
Cent. Eur. J. Comp. Sci. • 2(3) • 2012 • 194-213
DOI: 10.2478/s13537-012-0027-3

Central European Journal of Computer Science

Satisfiability in composition-nominative logics

Review Article

Mykola S. Nikitchenko∗, Valentyn G. Tymofieiev†

Department of Theory and Technology of Programming,
Taras Shevchenko National University of Kyiv,
64, Volodymyrska Street, 01601 Kyiv, Ukraine

Received 14 February 2012; accepted 17 August 2012

Abstract: Composition-nominative logics are algebra-based logics of partial predicates constructed in a semantic-syntactic
style on the methodological basis, which is common with programming. They can be considered as generaliza-
tions of traditional logics on classes of partial predicates that do not have fixed arity. In this paper we present and
investigate algorithms for solving the satisfiability problem in various classes of composition-nominative logics.
We consider the satisfiability problem for logics of the propositional, renominative, and quantifier levels and prove
the reduction of the problem to the satisfiability problem for classical logics. The method developed in the pa-
per enables us to leverage existent state-of-the-art satisfiability checking procedures for solving the satisfiability
problem in composition-nominative logics, which could be crucial for handling industrial instances coming from
domains such as program analysis and verification. The reduction proposed in the paper requires extension of
logic language and logic models with an infinite number of unessential variables and with a predicate of equality
to a constant.
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1. Introduction
The satisfiability problem is one of the classical problems in logic [17]. Lately, interest in this problem has increased dueto the practical value it has obtained in such areas as program verification, synthesis, analysis, testing, etc. [13, 15, 19].In this paper we address the satisfiability problem in the context of the composition-nominative approach [20], whichaims to construct a hierarchy of logics of various abstraction and generality levels on the methodological basis, which iscommon with programming. The main principles of the approach are principles of development from abstract to concrete,
priority of semantics, compositionality, and nominativity.These principles specify a hierarchy of new logics that are semantically based on algebras of predicates. Predicates areconsidered as partial mappings from a certain class of data Dt into the class of Boolean values Bool. Operations over
∗ E-mail: nikitchenko@unicyb.kiev.ua (Corresponding author)
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predicates are called compositions. They are treated as predicate construction tools. Data classes are considered onvarious abstraction levels but the main attention is paid to the class of nominative data. Such data consist of name-valuepairs. In the simplest case nominative data can be considered as partial mappings from a certain set of names (variables)
V into a set of basic (atomic) values A. These data are called nominative sets; their class is denoted VA. Nominativesets represent program states for simple programming languages (see, for example, [18, 20, 27, 30]). Partial predicatesand functions over VA are called quasiary, their classes are denoted PrV ,A = VA p−→ Bool and FnV ,A = VA p−→ Arespectively. Partial mappings of type VA p−→ VA are called bi-quasiary. Such mappings represent program semanticsfor simple programming languages; therefore their class is denoted PrgV ,A. From this follows that semantic models ofprograms and logics are mathematically based on the notion of nominative set (nominative data in general case). Thisfact permits the integration of models of programs and logics representing them as a hierarchy of composition-nominativemodels [22, 23]. Logics developed within such approach are called composition-nominative logics (CNL) because theirpredicates and functions are defined on classes of nominative data, and logical connectives and quantifiers are formalizedas predicate compositions.CNL can be considered as a generalization of classical predicate logic but for all that many methods developed withinclassical logic can also be applied to CNL. In the paper we confirm this statement for the satisfiability problem in CNL.We consider three levels of CNL - propositional, renominative, and quantifier levels - and construct the algorithms thatreduce the satisfiability problem to classical cases, respectively, to the same problem in classical propositional logic,quantifier-free predicate logic, and classical first-order predicate logic. In the latter case the logic language should beextended with an infinite number of unessential variables and with additional predicate of equality to a constant.The paper is structured as follows: In Section 2 we give an introduction to the composition-nominative approach,its main motivation, ideas, and notions taking into consideration that the literature on CNL is available primarily inRussian/Ukrainian. In Section 3 we give an overview of the composition-nominative logics hierarchy; then in Section 4we give formal definitions of logics considered in this paper, and define the satisfiability problem in Section 5. InSections 6-8 we discuss and prove reduction methods for solving the satisfiability problem on propositional, renominative,and quantifier levels respectively. We discuss related work in Section 9. Finally, in Section 10 we summarize our resultsand formulate directions for future investigations.
2. Composition-nominative approach to software system formalization
Mathematical logic proposes a powerful instrument for studying properties of software systems. Still, the application ofexisting or modified logics to software system domain is not easy. An analysis can demonstrate certain discrepanciesbetween a problem to be solved and a logic being used. For example, in the development of software systems (latersimply referred to as programs) we have to admit the following discrepancies:

• semantics of programs is adequately represented by partial functions whereas in traditional logic total functionsand predicates are usually considered;
• programming languages have a developed system of data types whereas traditional logic prefers to operate withsimple unstructured types (sorts);
• semantic aspects of programs prevail over syntactic aspects whereas in traditional logic we have an inversesituation.

These types of discrepancies complicate the usage of logic for program development, analysis, and verification. Thereforewe advocate another scheme of relationship between mathematical logic and programming. Namely, we propose to takeprogram models as an initial point and to construct logics based directly on such models. Thus, instead of adaptationof logic to program models we will “extract” logics from such models.To realize this idea we should first construct adequate models of programs. To tackle this problem we use composition-nominative approach to program formalization [20], which aims to construct a hierarchy of program models of variousabstraction and generality levels. The main principles of the approach are the following.
• Development principle (from abstract to concrete): program notions should be introduced as a process of theirdevelopment that starts from abstract understanding, capturing essential program properties, and proceeds tomore concrete considerations.
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• Principle of priority of semantics over syntax : program semantic and syntactic aspects should be first studiedseparately, then in their integrity in which semantic aspects prevail over syntactic ones.
• Compositionality principle: programs can be constructed from simpler programs (functions) with the help of specialoperations, called compositions, which form a kernel of program semantics structures.
• Nominativity principle: nominative (naming) relations are basic ones in constructing data and programs.

Here we have formulated only principles relevant to the topic of the article; a richer system of principles is developedin [22]. The above-stated principles specify program models as composition-nominative systems (CNS) [20, 22]. Such asystem may be considered as a triple of simpler systems: composition, description, and denotation systems. A compositionsystem defines semantic aspects of programs, a description system defines program descriptions (syntactic aspects), and adenotation system specifies meanings (referents) of descriptions. We consider semantics of programs as partial functionsover a class of data processed by programs; compositions are n-ary operations over functions. Thus, composition systemcan be specified as two algebras: data algebra and function algebra.Function algebra is the main semantic notion in program formalization. Terms of this algebra define syntax of programs(descriptive system), and ordinary procedure of term interpretation gives a denotation system.CNS can be used to construct formal models of various programming, specification, and database languages [3, 20, 22].Program models represented by CNS are mathematically simple, but specify program semantics rather adequately;program models are highly parametric and can represent programs of various abstraction and generality levels in anatural way; on the base of CNS there is a possibility to introduce the notion of special (abstract) computability andvarious axiomatic formalisms [21–23, 28].CNS are classified in accordance with levels of abstraction of their parameters: data, functions, and compositions. Herewe restrict ourselves to program model levels that are induced by abstraction levels of data.Data are considered at three levels: abstract, Boolean, and nominative. At the abstract level data are treated as”black boxes”, thus no information can be extracted. At the Boolean level new data considered as ”white boxes” areadded. Usually, these are logical values T (true) and F (false) that form the set Bool. At the nominative level data areconsidered as ”grey boxes”, constructed of ”black” and ”white boxes” with the help of naming relations. The last level isthe most interesting for programming. Data of this level are called nominative data. The class of nominative data over aset of names V and a class of basic values W can be defined inductively, or equivalently, as the least fixed point of therecursive definition ND(V ,W ) = W
⋃(V m−→ ND(V ,W )), where V m−→ ND(V ,W ) is the class of partial multi-valued(non-deterministic) functions.For nominative data representation we use the form d = [vi →ai | i ∈ I ]. Nominative membership relation is denotedby ∈n. Thus, vi→ai ∈nd means that the value of vi in d is defined and is equal to ai; this can be written in anotherform as d(vi)↓=ai. Let us note that a partial multi-valued function f cannot be precisely determined by its graph (theset of pairs (a, b) such that f (a)↓ = b). The reason is that for an argument a the function f can yield different values(f (a) ↓= b1, f (a) ↓= b2, etc.), and be undefined (f (a) ↑) at the same time.The class ND(V,W ) \ W is called the class of proper nominative data, or hierarchical nominative data; data from theclass V m−→ W will be called flat nominative data, or nominative sets.Concretizations of nominative data can represent various data structures, such as records, arrays, lists, relations, etc. [3,20]. For example, a set {s1, s2, ..., sn} can be represented as a nominative set (flat nominative data or partial multi-valuedfunction) [1→s1, 1→s2, ..., 1→sn], where 1 is treated as a standard name. Thus, we can formulate the following data

representation principle: program data can be represented as concretizations of nominative data [22].The three levels of data considered above specify three levels of semantics-based program models: abstract, Boolean, andnominative. Program models of the abstract level are very poor (actually, only sequencing compositions can be defined).Program models of the Boolean level are richer and permit to define structured programming constructs (sequence,conditional selection, and iteration). This level is still too abstract and does not explicitly specify data variables. Atlast, models of the nominative level permit to formalize compositions of traditional programming. This level involvesvariables of different types. Consider, for example, a simple educational programming language WHILE [18], which isbased on three main syntactic components: arithmetic expressions, Boolean expressions, and statements. States ofWHILE programs are considered as partial single-valued functions from the set of variables V to the set of values
A. The class of all states V p−→A is also denoted by VA. Thus, the semantics of WHILE components is the following:arithmetic expressions specify partial functions of the type VA p−→ A (quasiary functions), Boolean expressions definepartial functions of the type VA p−→ Bool (quasiary predicates), statements specify functions of the type VA p−→ VA
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(bi-quasiary functions). Note that in our terminology VA is a class of single-valued flat nominative data (nominativesets).
Example 1.Consider a Boolean expression x<y. Its semantics can be formalized as a partial quasiary predicate less: VZ p−→Bool.This predicate is undefined on a flat nominative data [x→5, u→4] (we write less([x→5, u→4])↑), is defined on [x→5,
u→4, y→2] with value F (we write less([x→5, u→4, y→2])↓= F ). Note that if a value of less is defined on some data,then the predicate is defined with the same value on any extension of these data. This property is called equitonicity(a special case of monotonicity). Thus, less([x→5, u→4, y→2, v→4])↓=F, x, u, y, v ∈ V. A specific new composition,which can be defined on this level, is renomination R v1 ,...,vnx1,...,xn (formal definition is given in Subsection 4.2). For example,when we ask how to represent a formal model of y<v given a formal model less of x<y, the answer will be R x,y

y,v (less).The constructed predicate can be evaluated in the expected manner, e.g.
R x,y
y, v (less)([x → 5, u → 4, y → 2, v → 4]) = less([x → 2, u → 4, y → 4, v → 4]) = T .

Note that renomination (primarily in syntactic aspects) is widely used in classical logic, lambda-calculus, and specifi-cation languages like Z-notation [29], B [1], TLA [14], etc.The notion of quasiary predicate can also be easily understood when we analyze Tarski’s definition of first-order languagesemantics [17]. This semantics is based on the notion of interpretation which consists of two parts: 1) interpretationof predicate and function symbols in some structure, and 2) interpretation of individual variables in the domain ofthis structure. The latter are usually called variable assignments (or valuations) and can be represented by totalmappings from a set of individual variables (names) V into some set of basic values A. The class of such total mappingswill be denoted V t−→ A or AV , and called total nominative sets. Thus, Tarski’s semantics interprets predicateand function symbols as total quasiary predicates and functions defined on AV . In applications like model checking,program verification, automated theorem proving, etc., partial assignments (nominative sets) are often used instead oftotal assignments. This means that predicate and function symbols can be interpreted as partial functions defined onthe class VA of nominative sets with values in Bool and A respectively, i.e. as quasiary predicates and functions.More elaborate programming languages work with hierarchical nominative data. Composite names like x1.x2...xn are usedto access data components in such languages. Such data can represent complex data structures used in programming.
3. Hierarchy of composition-nominative logics
Having described program models of various abstraction levels we can now start developing semantics-based logics whichcorrespond to such models. Obtained logics will be called composition-nominative logics (CNL). Analysis of constructedprogram models shows that the main semantic notion of mathematical logic - the notion of predicate - can be definedat the Boolean level. At this level predicates are considered as partial functions from a class of abstract data Dt to
Bool. In this case such compositions as disjunction ∨, negation ¬, etc., can be defined. These compositions are derivedfrom Kleene’s strong connectives [12] when partiality of predicates is taken into consideration. Thus, the main semanticobjects are classes of algebras of partial predicates of the form <Dt p−→Bool; ∨, ¬ >. The obtained logics may be called
propositional logics of partial predicates. Such logics are rather abstract, therefore their further development is requiredat the nominative level. As was mentioned earlier, at this level we have two sublevels determined respectively by flatand hierarchical nominative data.Three kinds of logics can be constructed from program models on the flat nominative data level:

1. pure quasiary predicate logics based on algebras with one sort: PrV ,A;
2. quasiary predicate-function logics based on algebras with two sorts: PrV ,A and FnV ,A;
3. quasiary program logics based on algebras with three sorts: PrV ,A, FnV ,A, and PrgV ,A.

For logics of pure quasiary predicates (pure CNL) we identify renominative, quantifier, and quantifier-equational levels.
Renominative logics [23] are the most abstract among above-mentioned logics. The main new compositions for theselogics are the compositions of renomination (renaming) of the form R v1,...,vnx1 ,...,xn : PrV ,A t−→ PrV ,A. Intuitively, given a quasiary
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predicate p and a nominative set d the value of R v1,...,vnx1 ,...,xn (p)(d) is evaluated in the following way: first, a new nominative set
d ′ is constructed from d by changing the values of the names v 1,...,vn in d to the values of the names x1,..., xn respectively;then the predicate p is applied to d ′. The obtained value (if it was evaluated) will be the result of R v1,...,vnx1 ,...,xn (p)(d). Forsimplicity’s sake we will also use simplified notation R v̄

x̄ for renomination composition. The basic composition operationsof renominative logics are ∨, ¬ and R v̄
x̄ .At the quantifier level, all basic values can be used to construct different nominative sets to which quasiary predicatescan be applied. This allows one to introduce the compositions of quantification of the form ∃x in style of Kleene’s strongquantifiers. The basic compositions of logics of the quantifier level are ∨, ¬, R v̄

x̄ , and ∃x.At the quantifier-equational level, new possibilities arise for equating and differentiating values with special 0-arycompositions of the form =xy, called equality predicates. Basic compositions of logics of the quantifier-equational levelare ∨, ¬, R v̄
x̄ , ∃x, and =xy.All specified logics (renominative, quantifier, and quantifier-equational) are based on algebras that have only one sort:a class of quasiary predicates.For quasiary predicate-function logics we identify the function level and the function-equational level.At the function level, we have extended capabilities of formation of new arguments for functions and predicates. In thiscase it is possible to introduce the superposition compositions S x̄ (see [20, 23]), which formalize substitution of functionsinto predicate (or function). It seems also natural to introduce special 0-ary compositions, called denaming functions ’x.They can be considered a parametric unary function with one parameter x. Given a nominative set, ’x yields a value ofthe name x in this set. Introduction of such functions allows one to model renomination compositions with the help ofsuperpositions. The basic compositions of logics of the function level are ∨, ¬, S x̄ , ∃x, and ′x .At the function-equational level, a special equality composition = can be introduced additionally [23]. The basiccompositions of logics of the function-equational level are ∨, ¬, S x̄ , ∃x, ′x , and =. At this level different classes offirst-order logics can be presented.This means that two-sorted algebras (with sets of predicates and functions as sorts and above-mentioned compositionsas operations) form a semantic base for first-order CNL.To preserve properties of classical first-order logic in first-order CNL we should restrict the class VA p−→Bool of quasiarypredicates. Namely, we introduce a class of equitone predicates and its different variations such as maxitotal equitone,equicompatible, etc. [23]. A predicate p: VA p−→Bool is called equitone if for every d, d′ ∈ VA such that d ⊆ d′ from

p(d)↓=b follows that p(d′)↓=b; if an equitone predicate p is defined on all elements of AV then p is called maxitotal
equitone; if a predicate p is a restriction of some equitone predicate then p is equicompatible predicate. Logics based onmaxitotal equitone, equitone, and equicompatible predicates are the “closest” generalization of the classical first-orderlogic that preserves its main properties. These logics are called neoclassical logics [23].The level of program logics is quite rich. First, program compositions that describe the structure of programs are defined.In the simplest case these are:

1. parametric assignment composition ASx :FnV ,A t−→ PrgV ,A,
2. composition of sequential execution •:PrgV ,A × PrgV ,A t−→ PrgV ,A,
3. conditional composition IF : PrV ,A × PrgV ,A × PrgV ,A t−→ PrgV ,A,
4. cycling composition WH: PrV ,A × PrgV ,A t−→ PrgV ,A.

Then we should define compositions specifying program properties. Here we only mention a composition that formalizesthe notion of assertion in Floyd-Hoare logic. From the semantic point of view an assertion scheme of the form {p}prog{q}may be considered as composition FH, which given two quasiary predicates p (precondition), q (postcondition), and abi-quasiary function (a program) prog produces new quasiary predicate denoted by FH(p, prog, q). Such constructionsnicely correspond with main approaches to formal semantics of programs, in particular, with denotational semantics,which treats program operators as state function compositions [18, 27, 30].An example of simple three-sorted predicate-function-program algebra is presented in Fig. 1.Classes of terms of this algebra may be considered as sets of formulas (or their components) of corresponding logics. TheFig. 1 demonstrates that composition-nominative approach aims to construct logics based on various classes of programmodels. For a number of such logics axiomatic calculi were constructed and their properties were investigated [23, 28].
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Figure 1. Simple three-sorted predicate-function-program algebra.  
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Figure 1. Simple three-sorted predicate-function-program algebra.

4. Composition-nominative logics: formal definitions
Here we consider only pure CNL of the following abstraction levels: propositional, renominative, and quantifier. Eachlevel specifies classes of predicates, defined on classes of data, and a set of compositions that correspond to this level.This means that a class of predicate algebras should be specified for each level. Such algebras form the semanticbase for CNL of chosen level. Predicate symbols are interpreted as predicates, and formulas are considered as terms,interpreted in such algebras.Let Bool={F,T} be a set of Boolean (logical) values, Pr (Dt)=Dt p−→Bool be the set of all partial predicates specifiedon some data set Dt, C be a set of total n-ary compositions of predicates of the type Pr (Dt)n t−→Pr (Dt). Then a pair
<Pr (Dt), C> is an algebra of partial predicates. In terms of traditional logic the set Dt is interpreted as a possibleworld or universe, elements of Dt are treated as world states, predicates from Pr (Dt) are considered as world stateproperties, and compositions from C are treated as operators over Pr (Dt).Parameters of logics (classes of predicates, interpretations of predicate symbols, and languages) can be restricted.Examples of restricted predicate classes are total predicates, equitone predicates, etc. Interpretations can also berestricted, for example some predicate symbols in the language can have a fixed interpretation. A restricted languagecan consist only of formulas that are in some special normal form. Thus, we will obtain logics of total predicates, logicswith fixed interpretations, logics with restricted classes of formulas. Such logics are called restricted.These considerations lead to the following definitions of the notion of concrete logic.A concrete composition-nominative logic Lg is specified by

1. a signature (Cs, Ps), where Cs is a set of composition symbols and Ps is a set of predicate symbols;
2. a certain class of data sets; an element of this class is usually denoted by Dt ;
3. a certain class of algebras of the form <Prr, C>, where Prr⊆Pr (Dt), Dt is one of data sets from the class specifiedfor Lg, and operations (compositions) C are interpretations of Cs in this algebra;
4. a certain class of interpretations of predicate symbols of the form I Ps:Ps t−→ Prr for each algebra <Prr, C>;
5. a language of Lg, which is a subset of all formulas of the signature (Cs, Ps), constructed over predicate symbolsfrom the set Ps with the help of symbols of compositions from the set Cs. The class of all formulas FrLg(Cs, Ps)can be defined inductively:1. if P ∈ Ps then P ∈ FrLg(Cs, Ps) ;2. if Φ1,... , Φn ∈ FrLg(Cs, Ps) , c ∈ Cs is an n-ary composition symbol then c(Φ1,... , Φn) ∈ FrLg(Cs, Ps).
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Note that for simplicity’s sake we will use the same notation for compositions as algebraic operations (the set C ) andtheir symbols in the language signature (the set Cs). The class FrLg(Cs, Ps) is exactly the class of all terms of algebrasspecified for Lg. In the sequel we consider formulas of FrLg (Cs, Ps) in their traditional form using infix operations andbrackets; brackets can be omitted according to common rules for the priorities of operations (priority of binary disjunctionis weaker than priority of unary operations).From these definitions follows that the main semantic object in a CNL Lg is a class of algebras of the form <Prr, C>,where Prr⊆Pr (Dt) for some Dt. In CNL compositions have a fixed interpretation. Usually, the set of compositions isclear from the context, therefore we will represent such algebras by a pair (Dt, Prr ), which is called α-interpretation.Interpretations of predicate symbols of the form IPs:Ps t−→Prr in an algebra <Prr, C> will be called σ-interpretations.If Ps is clear from the context we write I. A combination of an α-interpretation and a σ-interpretation gives a π-
interpretation denoted (Dt, Prr, IPs). Such interpretations may also be called models of a logic. Given a π-interpretation
J=(Dt, Prr, IPs) any formula Φ ∈ FrLg (Cs, Ps) by usual procedure of term interpretation can be interpreted as a certainpredicate denoted ΦJ ∈ Prr. Prefixes π-, α-, σ- may be omitted.Now we will give formal definitions for three types of composition-nominative logics considered on propositional, renom-inative, and quantifier levels. Logics of such types will be denoted as PCNL, RCNL, and QCNL respectively. We willconsider general (unrestricted) pure CNL (without function symbols).In definitions we will use the following notation:

1. p(d) ↓= b means that a predicate p is defined on data d with a Boolean value b;
2. p(d) ↑ means that a predicate p on d is undefined.

4.1. Composition-nominative logic of propositional level
Logics of propositional level are called propositional composition-nominative logics (PCNL). An unrestricted concretelogic LP of this level is determined by two basic compositions: disjunction ∨ and negation ¬. Thus, the signature of LPis ({∨, ¬}, Ps). Any data set Dt belongs to the class of data sets specified for LP , thus semantic base of LP is the classof algebras of the form AP(Dt)= <Pr (Dt), ∨, ¬ >.Basic compositions are Kleene’s disjunction ∨ and negation ¬, defined by the following formulas (p, q ∈ Pr (Dt), d ∈
Dt):

(p ∨ q)(d) =

T , if p(d) ↓= T or q(d) ↓= T ,
F, if p(d) ↓= F and q(d) ↓= F,undefined in other cases.

(¬p)(d) =


T , if p(d) ↓= F,
F, if p(d) ↓= T ,undefined if p(d) ↑ .

Language of LP , represented by the class of formulas FrPCNL({∨, ¬ }, Ps), is defined inductively:
1. If P ∈ Ps then P ∈ FrPCNL({∨, ¬ }, Ps). Such formula is called an atomic formula.
2. If Φ, Ψ ∈ FrPCNL({∨, ¬}, Ps) then (Φ ∨ Ψ) ∈ FrPCNL({∨, ¬}, Ps) and ¬Φ ∈ FrPCNL({∨, ¬}, Ps).

4.2. Composition-nominative logic of renominative level
Logics of renominative level are called renominative composition-nominative logics (RCNL). An unrestricted concretelogic LR of this level is determined by three basic compositions: disjunction ∨, negation ¬, and renomination
R v̄
x̄ : Pr (VA) t−→Pr (VA), where v̄ = (v1, ..., vn) and x̄ = (x1, ..., xn) are lists of variables from a certain set V, fixed for

LR ; variables from v̄ are called upper names of renomination composition and should be distinct, variables from x̄ arecalled lower names of renomination composition, n≥0. Thus, the signature of LR is (V, {∨, ¬, R v̄
x̄ }, Ps). Please notethat R v̄

x̄ is a parametric composition, which represents a class of renomination compositions with different parametersconstructed from elements of V. It means that the set of composition symbols actually is {∨, ¬}∪{R v̄
x̄ |x̄, v̄ ∈ V ∗ and

200



Mykola S. Nikitchenko, Valentyn G. Tymofieiev

x̄, v̄ satisfy the restrictions on parameters of renomination composition}. This notational convention concerns signaturesof other logics with parametric compositions considered in the paper; therefore we include the set of names into suchsignatures. For every set A, the set VA of all nominative sets belongs to the class of data sets specified for LR . Semanticbase of LR are all algebras of the form AR (V, A)=<Pr (VA), ∨,¬ , R v̄
x̄ >. The set Pr(VA) will also be denoted PrV ,A.Unary parametric composition of renomination R v1,...,vnx1,...,xn : PrV ,A t−→ PrV ,A is defined by the following formula (p ∈ PrV ,A,

d∈VA):
(R v1,...,vn

x1,...,xn p) (d) = p ([v 7→ a ∈n d|v /∈ {v1, ..., vn}]∇ [vi 7→ d(xi)| d(xi) ↓, i ∈ {1, ..., n}]) .
The ∇ operation is defined as follows. If d1 and d2 are two nominative sets, then d = d1∇d2 consists of all namedpairs of d2 and only those pairs of d1, whose names are not defined in d2. Note that R p (when n = 0) is equal to p.Language of LR is represented by the class of formulas FrRCNL(V, {∨, ¬, R v̄

x̄ }, Ps). As V defines the set of compositionsymbols Cs for RCNL, we also use a simplified notation FrRCNL(V ,Ps). This class is defined inductively by rules 1and 2 from the definition of FrPCNL({∨, ¬}, Ps) in which FrPCNL({∨, ¬}, Ps) is changed on FrRCNL(V, Ps) and by thefollowing new rule:
3. If v̄ = (v1, ..., vn), x̄ = (x1, ..., xn), v̄ is a list of distinct variables, vi, xi ∈ V for all i ∈ {1, ..., n}(n≥0),Φ ∈ FrRCNL(V ,Ps) then R v̄

x̄ Φ ∈ FrRCNL(V ,Ps).
4.3. Composition-nominative logic of quantifier level
Logics of quantifier level are called quantifier composition-nominative logics (QCNL). An unrestricted concrete logic
LQ of this level is determined by four basic compositions: disjunction ∨, negation ¬, renomination R v̄

x̄ , and existentialquantification ∃x, where x ∈ V, x̄, v̄ are vectors of variables from V. Thus, the signature of LQ is (V, {∨, ¬, R v̄
x̄ , ∃x}, Ps).Let us note that elements from the set of names V are used as parameters of existential quantification (and renominationtoo).The class of data sets specified for LQ is the same as one specified for LR . Semantic base of LQ are all algebras of theform AQ(V, A)=<PrV ,A, ∨,¬, R v̄

x̄ , ∃x >.On the quantifier level predicates can be applied to all data obtained from given data by changing the basic values ofthe component with a fixed name. Therefore a composition of existential quantification ∃x with the parameter x ∈ V isdefined by the following formula (p ∈ PrV ,A, d ∈ VA):
(∃x p)(d) =


T , if b ∈ A exists : p(d∇x 7→ b) ↓= T ,
F, if p(d∇x 7→ a) ↓= F for each a ∈ A,undefined in other cases.

Here d∇x 7→ a is a shorter form for d∇[x 7→ a].Language of LQ , represented by the class of formulas FrQCNL(V, Ps), is defined inductively by rules 1-3 from the definitionof FrRCNL(V, Ps) in which FrRCNL(V, Ps) is changed to FrQCNL(V, Ps) and by the following new rule:
4. If x ∈ V, Φ ∈ FrQCNL(V, Ps) then ∃xΦ ∈ FrQCNL(V, Ps).

Let us note that for all described logics derived compositions (such as conjunction ∧, universal quantification ∀x, etc.)are defined in a traditional way.In this paper we develop reductive methods for solving satisfiability problem. It means that we reduce this problem tothe satisfiability problem in classical logics. So, we will also be referring to several fragments of classical first-orderlogic. We consider the pure first-order logic, that is, classical first-order logic without function symbols.Now we give definitions of three classical logics: propositional logic, quantifier-free predicate logic, and first-orderpredicate logic. We will give their definitions in the style of CNL describing only distinctions from corresponding CNL.
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4.4. Classical propositional logic
Logics of propositional level are called classical propositional logics (PCL). A concrete logic LPCL of this level is specifiedby the signature ({∨, ¬}, Ps). A class of data sets consists only of one empty set ∅. In this case we should specifya class of predicates ∅ t−→Bool. For simplicity’s sake we identify ∅ t−→Bool with Bool. This is a disputable solutionbut we follow a mathematical tradition of identifying null-ary predicates with Boolean constants. Of course we shouldensure that all definitions agree with this solution. Accordingly, definitions of compositions should also take this factinto account. This solution gives us only one algebra APCL = <Bool, ∨, ¬ > and only one class of σ-interpretationsof the form IPsPCL: Ps t−→Bool. The language FrPCL({∨, ¬}, Ps) is the same as FrPCNL({∨, ¬}, Ps).
4.5. Classical quantifier-free predicate logic
Logics of quantifier-free level are called here classical quantifier-free logics (FCL). A concrete logic LFCL of this level isspecified by the signature (V, {∨, ¬ }, Ps, arity) where V is a set of variables, and arity: Ps t−→{0,1,2, ... } is a functionthat for each predicate symbol yields its arity.For every set A the set AV= V t−→A of all total nominative sets belongs to the class of data sets specified for LFCL.A class of total predicates TPr (AV )= AV t−→Bool is used for interpretation of formulas. The semantic base of FCL arealgebras of the form AFCL(V,A)= <TPr (AV ), ∨,¬ >. Interpretations of predicate symbols are also defined differentlyfrom those in RCNL. They are mappings

IPsCL : Ps t−→
⋃
n≥0
(
An t−→ Bool

)

such that IPsCL(P)∈ An t−→Bool if arity(P) = n for P ∈ Ps. Thus, interpretations have the form KPs
CL=(AV , TPr (AV ),

IPsCL). Such interpetations will be called κ-interpetations.The language FrFCL(V, Ps) is defined inductively:
1. If P ∈ Ps, arity(P)=n, and x1,...,xn ∈ V, then P(x1,...,xn) ∈ FrFCL(V, Ps). Such formula is called an atomic formula.
2. If Φ, Ψ ∈ FrFCL(V, Ps) then (Φ ∨ Ψ) ∈ FrFCL(V, Ps) and ¬Φ ∈ FrFCL(V, Ps).

A κ-interpretation KPs
CL = (AV , TPr(AV ), IPsCL ), in a simplified form denoted by K, for every atomic formula P(x1, ..., xn)defines its meaning in TPr(AV ) as a predicate P(x1, ..., xn)K such that P(x1, ..., xn)K (d) = IPsCL (P)(d(x1), ..., d(xn)) for every

d ∈ AV . The meaning ΦK of any formula Φ ∈ FrFCL(V ,Ps) is defined in a usual way.
4.6. Classical first-order predicate logic
Logics of quantifier level are called classical first-order predicate logics (QCL). A concrete logic LQCL of this level isspecified in the same way as LFCL with such distinctions: the signature is (V, {∨, ¬, ∃x}, Ps, arity); considered algebrasare AQCL= <TPr (AV ), ∨,¬, ∃x >; for defining FrQCL(V, Ps) we use an additional rule

3. If x ∈ V, Φ ∈ FrQCL(V ,Ps) then ∃xΦ ∈ FrQCL(V, Ps).
The logics PCL, FCL, and QCL correspond to PCNL, RCNL, and QCNL respectively.
5. Satisfiability problem for CNL
Let Φ ∈ FrLg(Cs, Ps). We assume that in the algebras of the form <Prr, C> compositions from C are interpretations ofcomposition symbols Cs. We also assume that a set of predicate symbols Ps is fixed throughout this section. FormulaΦ is called satisfiable in a π-interpretation J = (Dt, Prr, I) if there is a d ∈ Dt such that ΦJ (d)↓= T. We shall denotethis by J |≈ Φ. Let us note that in classical predicate logic d is called variable valuation or variable assignment.A CNL formula Φ is called satisfiable in a predicate class Prr (we write (Dt, Prr ) |≈ Φ) if there exists an interpretation
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J = (Dt, Prr, I) in which Φ is satisfiable. A CNL formula Φ is called satisfiable if there exists an interpretation J inwhich Φ is satisfiable. We shall denote this as |≈ Φ. We call formulas Φ and Ψ equisatisfiable if they are either bothsatisfiable or both not satisfiable (i.e. unsatisfiable).Satisfiability of a formula is related to its validity. A CNL formula Φ is called valid in a π-interpretation J = (Dt, Prr,
I) if there is no d ∈ Dt such that ΦJ (d)↓= F. We shall denote this as J |= Φ, which means that Φ is not refutable in
J. Such definition of validity is chosen in accordance with the principle of development from abstract to concrete. Thisis the simplest (the most abstract) treatment of validity, which specifies only two cases: “valid” and “not valid”. A CNLformula Φ is called valid in a predicate class Prr (we write (Dt, Prr ) |= Φ) if for every interpretation J = (Dt, Prr, I)we have J |= Φ. Formula Φ is called valid if J |= Φ for every interpretation J. We call formulas Φ and Ψ equivalent ifΦJ=ΨJ for every interpretation J.If we need to emphasize that a formula Φ belongs to the language of specific logic (e.g. PCNL, QCNL, FCL, etc.), wewill use the corresponding subscript: (e.g. ΦPCNL, ΦQCNL, ΦFCL etc.). When needed we will include the correspondinglogic abbreviation in the satisfiability sign |≈, e.g. |≈PCNL, |≈QCNL, |≈FCL, etc.Validity and satisfiability are related with each other. But due to possible presence of a nowhere defined predicate(which is a valid predicate) we do not have in CNL the property that Φ is satisfiable if Φ is valid (which holds forclassical first-order logic). But reduction of satisfiability to validity still holds in CNL. We formulate this statement forevery concrete CNL Lg (see definitions in Section 4).
Lemma 5.1.Let Φ ∈ FrLg(Cs, Ps) and <Pr (Dt), C> be an algebra of partial predicates, J=(Dt, Pr (Dt), I) be a π-interpretation.Formula Φ is satisfiable in J iff ¬Φ is not valid in J.
Consider an algebra AP(Dt)=<Pr (Dt), C>. We say that p ⊆ q, where p, q ∈ Pr (Dt), if for every d ∈ Dt such that
p(d) ↓= b we have q(d) ↓= b (this means inclusion of predicate graphs). We say that (p1,..., pn) ⊆ (q1,..., qn) if pi ⊆ qifor every i ∈ {1, ..., n}. An n-ary composition c ∈ C is called monotone if from (p1,..., pn) ⊆ (q1,..., qn) follows
c(p1,..., pn) ⊆ c(q1,..., qn).
Lemma 5.2.Compositions in algebras of the forms AP(Dt) = <Pr (Dt), ∨, ¬ > , AR (V, A) =<PrV ,A, ∨,¬, R v̄

x̄ >, and AQ(V, A) =<PrV ,A,
∨,¬, R v̄

x̄ , ∃x > are monotone.
Proof.The proof is straightforward. For example, let us show monotonicity of ∃x . Assume p, q ∈ PrV ,A , p ⊆ q. Let
∃x p(d) ↓= T . Then there exists b ∈ A such that p(d∇x 7→ b) ↓= T ; thus we have that q(d∇x 7→ b) ↓= T ; therefore
∃x q(d) ↓= T . Let ∃x p(d) ↓= F . Then p(d∇x 7→ a) ↓= F for every a ∈ A; thus we have that q(d∇x 7→ a) ↓= F forevery a ∈ A. This means that ∃x q(d) ↓= F . �
Monotonicity of CNL compositions guarantees stability of satisfiability under predicate extensions.Let J1 = (Dt, Pr (Dt), I1), J2 = (Dt, Pr (Dt), I2) be two interpretations such that I1(P) ⊆ I2(P) for every P ∈ Ps. Thenwe say that J2 extends J1 and denote this by J1 ≤ J2.
Lemma 5.3.Let Φ ∈ FrLg(Cs, Ps) and <Prr, C> be an algebra of partial predicates. Let J1 = (Dt, Prr, I1), J2 = (Dt, Prr, I2) be twointerpretations such that J1 ≤ J2. Suppose that all compositions in C are monotone. Then from J1 |≈ Φ follows J2 |≈ Φ.
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Proof.The statement can easily be proved by induction over the structure of formula Φ. �
From Lemma 5.3 follows that given a π-interpretation J = (Dt, Prr, I) such that J |≈ Φ we can construct an interpretation
K = (Dt, TPr (Dt), I ′) within the class of total predicates such that J≤K and K |≈ Φ.
Lemma 5.4.Let Φ ∈ FrLg(Cs, Ps). Then from (Dt, Prr ) |≈ Φ follows (Dt, TPr (Dt)) |≈ Φ.
For all three CNL levels considered in the paper the classes of total predicates are closed under compositions ofrespective levels.
Lemma 5.5.The class TPr (Dt) =Dt t−→ Bool of total predicates over Dt forms a sub-algebra in AP(Dt);the class TPr (VA)=(VA t−→ Bool) is a sub-algebra in AR (V, A) and in AQ(V, A).

6. Satisfiability for propositional CNL
Let TCPr (Dt) ⊆ TPr (Dt) be a set of total constant predicates TCPr (Dt) = {Tp, Fp} such that Tp(d)↓ = T and Fp(d)↓ = Ffor every d ∈ Dt.

Lemma 6.1.Let Φ ∈ FrPCNL({∨, ¬}, Ps), (Dt, TPr (Dt)) be an α-interpretation. Then (Dt, TPr (Dt)) |≈ Φ iff (Dt, TCPr (Dt)) |≈ Φ.
Proof.To prove this lemma we need to show that for every π-interpretation J = (Dt, TPr (Dt), I) such that J |≈ Φ we canconstruct a π-interpretation K = (Dt, TCPr (Dt), I′) such that K |≈ Φ. From J |≈ Φ it follows that there exists d ∈
Dt such that ΦJ (d)↓= T. For every P ∈ Ps let I′(P) be a total constant predicate taking the value I(P)(d). It caneasily be shown that ΦK (d) ↓= T, which means that K |≈ Φ. The inverse direction holds because TCPr (Dt) ⊆ TPr (Dt). �
Lemma 6.1 justifies considering only σ-interpretations in the set of total constant predicates for checking satisfiabilityof propositional CNL formulas. In fact, such reductions can be continued by considering an empty data set. In this case
TCPr (∅)=Bool as was discussed earlier.
Lemma 6.2.Let Φ ∈ FrPCNL({∨, ¬}, Ps), d ∈ Dt. Then (Dt, TCPr (Dt)) |≈ Φ iff (∅, TCPr (∅)) |≈ Φ.The proof is trivial. �
Summarizing formulated results we obtain the following chain of reductions:

(Dt, Pr(Dt)) |≈ Φ⇔ (Dt, TPr(Dt)) |≈ Φ⇔ (Dt, TCPr(Dt)) |≈ Φ⇔ (∅, TCPr(∅)) |≈ Φ.
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This essentially means that for checking satisfiability of Φ in CNL of the propositional level we can use the methodsfor checking satisfiability in the classical propositional logic. Thus, we have proved the following theorem.
Theorem 6.1.Let Φ ∈ FrPCNL({∨, ¬}, Ps). Then |≈PCNLΦ iff |≈PCLΦ.
For checking satisfiability in classical propositional logic many methods were developed [9]. Among them we would liketo mention Davis-Putnam-Logemann-Loveland algorithm [8], variations of which are very widely used.

7. Satisfiability problem for renominative CNL
In this section we suggest a technique that allows reducing the satisfiability problem for CNL formulas of the renominativelevel to the satisfiability problem for quantifier-free formulas of classical predicate logic. First, we put an RCNL formulainto a special equivalent representation in which renomination composition is applied only to predicate symbols, thenwe strengthen this representation to a unified renominative form, and at last, we apply syntactical transformation rulesthat construct an equisatisfiable formula of classical quantifier-free predicate logic.A (sub)formula of the form R v̄

x̄P where P ∈ Ps is called a renominative atom. An RCNL formula Φ is said to be in
renominative normal form (RNF) if renomination compositions and predicate symbols occur in Φ only in renominativeatoms. Recall that lists of names in renomination compositions may be empty (empty renomination). In this caserenominative atoms have the form R P (P ∈ Ps). Here we assume that a non-empty renomination occurs in Φ;otherwise Φ can be trivially reduced to a propositional formula.We consider a total mapping rnf : FrRCNL(V ,Ps) t−→ FrRCNL(V ,Ps) that maps an RCNL formula to its RNF. Given anRCNL formula Φ, renominative normal form rnf [Φ] is constructed as described by rules R1-R7:R1) rnf [P ] = R P (P ∈ Ps)R2) rnf [(Φ1 ∨ Φ2)] = (rnf [Φ1] ∨ rnf [Φ2])R3) rnf [¬Φ] = ¬rnf [Φ]R4) rnf [R v̄

x̄P ] = R v̄
x̄P (P ∈ Ps)R5) rnf [R v̄

x̄ (Φ1 ∨ Φ2)] = (rnf [R v̄
x̄ Φ1] ∨ rnf [R v̄

x̄Φ2])R6) rnf [R v̄
x̄¬Φ] = ¬rnf [R v̄

x̄ Φ]R7) rnf [R v1,...,vn,w1,...,wmx1 ,...,xn,y1,...,ym R v1,...vn,u1,...,uk
s1 ,...,sn,z1,...,zk Φ] = rnf [R v1,...,vn,w1,...,wm ,u1 ,...,uk

α1,...,αn,y1,...,ym ,β1,...,βk Φ], where
wi 6= uj (i = 1, ..., m; j = 1, ..., k), α i = si(v 1,...,vn,w1,...,wm / x1,...,xn, y1,...,ym), βj = zj (v1,...,vn, w1,...,wm / x1,...,xn, y1,...,ym).Here r (b1,...,bq / c1,...,cq) = r if r /∈{b1,...,bq}, r (b1,...,bq / c1,...,cq) = ci if r = bi for some i. This rule represents explicitlythe result of function composition of parameters of two successive renominations.The transformation rnf : FrRCNL(V ,Ps) t−→ FrRCNL(V ,Ps) relies on equivalent formula transformations of RCNL [23],thus the following lemma holds.
Lemma 7.1.Let Φ ∈ FrRCNL(V, Ps). Then |≈ Φ iff |≈ rnf [Φ].
Note that proposed way of construction of renominative normal form preserves the reciprocal order of propositionalcompositions in the original formula. Thus, the obtained formula is practically of the same complexity as the initialformula.An RCNL formula Φ is said to be in unified renominative normal form (URNF) if it is in renominative normal form andfor every pair of its renominative atoms Rū

q̄P and Rw̄
ȳQ we have that vectors ū and w̄ coincide; that is, in all renominativeatoms the lists of their upper names are the same.
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We will define a total multi-valued (non-deterministic) mapping urnf : FrRCNL tm−→ FrRCNL that transforms an RCNLformula to its URNF. It means that given an RCNL formula Φ we non-deterministically construct urnf [Φ].Let Φ be an arbitrary RCNL formula in renominative normal form. Denote by VΦ the set of all names that occur asupper names in renominative atoms of Φ. To construct URNF we unify all renominative atoms as follows. First, wechoose an ordering of variables (names) from VΦ and get a list v̄ ; then we transform all renominative atoms of the form
R ū
q̄P occurring in Φ to the form Rv̄

x̄P, so that v̄ becomes the list of upper names in renomination compositions, while thelists of lower names may differ. This is done using the identical renomination rule: R ū
q̄P = R z,ūz,q̄P , and commutative

renomination rule: Ru1 ,..., ui,..., uj ,..., un
q1,..., qi,..., qj ,..., qnP = Ru1 ,..., uj ,..., ui,..., un

q1..., qj ,..., qi,..., qn P . For a formula Φ we will denote any possible URNF of Φby urnf [Φ].
Lemma 7.2.Let Φ ∈ FrRCNL(V, Ps). Then |≈ Φ iff |≈ urnf [Φ].
Proof.Applications of identical and commutative renomination rules preserve equivalence of formulas, therefore the formulasΦ and urnf [Φ] are equivalent. Consequently, they are equisatisfiable. �
Now we describe a transformation clf : FrRCNL(V ,Ps) p−→ FrFCL(V ,Ps) which, given an RCNL formula in URNF,yields a formula of quantifier-free classical logic as follows:

1. clf [R v1,...,vnx1 , ... , xnP ] = P(x1, ..., xn)2. clf [(Φ1 ∨ Φ2)] = (clf [Φ1] ∨ clf [Φ2])3. clf [¬Φ] = ¬clf [Φ]
Transformation clf preserves satisfiability.Before proceeding to the proof we introduce several mappings over nominative sets and predicates related with a specialconstant ε. This constant represents the case when a value of a variable is not defined in a nominative set.Let Aε = A

⋃
{ε}, ε /∈ A. First, define ε-adding transformation (ε-totalizing) ade: VA t−→ AVε by the formula

ade(d)=[v 7→ ε|for each v ∈ V ]∇ d. In other words ade(d) = [v 7→ d(v )|v ∈ V , d(v ) ↓]∇[v 7→ ε|v ∈ V , d(v ) ↑] .It is clear that ade is bijective. The inverse mapping will be denoted dee: AVε t−→VA.Formally, dee(d) = [v 7→ d(v )|v ∈ V , d(v ) 6= ε] .In the same way we define two bijective mappings between classes of total predicates:
aep: (VA t−→ Bool) t−→ (AVε t−→ Bool) and dep:(AVε t−→ Bool) t−→ (VA t−→ Bool).For every p ∈ (AVε t−→ Bool), dep(p) is defined as follows: given any d ∈ VA dep(p)(d)=p(ade(d)).For every p ∈ (VA t−→ Bool), aep(p) is defined as follows: given any d ∈ AVε aep(p)(d)=p(dee(d)).From definitions we see that dep: (AVε t−→ Bool) t−→ (VA t−→ Bool) is an isomorphism between algebras
< (AVε t−→ Bool), ∨,¬ , R v̄

x̄ > and < (VA t−→ Bool), ∨,¬ , R v̄
x̄ >.

Theorem 7.1.Let Φ ∈ FrRCNL(V, Ps). Then |≈RCNL Φ iff |≈FCL clf [urnf [Φ]].
Proof.Let ΦCL = clf [urnf [Φ]], J = (VA, TPr (VA), I) be a π-interpretation, ΦJ (d0)↓=T for some d0 ∈ VA. We define J tointerpret formulas as total predicates. This was justified by Lemma 5.4.
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Now, given J, Φ, and d0, we construct a classical interpretation JCL = (AVε ,TPr (AVε ), ICL). Interpretation ICL for predicatesymbols is defined as follows. Let (v 1, ... , vn) be a list of upper names occurring in urnf [Φ]. Then for every P ∈ Ps weconstruct an n-ary predicate p= ICL(P) in the following way:
p(a1, ..., an) = I(P)([v 7→ a|v 7→ a ∈n d0, v /∈ {v1, ..., vn}]∇[vi 7→ ai|i = 1, ..., n, ai 6= ε]).

The interpretation JCL induces interpretations of all sub-formulas of ΦCL into predicate class (AVε t−→ Bool).Let Dε = {ade(d0)∇d|d ∈ AVΦε } and D = {dee(d)|d ∈ Dε}. It is clear that ade as well as dee are bijections between
Dε and D.We also have that clf is a bijection between sub-formulas of Φ and sub-formulas of ΦCL. Now we prove by inductionthat any sub-formula Ψ of Φ and its counterpart ΨCL = clf [Ψ] are interpreted as predicates that yield the same valueson related (by ade) elements of D and Dε respectively. That is: ΨJ (d) = (ΨCL)JCL (ade(d)), d ∈ D.Base of induction: Let Ψ = R v1,...,vnx1 ,...,xnP , then ΨCL = P(x1, ..., xn). By construction of ICL we have that (R v1,...,vnx1,...,xnP)J (d) =(P(x1, ..., xn))JCL (ade(d)), because vi ∈ VΦ (i = 1, ..., n). Inductive step is trivial.Now from ΦJ (d0)↓=T we obtain that (ΦCL)JCL (ade(d0))↓=T.Let us prove the inverse. Suppose (ΦCL)JCL (dε) = T for some dε ∈ AVε .Let us construct an interpretation J=(VA, TPr (VA), I) and data d0 such that ΦJ (d0) = T .Let D = {dee(d)|d ∈ AVΦε }. For each P occurring in Φ within renominative atoms with (v 1,..., vn) as upper namesand for every d ∈ VA we assign I(P)(d) = ICL(P)(ade(d)(v1), ..., ade(d)(vn)). Now we can prove in the same way thatΦJ (dee(dε)) = T . �
Theorem 7.1 allows us to solve the satisfiability problem in RCNL by applying the methods for solving the sameproblem in classical quantifier-free predicate logic. Obtained formulas of the latter logic can further be transformedinto equisatifiable formulas of pure propositional logic. However, this requires the data set A to have enough valuesto distinguish all (x1,..., xn) tuples occurring in ΦCL. Nevertheless, it is not important when we consider the generalsatisfiability problem, i.e., when we do not concretize the data set. Thus, on the renominative level we can reduce thesatisfiability problem in CNL to the propositional satisfiability problem. The reduction is illustrated in the followingexamples.
Example 2.Consider an RCNL formula Φ with three predicate symbols: P, Q, S. Let the set V contain x1, y1, x2, y2. Let

Φ = R x1
y1 (P ∨ Q) ∧ ¬R x1,x2

y1,y2 (P ∨ R x2 ,y1
x1,y2Q) ∧ S.

According to the procedure, we construct renominative normal form of Φ by applying simple transformations. Thus weobtain Φ1.
Φ1 = (R x1

y1P ∨ R x1
y1Q) ∧ ¬(R x1,x2

y1,y2P ∨ R x1,x2,y1
y1,y1,y2Q) ∧ R S.

Now we construct URNF by unifying occurrences of the renominative atoms R x1y1P , R x1,x2y1 ,y2P , R x1y1Q, R x1,x2 ,y1
y1 ,y1,y2Q, and R S.Thus we obtain Φ2.

Φ2 = (R x1,x2 ,y1
y1,x2,y1P ∨ R x1,x2,y1

y1 ,x2 ,y1Q) ∧ ¬(R x1 ,x2 ,y1
y1,y2,y1P ∨ R x1,x2,y1

y1,y1 ,y2Q) ∧ R x1,x2,y1
x1 ,x2 ,y1 SNow we are ready to construct a classical predicate logic formula ΦCL which has ternary predicates P, Q, S.

ΦCL = (P(y1, x2, y1) ∨ Q(y1, x2, y1)) ∧ ¬(P(y1, y2, y1) ∨ Q(y1, y1, y2)) ∧ S(x1, x2, y1).This formula is satisfiable. For example, we can consider the set of natural numbers as a set A. Then the latter formulais equisatisfiable with the following formula of propositional logic (P1∨Q1)∧ ¬ (P2∨Q2)∧S, which is clearly satisfiable.Thus we have established |≈ Φ. Note that Φ is not satisfiable for data set {α}V . Indeed, if we used one-element set of
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basic values then ΦCL would be equisatisfiable with the propositional formula (P1∨Q1)∧ ¬ (P1∨Q1)∧S, which is notsatisfiable.
Example 3.Consider an RCNL formula Φ with two predicate symbols: P, Q. Let the set V contain x1, y1, x2, y2. Let

Φ = R x1,x2
y1 ,y2 (P ∧ Q) ∧ ¬R x2

y2 (R x1
y1P).

RNF of Φ is then
Φ1 = R x1,x2

y1 ,y2P ∧ R x1,x2
y1 ,y2Q ∧ ¬R x1,x2

y1y2P.No unification of renominative atoms needed, so an equisatisfiable predicate logic formula ΦCL has two binary predicates
P and Q and is as follows:

ΦCL = P(y1, y2) ∧ Q(y1, y2) ∧ ¬P(y1, y2).This formula is unsatisfiable in FCL, which means that Φ is unsatisfiable in RCNL.

8. Satisfiability for quantifier CNL
In this section we suggest a technique that allows reducing the satisfiability problem for CNL formulas of the quantifierlevel to the satisfiability problem for formulas of classical first-order predicate logic. This will be a more complicatedreduction than in the case of renominative logic. The difficulties occur due to the composition of quantification which 1) inthe general case is not distributive with renomination composition, and 2) does not have properties like “(∀xΦ)J (d) ↓= Timplies ΦJ (d) ↓= T ” that hold in classical logic. To cope with these difficulties we should extend the language signatureof composition-nominative logics with so-called unessential symbols upon which basic predicates do not depend, andfor classical logic additionally add a symbol of unary predicate of equality to a constant. This will allow us to constructURNF for a given QCNL formula, and to transform it then to an equisatisfiable QCL formula in the extended language.Therefore, let us generalize the rules for constructing rnf and urnf to extend these mappings onto FrQCNL(V, Ps).The rules for constructing RNF can be extended as follows.R8) rnf [∃y Φ] = ∃y rnf [Φ];R9a) rnf [R v̄

x̄ ∃y Φ] = ∃y rnf [R v̄
x̄ Φ], when y does not occur in v̄ and x̄;R9b) rnf [R v̄

x̄ ∃y Φ] = ∃u rnf [R v̄
x̄ R

y
u Φ], when y occurs in v̄ or x̄ . Here u is a fresh unessential variable, u ∈ U (seebelow). If v̄ and x̄ are empty lists, rule R9b represents the rule of quantified variable renaming.Note that each application of the R9b rule introduces an unessential variable u. This variable belongs to a set ofunessential variables U such that U∩V=∅, U is infinite. Unessential variables from U put a restriction on any σ-interpretation I Ps: Ps t−→ PrV∪U,A in such a way that for every P ∈ Ps and any d∈ V∪UA the value of I Ps(P)(d) doesnot depend on values of variables from the set U. Actually it means that we consider a logic with a restricted class ofinterpretations and the extended language FrQCNL(V∪U, Ps). By a fresh variable for a formula we mean a variable thatdoes not occur in the formula. The rule R9b also permits to assume w.l.o.g. that all quantified variables in the formulaare different.The notion of URNF has to be adjusted for QCNL. An additional requirement is that for every renominative atom Rv̄

x̄P,and every quantifier ∃y that occur in the initial formula Φ, y shall occur in v̄ . During URNF construction we ensurefulfillment of this requirement by additional applications of the identical renomination rule. Note that at least onequantifier shall occur in the formula; otherwise we get the formula of the levels already discussed.Following the definition of transformation clf : FrRCNL(V ,Ps) p−→ FrFCL(V ,Ps) let us extend the reduction to clf :
FrQCNL(V ,Ps) p−→ FrQCL(V ⋃U,Ps) which maps every QCNL formula in URNF to a QCL formula that represents thesame term up to atomic sub-formulas.
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1. clf [R v1,...,vnx1 , ... , xnP ] = P(x1, ..., xn)
2. clf [(Φ1 ∨ Φ2)] = ( clf [Φ1] ∨ clf [Φ2])
3. clf [¬Φ] = ¬clf [Φ]
4. clf [∃x Φ] = ∃x clf [Φ]

A reasonable question one may ask would be whether we now have that |≈QCNL Φ⇔|≈QCL clf [urnf [Φ]]. The answer isillustrated by the counterexample below.
Example 4.Consider a QCNL formula

Φ = (∀x¬P) ∧ P.
It is easy to show that this formula is satisfiable in QCNL. Indeed, let J = (VA, PrV ,A, I) be such that V={x, y},
A={1, 2}. Let I(P)(d)↓ = F if x 7→ a ∈n d for some a ∈ A and T in all other cases. In other words, the predicate Ptakes the value T on some data d iff the name x is undefined in d. Note that the predicate I(P) is not equitone. Indeed,
I(P)([x 7→ 1, y 7→ 1])↓ = F, whereas I(P)([y 7→ 1])↓= T. Now we have that ΦJ ([y 7→ 1])↓ = T, which means that Φ issatisfiable. At the same time it is easy to prove that the formula

clf [urnf [Φ]] = (∀x¬P(x)) ∧ P(x),
is not satisfiable in the classical first-order predicate logic. This example also demonstrates that under dep/aepmappings algebras < (AVε t−→ Bool), ∨,¬ , R v̄

x̄ , ∃x > and < (VA t−→ Bool), ∨,¬ , R v̄
x̄ , ∃x > are not isomorphic.

To reduce the satisfiabilty problem in QCNL to the satisfiability problem in QCL we need to refine the formula trans-formation to classical logic (this concerns the rule 4). It also requires us to introduce additional unary predicate symbolinto the signature of QCL, so, terms representing transformed formulas will have a more complicated structure. Theidea is to get the possibility to check whether a variable has a value (is defined). This can be done with the help ofa unary predicate of equality to constant ε denoted ε=. Atomic formulas for this unary symbol have the form ε=(x).For simplicity’s sake we write x 6= ε instead of ¬(ε=(x)). Let PsE=Ps∪{ε=}. Consequently, we get a new extendedpredicate algebra.We formalize the syntactical reduction clf of QCNL formulas in unified renominative normal form to QCL formulaschanging the rule 4 to the following new rule:
4. clf [∃xΦ] = ∃x(x 6= ε ∧ clf [Φ])

Lemma 8.1.Let Φ ∈ FrQCNL(V∪U, Ps) be in unified renominative normal form, J = (V∪UA, TPr(V∪UA), I Ps) be a π-interpretationsuch that J |≈ Φ, ΦCL ∈ FrQCL(V∪U, PsE) be such that ΦCL=clf [Φ]. Then there exists a κ-interpretation JCL = (AV ⋃Uε ,
TPr(AV ⋃Uε ), IPsECL ) such that JCL|≈ ΦCL.
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Proof.With minor modifications the proof follows the proof of Theorem 7.1.For convenience let us recall our constructions. Let (v 1, ... , vn) be the list of upper names occurring in renominativeatoms of urnf [Φ], VΦ = {vi|i = 1, ..., n}. Let ΦJ (d0)↓=T for some d0 ∈ VA. We should construct a classical interpretation
JCL = ((A⋃{ε})V ⋃U , TPr(AV ⋃Uε ), IPsECL ). Then for every P ∈ Ps we define an n-ary predicate p = IPsECL (P) as follows:
p(a1,... ,an) =IPs(P)([v 7→ a|v 7→ a ∈n d0, v /∈ {v1, ..., vn}]∇[vi 7→ ai|i = 1, ..., n, ai 6= ε]).Let Dε = {ade(d0)∇d|d ∈ AVΦε } and D = {dee(d)|d ∈ Dε}.The induction statement that needs proving is that any sub-formula Ψ of Φ and its counterpart ΨCL = clf [Ψ] areinterpreted as predicates that yield the same values on related (by ade) elements of D and Dε respectively. That is:ΨJ (d) = (ΨCL)JCL (ade(d)), d ∈ D.We prove the induction statement only for the case of existential quantifier.Let Ψ = ∃xΘ, then ΨCL = clf [Ψ] = ∃x(x 6= ε ∧ ΘCL), where ΘCL = clf [Θ]. By induction base we have that for every
d ∈ D ΘJ (d)=(ΘCL)JCL (ade(d)). Let us prove that for every d ∈ D ΨJ (d) = (ΨCL)JCL (ade(d)).

1. Suppose ΨJ (d)= T. That is, (∃x Θ)J (d) = T . It means there is some a ∈ A such that ΘJ (d∇x 7→ a) = T . As x ∈ VΦwe have that d ∈ D ⇒ d∇x 7→ a ∈ D. That means, according to induction assumption, that (ΘCL)JCL (ade(d∇x 7→
a)) = T . Note that ade(d∇x 7→ a)=ade(d)∇x 7→ a. That is, (ΘCL)JCL (ade(d)∇x 7→ a) = T . Consequently,(∃x(x 6= ε ∧ΘCL))JCL (ade(d)) = T . So we have obtained that ΨJ (d)= T ⇒ (ΨCL)JCL (ade(d)) = T .

2. Suppose that ΨJ (d)= F. That is, (∃x Θ)J (d) = F . Then we have that for all a ∈ A ΘJ (d∇x 7→ a) = F . Thatmeans, according to induction assumption, that for all a ∈ A (ΘCL)JCL (ade(d∇x 7→ a)) = F . Which meansthat for all a ∈ A (ΘCL)JCL (ade(d)∇x 7→ a) = F . Let us assume that (ΘCL)JCL (ade(d)∇x 7→ b) = T for some
b ∈ Aε = A

⋃
{ε}. It then follows immediately that b = ε. That means that (x 6= ε∧ΘCL)JCL (ade(d)∇x 7→ b) = Ffor all b ∈ Aε. Hence (∃x(x 6= ε ∧ΘCL))JCL (ade(d)) = F . Thus ΨJ (d)= F ⇒ (ΨCL)JCL (ade(d)) = F.

As IPs assigns to each predicate symbol a total interpretation, the value of ΨJ (d) is always defined (Lemma 5.5). Thuswe can say that for every d ∈ D ΨJ (d) = (ΨCL)JCL (ade(d)).The rest of the proof is identical to that of Theorem 7.1. �
Theorem 8.1.Let Φ ∈ FrQCNL(V, Ps). Then |≈QCNL Φ iff |≈QCL clf [urnf [Φ]].
Proof.Due to Lemma 5.4 we can consider only interpretations J with total predicates. The direct statement follows fromLemma 8.1, the inverse statement is proved in the same way as described in the proof of Theorem 7.1. �
Theorem 8.1 justifies our method for checking satisfiability of formulas in composition-nominative logics, which consistsin transforming them to equisatisfiable formulas of classical predicate logic with extended language.Let us illustrate this method on the formula from example 4.
Example 5.Consider a QCNL formula

Φ = (∀x¬P) ∧ P.
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A unified renominative normal form of Φ is
Φ1 = (∀x¬R x

xP) ∧ R x
xP.Therefore ΦCL = clf [Φ1] = (∀x(x 6= ε → ¬P(x))) ∧ P(x).

It is easy to see that the first-order formula ΦCL is satisfiable. Indeed, let JCL = (AV ⋃Uε ,TPr(AV ⋃Uε ), IPsECL ) be such that
Aε=A⋃{ε}, A = {0}, V={x}, I(P)([x 7→ 0]) = F, I(P)([x 7→ ε]) = T . Then we get that (ΦCL)JCL ([x 7→ ε]) = T , whichmeans, according to Theorem 8.1, that Φ is satisfiable. One possible interpretation J such that J |≈ Φ was provided atthe end of example 4.

9. Related work
The main aspects of the composition-nominative approach such as partiality, compositionality, nominativity, validity,have received a lot of attention and have been investigated for decades. This is reflected in works in such fields as logic,philosophy, linguistics, and computer science.The importance of partiality, for example, was already being discussed in detail by the 1980’s [6]. Since that time manydifferent approaches have emerged. A survey of some of such approaches and a comparison of several formalisms can befound in [11, 24]. Partiality continues to receive more and more attention in the computer science community. Theoremproving systems [16] and validity checkers [4] tend to introduce support also for partial functions.Compositionality can be traced back to works of Gottlob Frege. The history of this principle can be found in [10].Nowadays the importance of the compositionality principle increases because of the necessity of investigation andverification of complex systems [5, 26], in particular, concurrent systems [7]. In our approach we take compositionalityas a basic principle. When we consider functions (predicates) as meanings of expressions (of formulas) the constructedformal languages are compositional by construction.Nominativity is another fundamental aspect not only in computer science but also in other branches of science, especiallyin linguistics and philosophy. This topic requires a special consideration, but still we would like to outline the nominallogic [25], which shares some similarities with the logics defined in this paper. Nominal logic addresses several specialquestions of nominativity such as name bindings, freshness and swapping. The predicates considered in the nominallogic have to be equivariant. That is, their validity should be invariant under name swapping. In our approach weconsider general classes of partial predicates.There are also different approaches for treating validity in partial logics. A problem, which is relevant to the one discussedhere has been studied in [4]. In this work the validity problem in the three-valued logic is addressed. The approachproposed in [4] and the approach discussed here both aim at reducing the problem of checking validity (satisfiability)to the validity (satisfiability) problem in classical logic. However, the details of two approaches are different. In thework mentioned, the authors consider n-ary functions and a three-valued notion of validity. That is, a formula can beproved to be “valid”, “invalid”, or its validity can be “undefined”. A formula that evaluates to true in all interpretationsunder all variable assignments is called valid. If there is at least one interpretation and one variable assignment suchthat the formula evaluates to false - it is called invalid. In other cases the validity for the formula is undefined. Anadditional restriction is that functions and predicates are required to have explicit specifications of their domains. Thesespecifications are represented by formulas in the two-valued logic. These formulas allow establishing a condition underwhich the original formula is always defined. If such a condition is valid, the formula is checked for validity in thetwo-valued logic. We find these ideas interesting and plan to apply them for logics of quasiary predicates.To the best of our knowledge, the satisfiability problem in logics similar to composition-nominative logics has not beenpreviously addressed. An in-depth comparison of composition-nominative approach with other approaches addressingcompositionality, nominativity, validity or permitting reasoning about partial functions and predicates is certainly beyondthe scope of this paper. However we would like to stress on several important features. Our approach is based onalgebras of partial predicates over nominative data, in particular, on algebras of quasiary functions and predicates asopposed to more conventional algebras of n-ary functions and predicates. It involves new compositions, among them the
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renomination composition. These compositions take into account nominative aspects of data structures. Composition-nominative approach also advocates the semantic-syntactic style of logic definitions, which simplifies the constructionand investigation of such logics.
10. Conclusions
This paper is essentially a first step in investigating the satisfiability problem for composition-nominative logics, whichare algebra-based logics of partial predicates that do not have fixed arity. As a main result we have proved that thesatisfiability problem for all types of composition-nominative logics considered here can be reduced to the same problemfor classical predicate logic with more powerful language. Thus, existent state-of-the-art methods and techniques forchecking satisfiability in classical logic can also be applied to CNL.We have defined and investigated the satisfiability problem for three different levels of CNL: propositional, renominative,and quantifier levels. For propositional CNL we have proved that satisfiability of formulas can be checked in classicalpropositional logic. For CNL of the renominative level we have proposed a method of reduction of the satisfiabilityproblem to the same problem for quantifier-free classical predicate logic. For quantifier level of CNL we have reducedthe satisfiability problem to the satisfiability problem for the classical first-order predicate logic. The latter reductionrequires extension of the language with unessential variables and an interpreted unary predicate of equality to aconstant. The interpretation domain of classical logic should also be extended with a special value to reflect possibleundefinedness of nominative data components in CNL.One direction for future work includes investigation of satisfiability problem for more powerful CNL of predicate-functionlevel and for CNL over hierarchic nominative data. Hierarchic data allow the representation of such complex structuresas lists, stacks, arrays etc.; thus, such logics will be closer to program models with richer data types. Another directionis related with identification of classes of formulas in various types of CNL for which satisfiability problem can be solvedefficiently. In particular, this concerns specialized theories, when some predicates have specific interpretations andseveral axioms shall hold for such interpretations. This is often referred to as the satisfiability modulo theory (SMT)problem [2, 19]. The SMT problem occurs in practice in the areas of software/hardware verification, program analysis,testing, etc. For some logical theories, for example, linear integer arithmetic (Presburger arithmetic) this problem isdecidable, but for the most theories of practical interest the SMT problem is decidable only for their quantifier-freefragments [13]. Lastly, prototypes of software systems for satisfiability checking in CNL should be developed.
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