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Abstract: The final goal of our research is to show that the performance of statistical rule induction can be improved by aug-
menting training data with semantic information. In order to prove this hypothesis, a statistical grammar induction
system is to be created the knowledge base of which is represented by Extended Conceptual Graphs (ECGs).
Since generalization and specialization are the basic operations of induction, they are of great significance in
machine learning. As a consequence, the paper aims at investigating the least common generalization and the
greatest common specialization of two ECG graphs. These operations should be traced back to the examination
of ECG graph element instances. For this reason, a domain-specific ECG element instance type lattice (77, <)
has been generated for the given test environment. Our final conclusion is that the least common generalization
and the greatest common specialization of two ECG graphs always exist and can be computed. Therefore, the
definition of the < relation on element instances can be extended to a partial relation < on ECG diagram graphs,
according to which /[y < I, if graph I77 is more specialized than /.
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1. Introduction

The main motivation for the research is to develop a new general rule learning methodology that alloys statistics with
semantics. The actual learning problem is chosen to be grammar induction, because symbolic languages have a fairly
complex systems of rules (grammars), so they must be considered when developing a general methodology. Also, grammar
induction has many application areas, such as computational linquistics, chemistry or pattern matching.

The first phase of the research has covered the specification of an appropriate semantic knowledge representation
model (called Extended Conceptual Graph, ECG [2]) optimized for grammar induction, which is used for representing the
knowledge base of the agent examined. The capabilities of the grammar learning agent are fixed in advance, which are

e pattern recognition: the ability to recognize the objects of its direct environment and their relations;
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e association: the ability of incorporating new information items into its existing knowledge base; and

e generalization.

Generalization using ECG graphs can be interpreted at three levels. At the first level higher-level concepts can be
revealed based on the common characteristics of existing concepts. At the second level the substitutability of objects
can be learned on the basis of the semantic role relations defined by the predicate. At the third level the frequent
predicate schemas can be explored. Amongst these the first level concept generalization has been implemented and
defined as the process by which new abstract ECG concepts are derived and introduced from lower-level concepts by
extracting their common characteristics.

The operations of association and generalization define the process of conceptualization within the grammar learning
agent at the end of which stands the generalized knowledge an agent can obtain from the samples observed. This can be
given as a generalized accumulated ECG diagram graph built up from a set of primary-level ECG diagram graphs through
several generalization stages. On the other hand, the specialization of two general ECG diagram graphs is formu-
lated as their greatest common specialization, which can be defined as the maximal common restriction of the two graphs.

The paper is aimed at demonstrating both processes of generalization and specialization. Accordingly, the paper is
organized as follows. Section 2 introduces some related papers that gave the guidelines for the present investigations.
Section 3 gives a brief introduction to the ECG semantic model. Section 4 gives the details of the process of con-
ceptualization using ECG graphs, involving the operations of graph matching and association (4.2), and generalization
(4.3). This section also specifies the ECG element type lattices (4.1) required for modeling conceptualization. Section
5 defines the process of specialization. After these, the paper exposes a test environment in Section 6 and a theoretical
context in Section 7 in which the processes of generalization and specialization are demonstrated through examples.
Finally, the paper ends up with a conclusion (Section 8).

2. Related works

In the literature, ECG is used for denoting the collection of models developed on the basis of Sowa’s Conceptual Graph
(CQ) theory [21]. It is a logical formalism that includes classes, relations, individuals and quantifiers. This formalism
is based on semantic networks, and possesses both a graphical representation, called display format and a textual
representation, called linear format. In its graphical notation, a conceptual graph is a bipartite directed graph where
instances of concept types are displayed as rectangles and conceptual relations are displayed as ellipses (the set of
which corresponds to thematic roles [9] in linguistics). Directed edges then link these vertices and denote the existence
and orientation of the relation. From a linguistic point of view, "conceptual relations link the concept of a verb to the
concepts of the participants in the occurrent expressed by the verb” [22].

From the 1990s onward several extensions of the CG model were being born serving special research purposes.
The first trials include [6, 16, 17]. In the first two papers an extension to Sowa’s approach is proposed in which
temporal and nontemporal knowledge are differentiated which enables the representation of tenses as well as the
aspectual properties of natural lanquage sentences. In the third paper the authors suggest marking conceptual
relations with cardinalities for specifying constraints. The extended conceptual structure notation developed at the
University of Minnesota [25] — among other extensions — can represent generalized counting quantifiers without using
conditionals. [14, 15] report on the development of CG-based modeling languages introducing several extensions to the
standard CG theory. In 1997, [8] proposes to extend the CG formalism in order to allow the representation of default
taxonomic knowledge. Conceptual programming graphs [23] are also extended forms of Sowa'’s conceptual graphs which
introduce a representation for expressing procedural and constraint knowledge (called overlays) through extended
features to actors. These features are both syntactic and semantic, and make the actors perform more like "functional
relations”. [1] presents a family of extensions of the CG model based on rules and constraints. In [18] the semantic
content of photos is represented by extended conceptual graphs for effective photo retrieval. In [20] business process
diagrams are transformed into an extended conceptual graph notation where CGs are extended with AND/OR trees [19]
to express the explicit dynamic properties or domain concepts. Lately, fuzzy conceptual graphs [5] have also been
developed that extend conceptual graphs with general quantifiers.
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Figure 1. Graphical components of ECG diagram graphs.

Our approach got the name Extended Conceptual Graph because the model is a graph-based semantic network of
concepts. These conceptual graphs, however, differ from Sowa’s graphs not only in their graphical notation but also in
the underlying theory. The most important difference is that our ECG model (described in Section 3) is a pure semantic
model which allows a representation independent of the syntactic level of language. This means that, in contrast with
Sowa'’s CG theory, two semantically equivalent statements always yield identical ECG graphs independent of their
surface (syntactic) differences.

The guiding paper of the present article is [7] that outlines the principles of a Prolog-like resolution method which
allows for expressing a large amount of background knowledge in terms of Sowa’s conceptual graphs and performing
deduction on very large linguistic and semantic domains. The interpreter developed is similar to a Prolog interpreter in
which the terms are any conceptual graphs and in which the unification algorithm is replaced by a specialized algorithm
for conceptual graphs. The paper introduces two algorithms: one for generating the greatest common specialized graph
of two conceptual graphs (maximal join of two graphs), and one for generating the least common generalized graph that
can be obtained from two conceptual graphs (generalization of two graphs). This CG processor is the main component
of the KALIPSOS general system for knowledge acquisition from texts that is developed at IBM Paris Scientific Center.
The success of this project has motivated our effort of simulating the process of generalization and specialization using
ECG diagram graphs.

3. Modeling with Extended Conceptual Graphs

The Extended Conceptual Graph (ECG) model is a semantic modeling language which can be given in two equivalent
forms: in an adequately extended higher-order predicate logic based textual format (ECG-HOPL [3]) and in a graphical
representation called ECG diagram [2]. Its components are shown in Figure 1 and an example is illustrated in Figure 2.
It is computationally tractable while highly expressive, i.e. it covers a wide range of linguistic phenomena. The
model is designed for knowledge representation in learning agents and is specifically optimized for grammar induction.
The capabilities of the agents are fixed in advance, and they are defined so that they are able to detect objects in
the environment, their attributes, and the relationships between them; where the set of recognizable attributes and
relationships are pre-defined. The main characteristics of the model can be summarized as follows.

Main building blocks of the model

The main building blocks of the model are concepts, relationships, and containers which serve for structuring the model.
The world is built up of interconnected ECG model fragments representing separate observations, containing exactly
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Figure 2. ECG diagram graph for "A black circle is in a white triangle”.

one kernel predicate and having true truth value. Since the model bears the features of ontologies, it can be considered
as an ontology modeling language.

Predicate-centeredness

In contrast with other existing semantic models — which have been deeply examined in view of their expressive power
in [13] — the ECG model is predicate-centered. That is predicate concepts, which are distinguished from non-predicate
concepts, are the kernels of atomic propositions. In the center of an ECG model fragment stays the kernel predicate,
and each basic ECG graphical structure is organized around a predicate.

Multiple conceptualization levels

In the ECG model, the process of conceptualization occurs at two levels. The primary level of the ECG model serves for
the direct mapping of environment objects and relationships into primary-level knowledge items. At the abstract level
temporal and other complex relationship types can also be managed; and this level serves for modeling the process of
conceptualization.

Distinction between apriori and learned elements

ECQG differentiates between several categories of concept and relationship types both at the primary and at the abstract
levels.

Flexibility

The ECG model is able to grasp the semantic content of situations. The elements of the environment can be represented
by the relatively small, fixed set of ECG model elements. This means that several environment elements are mapped to
the same ECG model element, which has therefore flexible semantic assignment.

Extendibility
The ECG model is a recursive, compositional system. That is infinitely many statements can be constructed from the
small finite set of model elements.

4. The process of conceptualization

In terms of machine learning, concept formation is the process by which an agent learns to sort specific experiences into
general rules or classes. In order to make learning feasible in complex domains, abstraction and generalization operators
are often applied to make the problem tractable. In [24], abstraction is given as a technique to reduce the complexity of
a problem by filtering out irrelevant properties while preserving all the important ones necessary to still be able to solve
a given problem. At the same time, generalization is defined as a technique to apply knowledge previously acquired to
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unseen circumstances or extend that knowledge beyond the scope of the original problem.
In the present approach, the learning agent builds up its knowledge base by

e incorporating and relating the information elements observed — which are instance-level ontologies represented
by ECG diagram graphs — to its existing (and continuously evolving) knowledge base (association);

e introducing new (not observed) higher-level concepts into the knowledge base, thereby reducing its complexity
(generalization).

The higher-level concepts to be introduced are pre-defined in a domain-specific concept lattice which is used for
representing concept generalization structures [12]. Its generation from the given domain is called abstraction. A widely
accepted formalism for conceptualization is the theory of Formal Concept Analysis (FCA) [10].

In FCA, there are two main variants of concept set building algorithms. The methods of the first group work in batch
mode, assuming that every element of the context table is already present before starting the concept lattice building.
The other group of proposals uses an incremental lattice building method [11].

Our concept lattice building algorithm belongs to the first group. It uses the information present in the samples, and
also the abstract element types defined by the ECG model. There are two abstract concept types which can be used in
generalization, that is

e AMCR: abstract category concept, for generalizing concepts in T,

e AMPR: abstract predicate concept, for generalizing concepts in T,..

4.1. ECG element type lattices

In the ECG model, concepts and relations (elements) are given by two attributes: a type and a caption, in the form of
type : caption. Formally, each ec € EC element category in the ECG model is given as ec = type. : caption, where
type. € T and caption is a string representing the name of the corresponding element category. The T set of ECG
element category types is the union of the subsets listed in Table 1.

Table 1. Classification of ECG element category types.

Subset of T Element category types

Tcc: category concept types FICN, FICT, FICR, FMCR, AMCR
Tpc: predicate concept types FMPR, AMPR
T,r: semantic role relation types FSR, FMR, AMR

Tsr: specialization relation type FMI

ECG element category types can be merged in a lattice (7, <), whose partial ordering relation < can be interpreted
as a categorical generalization relation. The top and the bottom element cateqories of the (T, <) lattice are UNIV (the
suprenum element) and NIL (the infinum element), respectively. The generated lattice is displayed in Figure 3. On
the basis of this lattice, we say that ec; < ec;, if type,, < type.,. Also, it is possible to exhibit the least common
generalization lcg, and the greatest common specialization gcs of two element category types ecy and ec;:

leg(ecy, eco) = min{type. | type., <= type. N type., <= type.}; (1)
ges(ecy, ecy) = max{type. | type. <= type., A type. <= type,}. (2)

Analogously, in an instance-level ECG diagram graph each ei € E/ element instance is given as ei = type; : caption,
where type; € T' and caption is a string representing the name of the corresponding element instance. The members
of T" are constructed from the members of T augmented with a number. Thus, an element instance type has the
form type; = type._n, where type. is the corresponding element category type and n is a numeric code, so that
type; = type._n is a unique identifier within the problem domain. The element category type part of an element
instance type is denoted by [type;] = type., while the numeric code of an element instance type can be obtained as

{type} = n.
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Figure 3. ECG element category type lattice.

Definition 4.1.

An ECG diagram graph can be defined as " = (V, A, R). V is the set of vertices containing e; element instances where
[type;] € Tc U Tye. Als the set of arrows (directed edges) containing e; element instances where [type;] € T,,U T, R
is the set of semantic roles with which the arrows in A are labeled. Thus, the f incidence function assigns an ordered
pair of v vertices in V and a r semantic role in R to each a arrow in A, i.e. f(a;) = (v, v}, rk).

Two element instances ei; and ei, are said to be equivalent if type; = type,. ECG element instance types can
be merged in a domain-specific lattice (7', <) (see Figure 6 for an example), whose partial ordering relation < can
be interpreted as a categorical generalization relation. The top and the bottom elements of the (T’, <) lattice are
UNIV (the suprenum element) and NIL (the infinum element), respectively. On the basis of this lattice we say that
eiy < eiy if type;, < type;,. Also, it is possible to exhibit the least common generalization [cg, and the greatest
common specialization gcs of two differing element instances eiy and eiy (eiy # eiy):

leg(eir, eiy) = min{type; | type;, <= type; A type;, <= type;}; 3)
ges(eir, eiy) = max{type; | type; <= type;, A type; <= type,}. (4)

4.2. Graph matching and association

Generally speaking, the graph matching problem (for unlabeled undirected graphs) can be stated as follows. Given
two graphs Gy = (V4, Ey) and G, = (V,, E3), the problem is to find a bijective mapping f : Vi — V5 so that (u,v) €
E; if and only if (f(u), f(v)) € E;. When such a mapping exists, this is called an isomorphism, and G; is said to be
isomorphic to G,. If Gy is isomorphic to G, we write G; = G,. On the other hand, Gy is subgraph isomorphic to G; if
G C Gy exists where G} = G,. For labeled graphs, the following requirements also need to be met:

o the label of vertex u must be the same as that of f(u) for all v € V4;

e the label of edge (u, v) must be the same as that of (f(u), f(v)) for all (u,v) € E;.

According to Definition 4.1 ECG diagrams are labeled directed graphs, and the matching operation determines an
alignment (i.e. a set of mapping elements M) for a pair of ECG graphs. A mapping element m € M is defined as a
triplet (eiy, eiz, @), where

e eiy € [ and ei; € I, are the aligned element instances of the two ECG graphs, and
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e ¢ is the relation between ei; and ei,.

In order to obtain an unambigous (bijective) mapping only the mapping elements where ¢ € {=} are included in the
alignment. For describing the result of the matching, an alignment measure is introduced. Let [ denote the number of
mapping elements in an alignment M. For a given pair of aligned ECG diagram graphs 4 and I, the fitness value y
is calculated as:

W, 1) = 4. 5)

where j is the number of element instances in graph /"1, while k is the number of element instances in graph /. In this
way, the fitness value falls into the [0, 1] interval.

Association is the process by which ECG diagram graphs are gradually inserted into an initially empty knowledge base,
which is itself another (accumulated) ECG diagram graph. In this operation, the ECG diagram graph to be inserted (/)
should first be matched to the knowledge base (/1) according to the following algorithm.

1. The M mapping (alignment) of the two ECG diagram graphs should be performed resulting in p.

2.8 p(l1,12) =1then I =15, te. Vi =V, A A = A, In this case [, does not need to be inserted into the
knowledge base (it is already in the knowledge base).

3. 0f p(ly,2) = 0 then Vi N V5, = @. In this case I is inserted into the knowledge base in a disjunctive way.

4. 1f0 < p(l,2) <1 then Vi NV, @. In this case, if [ is not a subgraph of [ then Vvo;, ay € [ | vay, a0 & T4
are inserted into the knowledge base in a conjunctive way.

An ECG diagram graph [ is a subgraph of /5 (> C I4):
o if [ contains a subgraph /] which is identical to /3, Le. [ =15, te. V] =V, A Al = Ay; or
e if [ contains a subgraph [ which is isomorphic to [ (] ~ ).

Definition 4.2.

Two ECG graphs are said to be isomorphic (/] ~ ), if one (I;) can be obtained from the other (/) by restricting some
of the element instances of the latter (/) based on the (T, <) element instance type lattice.

4.3. Generalization

The association operation does not involve generalization. It covers only the accumulation of incoming information.
However, by the increase of the amount of incoming data the knowledge base would be subtle and computationally
intractable without the use of generalization. The generalization algorithm (Algorithm 1) gives as result the least
common generalized graph that can be obtained from two ECG graphs. This can be achieved formally by finding
frequent knowledge patterns (ECG subgraphs) the context of which is similar.

Definition 4.3.

Two ECG diagram subgraphs y; € 7 and y, € [, are said to be similar subgraphs if
® Yy =Yy, 0ry Yy, and
e they are connected to differing but semantically comparable ECG concept nodes.

Two similar subgraphs are considered as maximal similar subgraphs if they cannot be extended further without violating
the criterion of similarity.
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Algorithm 1 The generalization algorithm.

Input: [, [
p = Match(l, 1)
if y =1 then
Return
end if
if 4 =0 then
Insert [ into [
end if
if 0 < p < 1 then
if [, C I then
Return
else
Search for maximal similar subgraphs in 7,/
for all (y7, v3) do
if eiy >< eip then
if lcg(eiq, eir) # UNIV then
if lcg(eir, eiy) & 1 then
Insert lcg(eiq, eip) into
end if
if lcg(eiq, eip) # eiq then
Connect eiq to lcg(eiy, eiz) by FMI
end if
Update relations of eiq in I
if eir & 4 then
Insert eiy into [
end if
if lcg(eiq, eip) # eip then
Connect eiy to lcg(eiq, eiz) by FMI
end if
end if
end if
end for
for all ei € I, do
if ei & 4 then
Insert ei into [
end if
end for
Update relations of eiy in [T
end if
end if
return [

Thus, the maximal similar subgraphs are searched for in [ and /. For this, the operation of ECG graph intersection
should be introduced. The intersection of two ECG graphs 1 and I is the set of identical or isomorphic connected
subgraphs. Formally,

ol = {viva..., v} where
Vvi:vieli Aviely or Yy @ yi €1 Ayl €1, where y; ~ y,. (6)

The extension of the ECG graph intersection operation results in the pairs of similar subgraphs of [y and [,. Formally,

rner; {(vir vi2) V31, ¥30), - -, (Via Via) } wherre
Yvi,vh) - v UYsE = viU{ei, e} | viein € AN yvheb el Ayielinly,. (7)

Maximal similar subgraphs are then obtained from merging all similar subgraphs with the same root nodes, i.e. similar
subgraphs having the same pair of differing concepts.

{max(vii, vio)} = {Ulvi V) } I V(v U vi) = vy U {ein, el }. (8)



Erika Baksa-Varga, Laszlé Kovacs

For the differing concepts semantic comparability (ei; >< eiy) should be checked, where eiy € 7 and ei; € [5.
Two element instances are said to be semantically comparable if lcg([type, ], [types]) # UNIV on the basis of the
element category type lattice (Figure 3). If this is the case, instead of the differing concepts a new concept is introduced
from the element instance type lattice determined as [cg(eiy, eiz), if it is not the UNIV top element. It is possible,
that lcg(eiq, eiz) results in one of its arguments. In this case actually no insertion occurs. The differing concepts are
connected to the new concept via specialization relationships and the other relationships originally in connection with
the differing concepts should also be updated.

At the end of the generalization process (Figure 4) stands the generalized knowledge an agent can obtain from the
samples observed. This can be formulated as recursively determining the least common generalization of the previous
abstract-level ECG graph and the next primary-level ECG graph, that is

[a =leg(la 4. [py,), where [ =1, (9)
Abstract-level Fai Generalized
ECG graphs e knowledge
r /ra3
/ a2

ECG h
Rl l-p1 rp2 rp3 p4 °*° rp(i+1)

Figure 4. The process of generalization.

5. Specialization
Similarly to the formulation of the least common generalization of two ECG graphs, it is possible to give the greatest

common specialization of two ECG graphs. The latter can be defined as the maximal common restriction of the two
graphs, i.e. the union of the maximal similar subgraphs of the two graphs (see Algorithm 2). Formally,

ges(M, 1) = [Jdmax(vii, via)})- (10

Algorithm 2 The specialization algorithm.

Input: [, [
Search for maximal similar subgraphs in 7,/
for all (y7, v3) do
if eiy € 5 AND eiy ¢ I3 then
Insert eiq into I3
end if
if ei; € 1 AND eiy ¢ I3 then
Insert eiy into 3
end if
end for
return [3
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6. Test environment

Let us assume that the environment of the learning agent is a microworld of 2D shapes and each observation includes
two objects in a binary relation. The base set for modeling the process of conceptualization includes approximately
300 thousand ECG diagram graphs generated by the semantic annotation framework [4] which has been implemented in
NETBEANS IDE 6.9 integrated development environment using Java 1.6.0_20 version Java HotSpoT(TM) 64-BiT SERVER
VM 16.3-Bo1. The operational model of the system is shown in Figure 5.

Manual
MFaenarit] *.png Graphical |annotation
)‘ editor
P ECG model
°n9 , terminology
¢ ¢ v :
Object & Ontology builder Microworld
relation - symbolic | L *owl instance-level
detection ECG-HOPL laynguage el ECG OWL
module description | jaccription database
ECG Microworld
diagram | » primary-level
Agent for semantic graph *.png ECG diagram
annotation builder database

Figure 5. Operational model of the semantic annotation framework.

The system represents an agent for semantic annotation. Its environment is the graphical microworld created by a
graphical editor. The environment snapshots (static observations) are processed by the sensor of the agent, which is
the object and relation detection module. Its task is to recognize the objects of the environment and their relations, and
to map them to the internal semantic representation of the agent using the terminological database. Next, the ontology
builder generates the instance-level ontologies (assertions on the environment instances describing the semantics of
the observations) in OWL DL textual format. Finally, the ECG diagram graph builder creates the graphical diagrams
for the OWL descriptions.

The relevant segment of the element instance type lattice generated from the microworld is shown in Figure 6. In this
example, abstract concepts can not be generated automatically from the samples. They are added manually to the lattice.

UNIV
Levelof 2D shape 3D shape
evel

abstract

concepts polygon

Level of

primary class
concepts

redA small A blueA white A bigA whitel bighl ...
small A smallblueA bigwhiteA bigwhitel ...
red
Level of

instance. FICN_1 FICN_2 FICN_3 FICN_4 FICN_5 FICN_6 -
concepts

NIL

Figure 6. A segment of the element instance type lattice.

The generalization algorithm searches for maximal similar subgraphs in the two graphs to be joined, which differ in only
one semantically comparable concept node. Instead of the differing concepts a new concept is introduced determined as
the least common generalization of the differing concepts in the element instance type lattice.
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In order to demonstrate the process of generalization, consider the example illustrated in Figures 7 and 8. Let /4 denote
the knowledge base of the agent already containing one observation and [, denote the observation to be inserted into
the knowledge base. Two similar subgraphs are found marked by identical lines. The new concepts inserted from the
element instance type lattice (see Figure 6) are indicated by dashed line ellipses. In the next stage /3 denotes the
current state of the knowledge base and 4 is the new observation to be inserted. Again, two similar subgraphs are
identified and two new concepts are inserted. As a result, after processing three observations /5 represents the actual
state of the knowledge base.

Subject = Object
C4 ) ? 2
FICN_1 FICN_2 »

HasShape| ~HasSize | HasColor |  HasShape| HasColor| HasSize |

Voo v

triangley _small red triangley _white big

Figure 7. Initial state of the knowledge base containing one observation.
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Figure 8. Demonstration of generalization.
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For the demonstration of specialization, see the next example in Figure 9. Given two ECG diagram graphs /7 and [,

their greatest common specialization is shown by /.
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Figure 9. Demonstration of specialization.

7. Theoretical example

In this section the algorithms of generalization and specialization are demonstrated on the concept lattice of planets in
the Solar System as a classic example in formal concept analysis. The corresponding element instance type lattice is

shown in Figure 10.

UNIV
solar system
Level of -
abstract planet
concepts +
Level of
primary class close planet distant planet
concepts /\
small close p. small distant p.  big distant p.

/\
small close p. smallclosep.  smalldist.p.  bigdist.p.
with satellite without satellite with satellite ~ with satellite

__%__%__

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Level of
instance
concepts

NIL

Figure 10. Element instance type lattice of planets.
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For the illustration of our generalization method, consider the planets that are close to the Sun. In Figure 11 ECG
diagram graph I represents Mercury while I, represents Venus. The least common generalization of the two graphs
results in /3 that introduces a new concept from the corresponding element instance type lattice. /4 describes Earth,
and the least common generalization of /53 and I yields /5 that brings in another new concept. [ describes Mars and
the least common generalization of 5 and ¢ derives [7. From this final ECG diagram graph we can see that close
planets differ only in the attribute of having satellite. This implies that all close planets are small.

r IsPlanet I r IsPlanet I

1 2

Subjectv Subjectv
FICR FICR
_Mecury ) _Venus )

HasSize | DistanceFromSun| HasSatellite | HasSize | DistanceFromSun| HasSatellite |

| | | | | |

Vv ) v Vv ) v
small ) close ) no small ) close ) no

(a) (b)

I'3=lcg(l'1,rz) /Ii'i"eﬂ\s\ r4 IsPlanet I
= = = Subject vV

FICR
FICR
_ Earth )

Venus
ithout sat, \

‘ \ HasSize | DistanceFromSunl HasSatellite |
| | |

small close p.

HasSatelliteI HasSize I DistanceFromSun v V V
v v N small close yes )
no small ) close

(c) (d)

r=leg(r,r) Isil:'-n_etl\ r IsPlanet
B EL s s I
A/ vS =~ e Sub)

FICR FICR FICR jecty

Earth FICR
_ Mars )
Small close p. \
_—
HasSize | DistanceFromSun| HasSatellite |

| | |

small close p.

DistanceFromsun | Hassize | HasSatellite | Vv vV ]
\‘/ \‘, V4 N small close yes )
close ) small no yes )
(¢) (f)
r7=ng(rs,r5) IsPlanet s
AT
FICR < FICR > FicR > FIcR

Mercur, Venus

small close p.

small close p. sma{l close p.
without sat, with sat.

DistanceFromsun | Hassize | HasSatellite |
|
v \‘/ v N
close small no yes )
(9)

Figure 11. Demonstration of generalization in the context of close planets.
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FICR
Jupiter

r IsPlanet
1 —'—I
Subjectv
FICR
_Jupiter )

N
HasSize | DistanceFromsun| HasSatellite |

| | |

v v v

big ) distant yes )

r IsPlanet
2 —'—I
Subjectv
FICR
_Uranus )
P
HasSize | DistanceFromsun| HasSatellite |
| | |
v v v
small ) distant yes )

DistanceFromSunl

A
HasSize I HasSatellite|
4 v

N

!

distant

(a)

(b)

r IsPlanet I
1
Subject
ety
FICR
_Saturn )
HasSize I DistanceFromSunI HasSatellite I
| |

re IsPlanet
2 —'—I
Subj

ect V

FICR
Neptune )
HasSizeI DistanceFromSunI HasSatellitel

| | |

|
v v v v ) )
big ) distant yes ) small distant » yes )
(d (e)
r4=gcs(r3,r'3) IsPlanet s
ZA T
FIcR = FICR > AR
rl3=lc9(rl1rr'2) IsPlanet Jupiter
= = -
Saturn

HasSatellite| DistanceFromsun |

N v !

A
big ) small distant )

HasSize

DistanceFromsun | HasSize

HasSatellite |

v V N
distant » small big

N
yes )

(9)

Figure 12. Demonstration of specialization in the context of distant planets.

The specialization algorithm is illustrated on distant planets in Figure 12. [ represents Jupiter and [, stands for
Saturn. The least common generalization of the two ECG diagram graphs yields /3. [ describes Uranus and I
stands for Neptune. The least common generalization of the two ECG diagram graphs yields /5. The greatest common
specialization of /3 and I, i.e. the union of the maximal similar subgraphs of the two graphs is shown by . From this
final ECG diagram graph we can see that distant planets differ only in their size attribute. This implies that all distant
planets have satellites.

8. Conclusion

The paper has shown how the ECG graph-based knowledge base of the grammar learning agent examined is built up
from primary-level ECG graphs. The operation of association — i.e. matching and connecting ECG diagram graphs — can
always be accomplished, but generalization — i.e. the introduction of higher-level concepts — does not necessarily occur
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in each step. Also, it is possible that the greatest common specialization of two ECG graphs results in an empty graph.
Nevertheless, the least common generalization and the greatest common specialization of two ECG graphs always exist
and can be computed. Therefore, the definition of the < relation on element instances can be extended to a partial
relation < on ECG diagram graphs and the term restriction of can be used to describe this relation. Accordingly, an
ECG diagram graph I, is a restriction of ECG diagram graph 4, ie. [, < [ if graph [, is more specialized than
graph I7.

Let I denote the set of primary-level ECG diagram graphs (representing environment snapshots) that are matched to

and incorporated in the knowledge base of the agent, and '(A) denote the set of accumulated ECG diagram graphs
resulting from the conceptualization (association and generalization) steps executed.

Corollary 8.1.

The < relation effects a lattice structure on the union of I and I"(A).

The top element of the lattice (I" U I'(A), <) symbolizes the accumulated knowledge of the agent at the end of the
conceptualization process. The bottom element is NIL, the infinum element.
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