euro / day

e A customer can not withdraw more than 4000 Euro / week
This property is checked only when performing the withdrawal operation.

3. Traceability : This property is defined to ensure a better quality of service : an SMS is delivered to the customer
containing the details of the performed operation on the account and the current balance in his bank account. This
SMS is sent after each operation performed on the account of the customer (debit money, withdraw moneuy,...).

4. The AO4AADL language

Considering aspect concepts at the beginning of software life cycle is considerably valuable since it improves compre-
hensibility, evolution and reuse in the development of complex software systems. In this paper, we propose a new aspect
oriented ADL, called AO4AADL [14], an extension of AADL with aspect concepts.

The choice of AADL was driven by many reasons. First, AADL is a standard and the resulting architecture enables
simulation and analysis of architectural characteristics using precise execution and communication semantics. Second,
AADL is a concrete ADL in which all elements of a description correspond to concrete entities allowing the description
of both hardware and software parts of the system. AADL enables rapid system evolution for complex, real time,
safety critical systems. Third, compared with other ADLs, AADL introduces two extension mechanisms : properties and
annexes. These two mechanisms make the language much easier to extend. Moreover, they offer a good foundation
for additional capabilities in analysis, automated system integration, distribution, and dynamics. Based on the annex
extension mechanism, we propose to enrich AADL specifications with aspect concepts. In this context, we defined a
rigorous grammar of our proposed language AO4AADL.

4.1. AO4AADL: hybrid approach

The proposed approach, contrary to the existing ones, is neither a symmetrical nor an asymmetrical approach. It is rather
a hybrid approach (half-symmetrical half-asymmetrical). Specifically, our approach is based primarily on defining a new
language called AO4AADL for describing the crosscutting non-functional safety properties at architectural level. This
new language gives an asymmetrical aspect to our approach because it corresponds to the definition of a new formalism
to model aspects specifying the non-functional safety properties.

These aspects will be included as annexes in the basic architecture described using AADL. The use of this extension
mechanism provides a symmetrical appearance to our approach since annexes are considered basic abstractions of AADL.
Thus, to integrate aspects at the architectural level, there is no need to define new abstractions or to add new interfaces
to basic abstractions in order to ensure the coordination between basic and aspectual components. Moreover, the
obtained aspect oriented models still remain compatible with other tools manipulating AADL models.

4.2. Syntax of AO4AADL

The syntax of our proposed grammar is inspired from the aspect-oriented programming language Aspect] [18]. We
present in this section the different syntactic rules used in our language AO4AADL to describe aspect concepts at the
architectural level. A part of the proposed grammar? is presented in Listing 4.

4.2.1. Aspect specification

Three types of aspects can be modeled using our AO4AADL language (line 1, Listing 4) :

2 The full version of the grammar is available at http: // www. redcad. org/projects/ A04A4DL
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e Behavioral aspect (lines 2-5, Listing 4) : an aspect that describes the behavior of a crosscutting non-functional
safety property.

e Precedence aspect (lines 6-8, Listing 4) : an aspect that declares the precedence of the already defined behavioral
aspects.

o Affected_Components aspect (lines 911, Listing 4) : an aspect that defines the list of components which are
supposed to be affected by a defined behavioral aspect.

The aspect is a modular unit designed to describe the behavior of a concern, which will be executed at a specific moment
during system execution. The architectural description of an aspect using AO4AADL is composed of two main parts :
definition part (lines 2, 6 and 9, Listing 4) specified with the keyword aspect followed by the aspect identifier and (it)
the behavioral description part of the aspect. While the first part of an aspect is common for all the three types of
aspects, the structure of the second part is not. In fact, the Behavioral aspect is composed of two subclauses :

Pointcut specification : This subclause is supposed to define the conditions under which the aspect is invoked.

Advice specification : This subclause encapsulates the aspect behavior.

For the Precedence aspect, it is composed of one subclause (Precedence_Specification). This subclause defines the
order of the execution of aspects when two or more aspects intercept the same point at the same moment. The format of
this subclause is given in line 13. It is specified with the keyword precedence. The priority of execution is in the order
of the declared list in this subclause. For example : precedence Aspectl, Aspect2; means that Aspectl have more
priority than Aspect2. If only one aspect is defined then this subclause will be ignored by the analyzer.

The Affected_Components aspect is composed of one subclause (Components_applies_to): The format of this subclause
is given in lines 14-17. It is defined to specify the name of software components that are supposed to be affected by
the aspect. Actually, an aspect is supposed to influence either only one component, or many components (two or more).
To each defined behavioral aspect corresponds a line in the Affected_Components aspect to specify the affected compo-
nents.

All the aspects are declared as an annex library in an AADL package outside the components to be visible throughout
the system.

Aspect_Expression
Behavioral_Aspect

Behavioral_Aspect | Precedence_Aspect | Affected_Components_Aspect
aspect {Aspect_Identifier} {

{Pointcut_Specification;}+

{Advice_Specification}+

1
2

3

4

5 ¥
6 Precedence_Aspect := aspect {Aspect_Identifier} {

7 {Precedence_Specification;}+

8 ¥

9 Affected_Components_Aspect := aspect {Aspect_Identifier} {
10 {Components_applies_to;}+

1 ¥

13 Precedence_Specification ::= precedence Aspect_Identifier { , Aspect_Identifier }x
14 Components_applies_to ::= Aspect_Identifier applies to ListComponents

15 ListComponents ::= Component { ,Component }*

16 Component ::= Component_Category Component_Identifier

17 Component_Category ::= thread | process | subprogram

Listing 4. Part of the aspect grammar in AO4AADL

In the following, we will detail how to design AO4AADL pointcuts and advices.

4.2.2. Pointcut specification

As shown in Listing 5 (lines 1-2), pointcut definitions consist of a left-hand side (line 1) containing the specification of
the pointcut name and parameters (the data available when the events happen) and a right-hand side (line 2) consisting
in the pointcut expression itself.

In real architectural configuration, aspect behavior may be executed by several architectural joinpoints. Hence, an
architectural pointcut should be defined as an expression that specifies the set of joinpoints to which the behavior of
an aspect is applicable. A joinpoint (called Pointcut_Primitive in Listing 5) specifies a well-defined point of the
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aspect behavior execution. In order to express the architectural quantification mechanism, we introduce the operators
"and" ("&&"), and "or" ("||") (lines 4-6, Listing 5) to describe sets of joinpoints invoking the same advice.

We propose also three primitives (line 8, Listing 5) for defining a joinpoint : (i) a call primitive (line 9) to capture the
fact of calling a port to send or receive a message or calling a subprogram in the AADL specification; (ii) an execution
primitive (line 10) to intercept the exchanged messages through the ports or intercept the execution of a subprogram, or
(iit) args primitive (line 23) to intercept the type or the value of the intercepted parameters.

1 Pointcut_Specification ::= pointcut Pointcut_Identifier ( [ ParamList ] ) :
2 Pointcut_Expression

3 ...

4 Pointcut_Expression ::= Pointcut_Primitive | ( Pointcut_Expression )
5 | Pointcut_Expression && Pointcut_Expression

6 | Pointcut_Expression || Pointcut_Expression

7

8 Pointcut_Primitive ::= Call | Execution | Args

9 Call ::= call Callee

10 Execution ::= execution Callee

11 Callee ::= subprogram ( Subprogram_Identifier ( [ Subprogram_Parameter_Types ] ) )
12 | inport ( Input_Port_Identifier ( [ Data_Type ] ) )

13 | outport ( Output_Port_Identifier ( [ Data_Type ] ) )

14 | inoutport ( InOutput_Port_Identifier ( [ Data_Type ] ) )
15

16 Subprogram_Parameter_Types ::= Type {,Type }x

17 Data_Type ::= Type

18 Type ::= .. | Type_Identifier

19 Subprogram_Identifier ::= Identifier | *

20 Input_Port_Identifier ::= Identifier | *

21 Output_Port_Identifier ::= Identifier | *

22 InQutput_Port_Identifier ::= Identifier | *

23 Args ::= args (Arguments)

24 Arguments ::= Argument { ,Argument }*

25 Argument ::= .. | Argument_Identifier { ,Argument Identifier }*

Listing 5. Part of the pointcut grammar described in AO4AADL

AO4AADL explicitly defines the places where the effect of aspect annex can occur (lines 11-14, Listing 5). They include :
(i) the subprograms already declared in the AADL specifications (line 11), (ii) the incoming data into an AADL component
(line 12), (iit) the outgoing data flow emerging from an AADL component (line 13), and (iiit) both the incoming and the
outgoing data through an inoutput port (line 14).

When defining a joinpoint, the designer should specify the identifier of the intercepted subprogram or the identifier of
the intercepted port. He can also use the wildcard “*” (lines 19-22), which means that all the subprograms or all the
ports are intercepted whatever are the identifiers.

Moreover, the designer can specify the type identifier of the data available when intercepting the joinpoint. However,
he can use the wildcard “..” (lines 18 and 25) to specify that he is not interested in the type of this data. In other words,
whatever the type of the data available at this moment, the joinpoint will be intercepted.

Listing 6 presents a part of the CheckCode aspect described in AO4AADL. This aspect belongs to the first non-functional
property of the automated teller machine (code verification) presented in Section 3. This aspect checks the number
of the authentication attempts made by the customer. In fact, he has only three attempts. For this purpose, the
Verification pointcut presented in this aspect (line 6, Listing 6) seeks to intercept the fact of calling the output port
RestoreCode_out_V of the ValidationTh thread, which is responsible of sending a message to the customer to reenter
his code again. To avoid displaying this message at the failure of the third authentication, this output port should not
be called to send the message. Consequently, the pointcut intercepts the RestoreCode_out_V with a call primitive.
We notice here the “..” passed as a parameter to the intercepted output port. This means that we are not interested in
the data available when the events happen. In other words, whatever the type of the data sent through this output port,
it will be intercepted. Therefore, no parameters are specified in the pointcut parameters.

The verification code that will be executed when invoking this aspect will be presented in the advice subclause.

system implementation Bank.others

end Bank.others;
annex ao4aadl {x*
aspect CheckCode {
pointcut Verification(): call outport (Restore_Code_out_V (..));

}

*x}

© N U A WwN =

Listing 6. Example of AO4AADL annex



Sihem Loukil, Slim Kallel, Bechir Zalila, Mohamed Jmaiel

This aspect is declared as an annex library inside the AADL specification (lines 4-9, Listing 6). Since this aspect is
supposed to intercept an output port of the ValidationTh thread, a line is added in the Affected_Components aspect
describing the list of components that are supposed to be affected by the CheckCode aspect (line 2, Listing 7).

1 aspect Affected_Components{
2 CheckCode applies to thread ValidationTh.Impl;
3%

4 end Bank.others;

Listing 7. Example of the Affected_Components aspect

4.2.3. Advice specification

The advice is a piece of code associated with the pointcut. It is executed whenever a joinpoint in the set identified by
the pointcut is reached. For each pointcut, we can associate one or more crosscutting behavior which is expressed in
an advice subclause allowing one or more advice subclauses to be associated to the same pointcut. The syntax of the
advice specification in AO4AADL is displayed in Listing 8. The structure of the advice subclause is given in line 1 of
Listing 8. AO4AADL defines three types of advice (lines 2-5, Listing 8) listed by the keywords : before used when the
advice action runs before the joinpoint, after used when the advice code runs after each joinpoint and around used to
integrate the further execution of the intercepted joinpoint in the middle of some other code using the keyword proceed
(line 35) to progress in the execution of the functional code. To better reference the corresponding pointcut, we specify
all its parameters in the advice declaration (lines 3-5). Then, the pointcut will be called as if we call a method in the
object oriented programming (line 6).

The advice code has the structure given in lines 8-12 of Listing 8. It is specified in three subclauses :

e Variables declaration subclause (lines 13-14) is defined to declare a set of local variables used in the action part.
It is specified using the keyword variables.

e Initialization subclause (line 15) is defined to initialize the local variables already declared in the previous
subclause. It is specified using the key word initially.

e Action subclause (lines 16-19) is used to define the advice behavior. It includes all the instructions to execute.
The syntax of these instructions is inspired from the AADL Behavior Annex [29] since this annex satisfies the
majority of our requirements. Yet, we assigned minor modifications to the syntax of the Behavior Annex to
express other requirements such as adding the Proceed_Action as well as the addition of the Character and
the String_Literal variables to the Behavior_Expression which are not used in the AADL Behavior Annex.
Moreover, we removed some things that are not useful in our case. For example, we do not use in our language
state_variable_identifier or a data_access_identifier in the definition of the Reference_Expression.
However, we added the Parameter_Identifier and the Argument_Identifier.

Different instructions can be used to specify the advice behavior such as the conditional statement if, the for and
while loops (lines 17-19) as well as four basic actions (lines 21-24) : (i) the assignment action (line 26) which
allows manipulating the arithmetic operations, (ii) the communication action (lines 28-30) that uses two types of
operators : the operator | which enables to send a message through an output port or to execute a subprogram
while the operator ? is used to receive a message through an input port, (iii) the times action (lines 32-33) used
to put some temporal conditions, and (vi) the proceed() action (lines 35) used to progress in the execution of the
basic functional code.

1 advice Advice_Declaration: Pointcut_Reference { Advice_Action }

2 Advice_Declaration ::= Before_Advice | After_Advice | Around_Advice
3 Before_Advice::= before ( [ Paramlist ] )

4 After_Advice::= after ( [ Paramlist ] )

5 Around_Advice::= around ( [ Paramlist ] )
6
7
8

Pointcut_Reference ::= Pointcut_Identifier ( [ Parameters ] )
Advice_Action ::= {

9 [ Variables_Declaration ]

10 [ Initialisation ]

" { Action }+

12 }

13 Variables_Declaration::= variables { { Variable }+ }
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14 Variable ::= Variable_Identifier { , {Variable_Identifier} }* : Type_Identifier;
15 Initialisation ::= initially { { Assignment }+ }

16 Action ::= Basic_Action

17 | If_Statement

18 | For_Statement

19 | While_Statement

20 ...

21 Basic\_Action ::= Assignment

22 | Communication

23 | Timed_Actions

24 | Proceed_Action

25 ...

26 Assignment ::= Reference_ Expression := Behavior_ Expression

27 ...

28 Communication ::= Required_Subprogram_Identifier ! [(Parameter_Profile)]
29 | Output_Port_Identifier ! (Data_Identifier)

30 | Input_Port_Identifier 7 (Data_Identifier)

31 ...

32 Timed_Actions ::= computation ( Behavior_Time [ , Behavior_Timel );
33 | delay ( Behavior_Time [ , Behavior_Time] );

34 ...

35 Proceed_Action ::= proceed ([Parameter_Profilel);

Listing 8. Part of the Advice specification grammar described in AO4AADL

Listing 9 presents the advice code (lines 3-14) associated to the pointcut presented in Listing 6.

We define an around advice to check some conditions before executing the aspect code. In fact, when invoking the
corresponding pointcut, the aspect checks if the customer has remaining attempts. If he has already used three attempts,
the functional code will be blocked at the point specified in the pointcut and another code will be executed. In our case,
the card will be rejected through the output port RejectedCard_out_V and an explanatory message will be displayed
to the customer (lines 8-10, Listing 9). In the other case (lines 11-14, Listing 9), we call the proceed() instruction
(line 12) to progress in the execution of the functional code. This means that a message is displayed to the customer to
restore his code again through the output port RestoreCode_out_V and then the counter of the number of attempts is
incremented (line 13). All the variables used in the advice action are declared in the variables subclause (line 5) and

initialized in the initialization subclause (line 6).

1 aspect CheckCode{

2 pointcut Verification(): call outport (Restore_Code_out_V (..));
3 advice around():Verification(){

4

5 variables { counter : Integer_Type; message : String_Type }
6 initially { counter:=1; message:= "Card Rejected !"; }

7

8 if (counter=3){

9 Rejected_Card_out_V!(message);

10 }

11 else{

12 proceed() ;

13 counter := counter+l;

14 T

Listing 9. Example of an aspect described in AO4AADL

5. AO4AADL compiler

We begin this section by presenting the main tools used in our work. Then, we detail one of our main contributions.

Finally, we present the several steps to implement our ideas.

5.1. Ocarina tool suite

Ocarina [31] presents a free tool suite written in Ada to manipulate AADL models. This tool suite includes three
code generators that are able to generate some programming languages such as Ada [32], C [7] and RTSJ (Real Time

Specification for Java) [1] from an AADL specification.

The architecture of Ocarina is composed of three main libraries that are easily extensible :
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1. A central library (libocarina) which presents a low abstraction level to build and manipulate syntactic trees.

2. A set of frontends that allows analyzing the syntax and semantics of files written in AADL language using routines
of the central library.

3. A set of backends whose role is to automatically produce code. It is based on trees resulting from the frontends.

The code generators offered by the Ocarina tool suite allow the generation of functional code from the basic components of
the AADL description. As an example, The RTS] code generator allows generating RTSJ code from AADL specifications.
It allows translating each node (process) of the architecture described in AADL into a set of RTS] classes using a well
defined set of transformation rules presented in [1].

5.2. Aspect code generation

We present in this section our extension of the Ocarina tool suite. It consists in the generation of aspect programming
language from aspectual annexes described in AO4AADL. As mentioned, the generation of functional code from the basic
components of the AADL description is already ensured by the Ocarina tool suite. Our idea is therefore to extend
Ocarina to ensure translation of the aspectual part taking advantage of the available generators.

Aspects described in AO4AADL can be translated in different aspect languages since it is generic.

In our work, we chose to start generating aspects written in Aspect] [18] language from the architectural aspects described
in AO4AADL. In fact, the study of the various existing aspect-oriented programming languages has proven that Aspect]
is the most popular aspect language due to its widespread use with an emphasis on simplicity and ease of work for
end users. To apply these Aspect] aspects, we need a base system described in the Java language in order to get a
complete Java prototype. For this reason, we adopt in our approach the RTSJ code generator that is already available
in the Ocarina tool suite.

We define a set of transformation rules to map AO4AADL aspects into Aspect] aspects. These transformation rules are
based on the RTSJ generator ones in order to ensure the consistency between the RTS] code and the generated Aspect]
code. In this way, a complete Java prototype can be obtained by integrating automatically the generated Aspect] aspects
in the RTS]J code.

In the following, we present one example of the transformation rules from AO4AADL to Aspect]). This example details
how to generate Aspect] joinpoint intercepting a subprogram from AO4AADL specifications (Table 1). The full version
of these transformation rules is available in [13].

As shown in Table 1, the interception of a subprogram at the architectural level in AO4AADL returns to intercept, in
Aspect], the right method of the Subprograms class

(SubPrograms . <Subprogram_Identifier>Impl) already generated by the RTSJ generator. On the one side, according
to the syntax of Aspect], we have to specify the returning type of the intercepted method. On the other side, all generated
methods using the RTS] generator are public static void. So we are not interested in the generation of the returning type
of the intercepted method. That's why, we use here the wildcard “*” in the generated Aspect] code. For the parameter
types used in AO4AADL, they obey to the transformation rules of the data types defined by the RTS] generator.

Table 1. Transformation rule of a joinpoint intercepting a subprogram

AO4AADL specification:

call/execution subprogram (<Subprogram_Identifier> (<Paramerter_types>))

Generated Aspect] code:

call/execution (* SubPrograms.<Subprogram_ldentifier>Impl (<Generated_Parameter_Types>))

Listing 11 presents an example of the generated Aspect] code from a pointcut described in AO4AADL which intercepts
the execution of the Ping_Spg subprogram taking a Simple_Type parameter. The AO4AADL specification is presented
in Listing 10.

1 aspect AspectName {

2 pointcut PointcutName () : execution subprogram (PingSpg (Simple_Type));
3 -

4 }
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Listing 10. Example of an AO4AADL pointcut intercepting a subprogram

1 aspect AspectName {

2 pointcut PointcutName () : execution (* SubPrograms.PingSpgImpl

3 (GeneratedTypes.Simple_Type)) ;
4 e

5 }

Listing 11. Generated AspectJ code from Listing 10

We have to note that the aspect and the pointcut names as well as the keywords ‘aspect’, ‘pointcut’ and ‘call/execution’
are kept as they are without any modification.

5.3. Implementation

We present in this section the main extensions made to the Ocarina tool suite to implement our new language as well
as the aspect code generator from AO4AADL language to Aspect] language. We present also a short description of our
graphical editor “AADL Graphical Editor”.

5.3.1. Extension of Ocarina

The development of the AO4AADL compiler consists mainly in three steps :

1. The implementation of the file describing the AO4AADL tree : This step consists in the translation of the AO4AADL
grammar rules into a file written in a pseudo language similar to the IDL syntax. This file describes the tree of
AO4AADL which will be later used by the frontends and the backends parts. Listing 12 presents a part of the
code of this file. It corresponds to the translation of the grammar rules that define the structure of the aspect
(lines 5-27), the structure of a pointcut (lines 31-39) as well as the structure of an advice (lines 43-52).

// AD4AADL Tree

module Ocarina::ME_AQ4AADL::AQD4AADL_Tree::Nodes {

Aspect_Annex ::= { Aspect_Expression }+

1
2

3

4

5 /%
6

7 x/
8

9 interface Aspect_Annex : Node_Id {

10 List_Id Aspect_Expressions;

LAI

12

13/

14 Aspect_Expression := Behavioral Aspect | Precedence_Aspect | Affected_Components_Aspect
15 Behavioral_Aspect := aspect {Aspect_Identifier} {
16 {Pointcut_Specification;}+

17 {Advice_Specification}+

18 i

19 Precedence_Aspect := aspect {Aspect_Identifier} {
20 {Precedence_Specification;}+

2 i

22 Affected_Componenets_Aspect := aspect {Aspect_Identifier} {
23 {Components_applies_to;}+

24 }

25 */

26

27 interface Aspect_Expression : Definition {

28 List_Id Components_Applies_Tos;

29 List_Id Precedence_Specification;

30 List_Id Pointcut_Specification;

31 List_Id Advice_Specification;

EZ2N H

33 -

34 /*

35 Pointcut_Specification ::= pointcut Pointcut_Identifier ( [ ParamList ] ) :
36 Pointcut_Expression

37 */

38

39 interface Pointcut_Specification : Definition {

40 List_Id Parameters;

M Node_Id Pointcut_Expression;

2 }

43 e

4 /*
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45 Advice_Specification ::= advice Advice_Declaration : Pointcut_Reference
46 Advice_Action
47 */

49 interface Advice_Specification : Node_Id {

50 Node_Id Advice_Declaration;
51 Node_Id Pointcut_Reference;
52 Node_Id Advice_Action;

CERE H

54

55 }

Listing 12. A part of the implemented file describing the AO4AADL tree

2. The implementation of the frontends : In order to make our language understandable by the Ocarina compiler, we
extended the existing frontends part by adding a new module. This module allows checking the vocabulary, the
syntax and the semantics of our language based on the file describing the tree of AO4AADL already defined in
the previous step. For this purpose, we implemented first the required files that enable to make a lexical analysis
of the input file. It consists in parsing the AO4AADL annex included in the AADL file and try to recognize all the
lexemes (identifiers, operators, delimiters, etc.). Second, we developed the necessary files for the syntactic and
the semantics analysis based on the output of the lexical analysis to build a hierarchical structure called abstract
syntactic tree. This tree presents the relations between all the found lexemes. The secondary outputs of this step
consist of any warnings or error messages. Finally, a semantic analysis is applied to the obtained tree in order
to lead to an analyzed syntactic tree.

3. The implementation of the backends : This step consists in implementing all the defined transformation rules
(presented in section 5.2) in order to automatically generate Aspect] code from AO4AADL descriptions. This
needs to develop another module in the backends set of the Ocarina tool suite. This module takes as input the
syntactic tree generated from the previous module (frontends) and try to build the corresponding syntactic tree
for the target language, which is Aspect] in our case. Finally, this tree is used to generate the Aspect] code.

The implementation of the frontends and the backends modules has taken a long time to adapt to the Ocarina tool suite
and be able to extend it especially when we have to develop a long program (2833 lines of code for the frontends part and
5532 for the backends one). Finally, we have to mention that the frontends part is generic for all the generators since it
depends only on the file describing the AO4AADL tree. While the backends part, which implements the transformation
rules to the programming language, is specific to each generator. So to transform an AO4AADL specification into an
aspect-oriented programming language different from Aspect], we have simply to define and implement the corresponding
transformation rules.

5.3.2. AADL graphical editor

By exploring the different existing editors enabling AADL modeling, we found that these editors are few, immature and
do not meet our needs.

Really, we tested the ADELE® and OSATE-TOPCASED* editors that are open source projects but they cause many
problems: blocking of the editor, unexpected errors, a sudden closure of the editor, etc.. For the STOOD editor, which
is a stable product developed in C++, it supports several modeling languages such as AADL and UML2 but it is a paid
product. Only a demo version of 30 days is available.

For this, we thought to develop our own editor that meets our needs. We implement this editor called AADL Graphical
Editor, as an Eclipse plug-in. The graphical interface of our editor is presented in Figure 2.

3 http://www. topcased. org/ index. php? idd_ projet_pere=173
Y http://www. topcased. org/ indez. php$? $idd_ projet_ pere=61
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Figure 2. A graphical description of the ATM system

This editor is developed using three main frameworks EMF (Eclipse Modelling Framework), GEF (Graphical Editing
Framework) and GMF (Graphical Modeling Framework).

EMF is essential for the implementation of a graphical editor. We use this framework in order to create a meta-model
describing the data to capture in the AADL application. Once the meta-model is set up, we use the GEF framework to
manage the graphical side. In fact, we use GEF to create the palette tool of our graphical editor as well as the tools
of creation and selection. Based on these two frameworks, we can finally generate our graphical editor using the GMF
framework that provides basic functionality for creating menus, an area to view the figures, a palette tooletc..

The AADL concepts are graphically presented according to the standard of the AADL language. We propose to use
a discontinuous triangle to graphically model the AO4AADL aspects. For this purpose, we use a Palette tool which
is divided into five groups Components, Calls, Features, Connections to model AADL components as well as their
connections and Aspects to model AO4AADL aspects.

After the graphical modeling of the system, we can generate an AADL textual description of this system as well as the
AO4AADL annexes describing the aspects.

Most elements of the editor have a set of properties available through a Properties Pane in our graphical editor. We do
not present all the information of these elements in the graphical editor. We present only some information; for example
an aspect is characterized by its name, the type of its advice, the name of its pointcut and the type of the primitive
used in its pointcut expression. Other information should be accomplished by the user himself in the generated textual
description.

6. The development process

In this section, we outline our approach for designing aspect oriented architectures. We propose a complete process,
starting with a rigorous specification until the enforcement upon the generation and the execution of aspect code. As
shown in Figure 3, our approach consists mainly in three phases :
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1. Implementing Functional code : In this phase, the designer should focus on the main functionalities of his
application without considering any crosscutting properties. First, he specifies, at the architectural level, his
applications in terms of AADL elements (components, connectors, threads, ports, etc.). Then, the designer generates
the corresponding functional code using a code generator. In fact, many compilers translate an AADL specification
into several languages such as Ada [32], C [7] or RTSJ (Real Time Specification for Java) [1].

2. Designing crosscutting non-functional safety properties : At this phase, the designer defines the non-functional
safety properties and states the conditions under which his application operates correctly, such as security,
availability, etc. To express these crosscutting concerns at the architectural level, the designer should use our
aspect language called AO4AADL. We proposed a complete grammar of our AADL language as well as its different
syntactic and semantic rules (cf. Section 6). These aspects will be integrated as annexes in the AADL specification
to form an aspect oriented architectural description of the modeled system.

3. Generating crosscutting non-functional safety properties code : Since our proposed language is generic,
AO4AADL aspects can be translated into different aspect languages such as Aspect] [18] or JAC [21] for Java
language, AspectAda [22] for Ada language, AspectC [6] for C language, etc. This generation requires an as-
pect generator and well defined transformation rules from AO4AADL to the considered aspect language. These
transformation rules should take into consideration the transformation rules already existing for generating the
functional code (phase 1). The conformity of the generators ensures the consistency between the functional code
and the aspects. These aspects will be automatically integrated into the generated functional code, which will
lead to a complete prototype.

In our approach, we focus on the generation of RTS] code from AADL specifications using Ocarina tool suite [31].
Therefore, we implemented a prototype of Aspect] generator based on a set of transformation rules.

Architectural description

of the system
Functional —
level

—

1

Integration

level

Phase 2

AADL Annexes

Transformation
Tules

Phase 3

Conformity

Aspect
Generator

Functional code Aspects code

Phase 1

Figure 3. The proposed development process

7. Validation with a second case study: Health Watcher (HW)

In this section, we introduce the Health Watcher system (HW), another case study to illustrate and evaluate our approach.
The HW system is a Web-based information system. The purpose of this system is to collect then manage public health
related complaints. The system is also used to notify people of important information regarding the Health System.
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There are two kinds of users: citizens and employees. A citizen is a person who wishes to interact with the system
to query information and to specify (register) a complaint. An employee has special permissions and can access the
various operations of the system such as managing the complaints, update the health unit’s data, update the status of
the employee, etc. Figure 4 illustrates a part of the AADL graphical representation of the HW architecture. To ensure
better visibility of the architecture, we did not represented all the connections between different processes. The HW is
composed of two main architectural processes: (i) the GUI (Graphical User Interface) process provides a Web interface
of the system, for the two kinds of users (citizens and employees) and (ii) the Business process defines all business
operations.

The GUI process is composed of a single thread User_GUI while the Business process is composed of a thread BusinessT
and a data component DataStore that stores the information about complaints, employees, health units, symptoms and
so on.
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Figure 4. A graphical representation of the HW architecture

Apart from the main functionality of the system, three crosscutting concerns have been identified: (i) Security: The
security concern is divided into two concerns :

e Encryption and Decryption : The system should use a secure protocol when sending/receiving data over the
internet,

e Authentication: The employee has access to restricted operations on the system. He should then provide his login
and password to perform the corresponding operation,

(it) Replication: The system should store a copy of the data that the Business process sends to the DataStore component,
and (iit) Consistency: During the interaction among the GU! and the Business processes, every time the Business process
has to check the consistency of the received data.

Using only AADL, the Encryption concern, for example, is represented by the call to the subprogram Encrypt_Data
in all the used threads (User_GUI and BusinessT) in order to encrypt the outgoing data from these threads (lines 9
and 23, Listing 13). Hence, this concern crosscuts all the used threads. However, using our aspect-oriented language
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AO4AADL, this concern can be represented as an aspect at the architectural level. In our case, it is represented inside
the aspect Security (lines 7-16, Listing 14). In fact, this aspect is represented by two pointcuts (one for the encryption
concern and one for the decryption one) and their corresponding advices.

For the encryption concern, its pointcut (line 8, Listing 14) intercepts then all the data sent through all the out ports
of all the threads described in the system. For the advice (lines 10-12), it will run before executing any joinpoint that
is matched by the defined pointcut (line 10). This advice calls the Encrypt_Data subprogram to encrypt the data to
send. This subprogram takes as parameters the value of the intercepted outport (this.value) and returns as an out
parameter the encrypted data (Enc_Data).

Similarly, the decryption concern is represented by a pointcut (line 9) that intercepts all the data received through all
the in ports of all the threads. Its corresponding advice (lines 13-15, Listing 14) calls the Decrypt_Data subprogram
to decrypt the received data.

For the authentication concern, it is represented in a separate aspect called Authentication (lines 18-29, Listing 14)
since it does not affect the same components that are affected by the encryption and decryption concerns. This aspect
is supposed to intercept all the incoming data through the in port Op_in_U of the User_GUI thread (line 19-21) and
checks if the requested operation is different from the query information and the register complaint operations that are
related to citizens (line 25). If so, the Authentication_Spg subprogram is called to invite the employee to enter his
parameters (line 26).

thread GUIT
end GUIT;

calls {

1

2

3

4

5 thread implementation GUIT.Impl

6

7 EED_Spg : subprogram Enter_Emp_Data.Imp;
8

9 ED_Spg : subprogram Encrypt_Data.Impl;
10 F;
11 end GUIT.Impl;

13 thread BusinessT
15 end BusinessT;

17 thread implementation BusinessT.Impl

18 calls {

19 RU_Spg : subprogram Register_User.Impl;
20 RC_Spg : subprogram Register_Com.Impl;
21 UC_Spg : subprogram Update_Com.Impl;

23 ED_Spg : subprogram Encrypt_Data.Impl;

26 end BusinessT.Impl;

Listing 13. Part of the AADL description of the HW system

system implementation Health_Watcher.others

1

2

3 ...

4 end Health_Watcher.others;
5 annex ao4aadl {**
6
7
8

aspect Security{
pointcut Encryption (Enc_Data:String Type): execution outport (* (..));

9 pointcut Decryption (Desenc_Data:String_Type): execution inmport (* (..));
10 advice before(Enc_Data:String_Type ) : Encryption(Enc_Data){

1 Encrypt_Data! (this.value, Enc_Data);

12

13 advice before(Desenc_Data:String _Type) : Decryption(Desenc_Data){
14 Decrypt_Data! (this.value, Desenc_Data);

15

16 }

17

18 aspect Authentication{

19 pointcut Authenticate (op:String_Type, login:String_Type,

20 password:String_Type, result:String_Type):

21 execution inport (Op_in_U (..)) && args (op);

22 advice after (op:String_Type, login:String_Type,

23 password:String_Type, result:String_Type) :

24 Authenticate (op, login, password, result){

25 if(op !'= "Register_Com") and (op != "Query"){

26 Authentication! (login, password, result);
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27 3

28 ¥

29 ¥

30

31 aspect Replication{

32 pointcut Replicate(): execution subprogram (Register* (..)) || execution subprogram (Update* (..));
33 advice after() : Replicate(){

34 Replicate_Data! (this.value);

35 ¥

36 }

37

38 aspect Consistency{

39 pointcut Consistent(consistent:Boolean_Type): execution inport (* (..));
40 advice after(consistent:Boolean_Type) : Consistent(consistent){
M if(this != Op_in_BT) and (this != CT_in_BT){

42 Check_Consistency! (this, this.value, consistent);

43 if (consistent=false){

44 send_Message! ("Provided data is not consistent");

45 ¥

46 i

47 T

48 ¥

49

50 aspect Affected_Components{

51 Security applies to thread User_GUI.Impl, thread BusinessT.Impl;
52 Authentication applies to thread User_GUI.Impl;

53 Replication applies to thread BusinessT.Impl;

54 Consistency applies to thread BusinessT.Impl;

55 }

56 *x}

Listing 14. AO4AADL description of the Security aspect

In addition, a line is added in the Affected_Components aspect (lines 50-55, Listing 14) describing the list of components
that are supposed to be affected by the Security aspect. Line 51 specifies that the Security aspect is supposed to
affect the User_GUI thread and the BusinessT thread, while line 52 indicates that the Authentication aspect affects
only the User_GUI thread.

The Replication concern is presented by the Replication aspect described in lines 31-36 of Listing 14. This aspect
intercepts all the incoming data to the Data component. Since the incoming data is provided from all the registration and
the update subprograms called by the BusinessT thread, the pointcut (line 32) intercepts all the subprograms whose
names begin with Register and Update (subprogram (Register* (..)) and subprogram (Updatex (..))). The
advice (lines 33-35) will run after executing any joinpoint that is matched by the defined pointcut (line 33). This advice
calls the Replicate_Data subprogram that takes as parameters the incoming data. The Replication aspect is supposed
to affect only the BusinessT thread (line 53, Listing 14).

For the Consistency concern, it is presented by the Consistency aspect described in lines 38-48 of Listing 14. This
aspect intercepts all the incoming data through the in ports of the BusinessT thread (lines 39) except the data that
comes from the Op_in_BT and the CT_in_BT ports that reference the type of the operation to perform and the type of
the complaint, respectively. The advice (lines 40-47) will run after the execution of any joinpoint that is matched by
the defined pointcut (line 40). This advice checks first if the intercepted port is different from the Op_in_BT and the
CT_in_BT ports (line 41). If so, it calls the Check_Consistency subprogram that checks the consistency of the incoming
data (line 42). This subprogram takes as parameters the intercepted input port (this) and the value of the incoming
data (this.value) through this port and returns as an out parameter a boolean (consistent), which indicates if the
data is consistent or not. If the data is not consistent a message is displayed to the user to inform him that the provided
data is not consistent (lines 43-45).

All the aspects are defined as an annex library (lines 5-56, Listing 14).

In the following, we represent the Aspect] code generated from the AO4AADL aspects defined in Listing 14. Due to
lack of space, we represent the generated Aspect] code of only two aspects. Listing 15 corresponds to the generated
code from the Consistency aspect and Listing 16 corresponds to the Authentication aspect.

1 aspect Consistency{

2 pointcut Consistent(GeneratedTypes.Boolean_Type consistent):

3 execution (* Activity.getValue(..));

4 after (Generated_Types.Boolean_Type consistent) : Consistent(consistent){
5 if ((((InPort)thisJoinPoint.getArgs() [1]).getPortNumber() !=

6 Deployment.NODE_Business_BusinessT_OP_IN_BT_K) &&

7 (((InPort)thisJoinPoint.getArgs () [1]) .getPortNumber() !=

8 Deployment.NODE_Business_BusinessT_CT_IN_BT_K)){

9 SubPrograms.Check_ConsistencyImpl

0

1 (((InPort)thisJoinPoint.getArgs() [1]).getPortNumber(),
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1 ((GeneratedTypes)thisJoinPoint.getArgs() [2]) .value, consistent.value);

12 if (consistent.value==false){

13 SubPrograms.Send_MessageImpl("Provided data is not consistent");
14 ¥

15 ¥

16 }

17}

Listing 15. Generated AspectJ code from the Consistency aspect

The generated pointcut is presented in lines 2-3 of Listing 15, whereas the generated advice code is presented in
lines 4-16. In the generated Aspect] code, all the generated types are included in the GeneratedTypes class. Lines
5-8 of Listing 15 checks if the intercepted ports are different from the NODE_Business_BusinessT_0OP_IN_BT_K and
the NODE_Business_BusinessT_CT_IN_BT_K ports, which corresponds respectively to Op_in_BT and the CT_in_BT
ports defined at the architectural level. These ports are already declared in the Deployment class generated using
the RTSJ generator. The call to the subprogram Check_Consistency is transformed to a simple call of the method
Check_ConsistencyImpl of the generated SubPrograms class. The same rule is applied to the Send_Message subpro-
gram.

1 aspect Authentication{
2 pointcut Authenticate (GeneratedTypes.String Type op, GeneratedTypes.String Type login,
3 GeneratedTypes.String_Type password, GeneratedTypes.String Type result) :
4 execution (* Activity.getValue(..)) && args (op);
5 after (GeneratedTypes.String Type op, GeneratedTypes.String Type login,
6 GeneratedTypes.String_Type password, GeneratedTypes.String Type result) :
7 Authenticate (op, login, password, result){
8 if (((InPort)thisJoinPoint.getArgs() [1]).getPortNumber()==
Deployment .NODE_GUI_USER_GUI_OP_IN_U_K){

10 if ((op.value != "Register_Com") && (op.value '= "Query")){

n SubPrograms.AuthenticationImpl (login.value, password.value, result.value);
12 ¥

13 i

14 ¥

15 ¥

Listing 16. Generated AspectJ code from the Authentication aspect

Lines 2-4 of Listing 16 present the generated pointcut. The generated advice code is given in lines 5-
14. Lines 8-9 checks if the intercepted port corresponds to the Op_in_U input port of the User_GUI thread
(Deployment .NODE_GUI_USER_GUI_OP_IN_U_K). Line 10 checks then if the value of the intercepted port is deffer-
ent from the operations “Register_Com” and “Query” to call in line 11 the subprogram AuthenticationImpl in order
to perform the operation of authentication.

8. Related work

Although [19] proposed a set of requirements that must be met by the ADL to allow the management of aspects and [2]
offers the features that should be supported by these languages, there is no consensus on how to approach the description
of the architectural aspects and integrate the aspect concepts at the architectural level. But most of existing Aspect-
Oriented architectural approaches agree on that the semantics of the composition should be somehow extended in order
to ensure the connection between the aspects and the basic components.

As stated by [10], extending a component based formalism to AOSD is performed either symmetrically or asymmetrically.
Some existing implementations of AOSD in an ADL used the asymmetrical approach. In this sense, DAOP-ADL [26], a
new lanqguage that does not extend any existing ADL, defines aspects as first-order entities which affect the component’s
interfaces by means of an evaluated interface and a target interface. The composition between components and aspects
is supported by a set of aspect evaluation rules that defines when and how to apply aspects to components in order to
extend the behavior of the system with aspectual properties (weaving between components and aspects). These rules are
described in a separate section, apart from the components, using XML language. Contrary to our language, DAOP-ADL
is completely a new ADL which needs much more effort to implement a platform to support it. Similar to our approach, a
shortcoming of DAOP-ADL is the distinction between components and aspects which decreases the chance of reusability
of architectural elements in the sense that aspects cannot be reused as basic components and basic components cannot
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be reused as aspects. Besides, this language does not support any quantification mechanism and no code generator has
been implemented so far.

Similarly, FAC [24], which is an extension of Fractal [25], proposes a new kind of component named Aspectual Component
(AC) to specify crosscutting concerns in software architecture. Each AC contains a special interface to intercept reqular
components and define the composition between aspects and components using XML language. Furthermore, the
software architecture described in FAC can be translated into Java. Similar to our approach, and like in DAOP-ADL,
a shortcoming of FAC is the distinction between components and aspects, which decreases the chance of reusability of
architectural elements.

In AspectLEDA [20], aspects are LEDA [5] components. The support of aspect concepts is provided by including a special
kind of components called "coordinator". This component defines the weaving process that synchronizes and coordinates
the aspects and components. AspectLEDA architectural description is translated into LEDA to be able to translate
it into Java using a code generator and thus a simulating prototype implementation of the expanded system can be
obtained. However, the integration of a new abstraction increases the complexity of the architectural description since
the architect is forced to learn a new element different from the basic abstractions (components and connectors). In
addition, the integration of a new architectural abstraction requires to define a new platform to support descriptions of
architectures using AspectLEDA because existing tools do not allow more.

In AC2-ADL [11], a new Aspect-Oriented ADL, aspects are modeled using several architectural elements : First, it
defines an Aspectual Component (AC) with a new kind of interfaces to encapsulate the behavior of a crosscutting concern.
Second, it uses an Aspectual Connector (AC) (a special type of connector) to capture the crosscutting interaction of certain
architectural elements and finally, this language defines architectural joinpoints to ensure the composition between base
components and aspectual components. As in the case of all languages developed from scratch, AC2-ADL requires more
effort for its implementation. Moreover, the distinction between the basic components and the aspectual ones decreases
the reusability of components. Similarly, the use of an Aspectual Connector with a new interface reduces the reusability
of connectors. For code generation, AC2-ADL has no type of code generator.

Some other implementations use the symmetrical approaches. They use components to model both functional components
and aspects.

In AspectualACME [3], an extension of ACME [9], aspects are defined as ACME components. The only extension
required to integrate aspect concepts is the introduction of the concept of Aspectual Connector. Aspectual Connector is
an ACME connector with a new interface that is defined on the one hand, to distinguish between the basic components
and aspects and, on the other hand, to capture how are interconnected the different types of components. However,
aspectual connectors cannot be reused as basic connectors and basic connectors cannot be reused as aspectual ones
since they did not have the same structure and the same representation. AspectualACME inherits the property for the
construction of executable configurations but without bearing the code generation.

Similarly, AO-ADL [27] considers that components model either crosscutting or non-crosscutting behavior. The crosscut-
ting nature of a component only depends on the connections with other components, which are specified in connectors.
In this sense, AO-ADL extends the semantics of traditional connectors to represent the crosscutting effect of aspectual
components. As in DAOP-ADL, the composition between components and aspects is defined by a set of composition
rules using XML. Contrary to our AO4AADL lanquage, AO-ADL is completely a new ADL which needs much more effort
to implement a platform to support it. Besides, no code generator has been implemented so far.

In PRISMA [23], the structure or behavior of architectural elements (components and connectors) is modeled using a
new abstraction called aspect. Then aspects are used to model either crosscutting or non-crosscutting concerns. The
composition specification is also specified inside both components and connectors. Contrary to our AO4AADL language,
PRISMA is completely a new language that does not extend an existing ADL. This needs much more effort to implement
a platform to support it. Moreover, it is difficult to visually distinguish the aspects from the basic components since they
are represented using the same architectural abstraction.

In our case, we integrated the aspect code in the model (in the same document) while keeping our model compatible
with tools that do not support AO4AADL. For this purpose, we used the AADL annex extension mechanism. This allows
us having a whole new formalism to describe the aspects (benefit of the asymmetrical approach) while keeping a single
model which can be reusable among different tools (benefit of the symmetrical approach).

Thus, we followed a hybrid approach that brings together the advantages of both symmetrical and asymmetrical ap-
proaches.
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9. Evaluation

In this section, we evaluate our approach and the developed Eclispe plug-in based on the most used criteria and metrics
for evaluating methods and tools. These criteria are inspired from [12, 17, 27, 28]. This section provides the designer
with a fine-grained understanding the quality of the AO4AADL and the associated plug-in.

e The generality criterion states that the proposed method can cover most important aspects of the application
domain. For evaluating this criterion, we used our aspect language in two case studies (Automated Teller Machine
and Health Watcher) for specifying and implementing different crosscutting non-functional safety properties such
as: security, replication, consistency and authentication. We are currently evaluating our approach on a third
case study (“auction system”) which is inspired from http://caosd.lcc.uma.es/aoadl/index.htm. We are trying in
this case to model more and different non-functional properties such as security (authentication, access control),
concurrency, validation, enrollment, monitoring, transaction and response time.

e The usability criterion expresses that the application should be easy to use by the class of user for whom it
was intended. Our proposed approach simplifies the task of the architect by separately defining crosscutting
non-functional safety properties and automatically generating the corresponding Aspect] aspects. In addition, we
provide to the architect a GUI as an Eclipse plug-in that allows easily defining AO4AADL aspects and specifying
their characteristics. Moreover, some researchers in our team (no co-authors), working on AADL, have already
used our editor to model simple systems.

e The applicability criterion expresses that the method meets the needs of the designer and covers the develop-
ment phases and it is applicable in any context. In addition to the definition of the syntax and the semantics
of AO4AADL, we propose an approach that covers the whole development process for implementing crosscutting
non-functional safety properties. First, the designer can easily and graphically define AO4AADL aspect at the ar-
chitectural level. Second, the designer can refine his specification and add more details about the aspect (pointcut,
precedence, etc.). Third, the designer can use our generator to automatically generate Aspect] code, which can
be integrated into the functional application code (which is automatically generated from AADL specifications).
Moreover, our approach was applied to two different case studies and we are currently evaluating it on a third
one.

e The scalability criterion expresses the ability of the language to model both small and large-scale systems equally
well. For evaluating this criterion, we consider the ability of our language to easily add new architectural artifacts
to the architecture. In AO4AADL, the quantification mechanism offers the possibility to add new non-functional
safety properties to many functional components by simply adding a single architectural aspect (for example, the
Security aspect in Listing 14). Moreover, our language has strong scalability for the small systems (less than
15 components). For large systems, we can improve the scalability of our language by offering the user the
opportunity of selecting a view of the designed system. Hence, the large system can be seen as a set of views
(small systems).

e The refinement criterion expresses the ability of the approach to provide a correct and consistent refinement.
Thanks to the mechanism of separation of concerns, our approach requires, as a first step, to specify the components
related to functional concerns. Then, in a second step, the designer can easily add non-functional safety properties
and associate them with the basic functional components. Depending on system requirements, the architect can
then easily add or remove other non-functional safety properties. We consider this as an iterative process until
all the non-functional safety properties are integrated into the architecture.

e The traceability criterion states the ability of the approach to trace the aspects from requirements to implemen-
tation. According to our development process, the aspects describing the non-functional safety properties are
maintained separate from the functional concerns, from requirements to implementation. In fact, the aspects are
specified as annex libraries at the design phase and then they are transformed into modular units (aspects) written
in aspect-oriented programming language (Aspect]) separately from the generated functional code (RTS]J). It will
then be easy to check if an aspect specified at the architectural level is also an aspect at the implementation
level. Also, it is possible to check if new aspects appear in the architecture, or how an architectural aspect is
expressed at the architectural level or at the implementation one.
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e The evolvability criterion expresses the ability to easily accommodate new architectural artifacts or to modify
existing ones, without undue effort by the developer. In AO4AADL, adding a new crosscutting non-functional
safety property amounts to add an aspect inside an annex library without troubling the existing components or
connections.

e The tool support criterion expresses that our approach is implemented and validated using an already existing
tool support called the Ocarina tool suite. This tool which already supports the AADL specifications is simply
extended in our work to be able to integrate the AO4AADL concepts. Although we have integrated new concepts,
the obtained aspect-oriented model is kept compatible with tools that manipulate AADL models and do not support
the AO4AADL concepts due to the use of the annex mechanism. The Ocarina tool suite is incorporated into the
developed Eclipse plug-in to facilitate its use.

10. Conclusions and future work

In this paper, we presented two main contributions in our work. The first contribution consists in the definition of
AO4AADL, an aspect-oriented architecture description language, which extends the AADL language using the annex
extension mechanism to capture crosscutting non-functional safety properties at the architectural level. Thus, for a given
application, the functional concerns are described in AADL components while the crosscutting non-functional safety
properties are described in AO4AADL aspects. We defined a rigorous grammar that supports all basic aspect-oriented
concepts. Our work is then enclosed in the AOSD discipline. The syntax of this grammar is inspired from the Aspect]
one, which offers a simple syntax to define these concepts and from the Behavior Annex of AADL, which is very rich and
enables to capture several behavior instructions.

The second important contribution is the definition of a code generation process allowing to obtain a prototype ready
to be executed. This code generation process is composed of two main phases : In the first phase, we used the RTSJ
generator available at the Ocarina tool suite to be able to generate RTS] code from the basic components described
in AADL. The second phase consists in generating Aspect] aspects from architectural aspects described in AO4AADL.
This last type of code generation is based on a set of transformation rules that we defined in this work. The generated
Aspect] aspects are later weaved with the Java classes generated by the RTS] generator to obtain a complete Java
prototype.

AO4AADL allows having a clear design and highly cohesive components because functional components and aspects
can remain separated until the code generation. It ensures modularity, reusability and maintainability.

In addition, the automatic code generation makes our approach especially user-friendly and bridges the gap between
the implementation of the application and its architectural description.

However, our approach has some limitations, which we will address in future work. First, the Aspect] generator works only
for some prototypes since the used RTS] generator that is very basic in our work presents several limits. Actually, this
generator allows only manipulating data event ports and it supports only integer data. To address this problem, we plan to
improve the RTS] generator. Second, we adopted in our work the Aspect] code generation, despite our proposed language
could be translated in several aspect-oriented programming languages such as AspectC and AspectAda, particularly that
we already have a C and Ada code generators in the Ocarina tool suite.

As future work, we plan, first, to extend the backends part of Ocarina to support the AspectC and AspectAda code
generation in order to make our language more generic. Second, we plan to consider the definition of abstract aspects
to add more generalization to our approach. Finally, we plan to use our language for defining an approach for modeling
at runtime the AADL specifications (Model@ Runtime [4]) which allows the management, at runtime, of the real-time
applications for their adaptation or reparation.
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