/
Cent. Eur. J. Comp. Sci. » 2(3) *+ 2012 « 300-315 VERSITA
DOI: 10.2478/s13537-012-0020-x

Central European Journal of Computer Science

Analyzing stereotypes of creating Graphical User
Interfaces

Review Article

Michaela Bagikova*, Jaroslav Poruban?

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of KoSice, Letnd 9, 04200 KosSice, Slovakia

Received 31 January 2012; accepted 17 August 2012

Abstract: A graphical user interface (GUI, Ul) is an important part of an application, with which users interact directly. It
should be implemented in the best way with respect to understandability. If a user does not understand the
terms in the Ul, he or she cannot work with it; then the whole system is worthless. In order to serve well the
Ul should contain domain-specific terms and describe domain-specific processes. It is the primary source for
domain analysis right after domain users and experts. Our general goal is to propose a method for an automatic
domain analysis of user interfaces. First, however, the basic principles and stereotypes must be defined that are
used when creating user interfaces and rules must be derived for creating an information extracting algorithm.
In this paper these stereotypes are listed and analyzed and a set of rules for extracting domain information is
created. A taxonomy of Uls and a taxonomy of components based on their domain-specific information is also
proposed. Our DEAL method for extracting this information is outlined and a prototype of DEAL is presented.
Also our goals for the future are listed: expanding the prototype for different components and different types of
Uls.

Keywords: domain analysis « graphical user interface « components - reflection « aspect-oriented programming
© Versita Sp. z o.o.

1. Introduction

Domain analysis (DA) [12] is a process that is currently most often used in the software systems design and analysis.
Fig. 1 describes the most common process of domain analysis. It is necessary to collect information from various
sources: a) domain users and experts; b) existing documents; and c) existing software systems. After that, the collected
information is categorized, analyzed and some form of a domain model is created. Domain models have many forms.
The most commonly used is the FODA notation [13]. FODA method analyzes product lines and resulting domain model
contains varying/consistent and mandatory/optional features in a domain and it also defines the vocabulary used in the
domain, concepts, ideas and phenomena within the system. Then this model (often with a connection with generators
and libraries of reusable components or frameworks) is used for creating a new software system or editing an existing
system. The domain analysis is often performed by a domain analyst.

* E-mail: michaela.bacikova@tuke.sk (Corresponding author)
t E-mail: jaroslav.poruban@tuke.sk

300



Michaela Bacikova, Jaroslav Poruban

domain users
and domain experts

f collectionand
'

= __= processing > ==

—> USAGE

existing documents domain model

Sources of domain information

existing systems

Figure 1. The process of domain analysis.

1.1. Tasks and goals

The general goal of our research is to propose a method for an automatic analysis of a software system and a synthesis
of a domain model. The input of such method will be a software system with a graphical user interface constructed of
components and the output of the method will be a (semi-)formal domain model.

The method will use a dynamic analysis of user interfaces. The analysis will be implemented using reflection and
aspect oriented approach. The main processes of such a method include: i) an analysis of Ul components and their
relations; ii) a synthesis for domain terms descriptions and their relations; iii) an analysis of event sequences in a Ul;
and iv) a synthesis for domain process descriptions. The final aim is to implement a prototype using this method and
verify it on a set of software systems.

A presumption for proposing such a method is to identify and list the most common stereotypes of creating GUIs
considering domain terms and processes. This list of stereotypes will serve for deriving rules for extraction of domain
information.

Therefore the main goals of this paper are:

e to identify and list the most common stereotypes of creating GUIs,
e to analyze the stereotypes with respect to domain analysis,
e to design and present a pseudo-code of the domain analysis algorithm.

1.2. Problems of existing approaches

Modelling and creating domain models from gained information is now widely supported by numerous methodologies
and tools. Gaps remain especially in the area of data collection. Problems of existing approaches in this area can be
divided into three groups based on the information source:

(a) Data collection from domain users and domain experts is most often carried out through reviews, questionnaires
and forms. These methods are often time consuming and require both the willingness of users and experts and a
certain level of skill at the side of the domain analyst. On one hand, a user does not always have time or mood
to talk with the domain analyst or to fill out some questionnaires and forms. The domain analyst on the other
hand must be able to ask the right questions to find the information he or she needs.

(b) To collect data from existing documents various techniques are used. The most common are the NLP (Natural
Language Processing) techniques and techniques of the Al (Artificial Intelligence). Sometimes also a design
documentation of software systems is analyzed (manuals, design documentation, software models or meta-models,

301




Analyzing stereotypes of creating Graphical User Interfaces

302

repositories etc.). The biggest problem of these approaches is the ambiguity of natural language and therefore
there is always a need for additional control and adjustments by a human expert. Finally, it is necessary to gain
existing documents or software documentation to be analyzed and they may not even exist for a concrete domain.

O
—

Finally also an analysis of existing software systems is carried out. The approaches use mainly a static analysis
of source codes or databases. Databases or source codes are however not primarily intended for the user. Hence
the author of database or code is not forced to use the domain vocabulary during development. Therefore the
domain terms may not even be included in the database or source code, or they can be written in another language,
abbreviations can be used, or there may be other language barrier.

The analysis of databases depends on a database schema quality as well as the semantics associated with it.
Assuming, that the target database is well-designed with respect to domain, the analysis of such database is
easy: the names of tables and relations between tables can be exactly determined and they represent domain
terms and relations. There is, however, no description of domain processes.

Source codes on the other hand contain descriptions of domain processes in a form of methods or functions. There
is however a high level of implementation details getting in the way, preventing the domain analysis to be carried
out. Generalization, which is currently widely used in the implementation of reusable systems, represents another
barrier. The aim of generalization is to use generic terms that can be used to describe objects and thus to ensure
reusability of the system (or parts of the system) also in other domains. This may hinder the domain analysis:
a domain-specific model should contain domain-specific terms, not general.

1.3. Proposed solution

There are many methods and tools supporting the communication with users and domain experts. Starting with manual
techniques like interviews and questionnaires, continuing with feature-based methodologies [10, 13], UML modelling
[24], CASE systems [20], requirement modelling and analysis [16] and ending with supporting systems like ToolDay [18]
or Sherlock [29]. In the area of the document analysis there is a significant number or research papers (many of them
were summarized in our previous work [4] in Section B. Related work). There is also a possibility of analyzing the system
documentation, but due to the trends of rapid software development many programmers nowadays to save time rather
develop systems without any documentation. Therefore software documentation may not be available for a particular
system. Our decision was to focus on the last area, an analysis of existing software systems. Many approaches dealing
with this topic were analyzed in our previous work [4] and other ones will also be summarized in the Section 2. None
of them is dealing with user interfaces specifically.

Based on the above facts we argue that a more appropriate target for DA is a user interface of a software system. A user
who comes from the target domain has a direct access to the Ul. For the user to be able to use the system effectively
it must be built with respect to understandability, i.e. it must contain terms from the domain. It also should describe
domain processes in a form of event sequences, which can be executed on the Ul. Using of reflection and aspect oriented
programming [14] allows us to separate the implementation details from domain information needed.

1.4. Motivation

Besides the tasks of creating a new software system, or editing an existing system, the resulting domain model can
also be used in other areas, which are also the aim of our future work. The domain model can be used for example in
model driven engineering (MDE) [26] for generating various software artefacts or whole software systems. For example
Ristic et al. [25] use form specifications to generate forms. However when using their tool the user alone must enter the
form specifications into the computer. An automatic domain analysis of existing software systems with forms (for example
web sites) for such form specifications could help the user with formalizing the requirements and the user would only
edit the results of the domain analysis according to his or her needs.

If there already is an existing software system, based on the domain model of such a system and with the help of dynamic
analysis of a user handling this system and generators, a documentation (for example a user guide) and different types
of models usable for future development can be generated.

Generating a whole user interface for another type of application is another form of use. A case scenario: a company
develops applications for BlackBerry devices. The owners of the company decide to widen their manufacture for Android



Michaela Bacikova, Jaroslav Poruban

mobile devices and to all applications developed until now should be developed also for the Android platform. A way of
making this process easier is to use automatic GUI analyzers and generators to automatically generate user interfaces
for Android platform and then manually complete the source code of each generated GUI.

1.5. Organization of the paper

The paper is further organized as follows: Section 2 is a state of the art in the field of domain analysis. In the Section 3
our previous research in the area of automatic GUI formalization is described. Section 4 defines user interfaces and
provides a typology of user interfaces. Subsection 4.5 lists common terminology used in the rest of this article. Next
Section 5 is devoted to graphical components and their meaning as in the user interface domain-specific units. The
section provides a typology of components and describes them in a simple example. The Subsection 5.1 explains the
basic principle of identifying stereotypes of creating Uls in a simple example of a Person dialog. At the end there is a list
of all identified stereotypes and also a list of corresponding facts and rules that were derived based on each stereotype.
The Subsection 5.2 outlines our method for extracting domain-specific information from user interfaces named DEAL
and a prototype implementing of this method is presented. The Section 6 provides insight into our future research and
Section 7 contains conclusions.

2. State of the art

The domain analysis was first defined by Neighbors [22] in 1980 as “the activity of identifying the objects and operations
of a class of similar systems in a particular problem domain”. Neighbors later introduced the concept of “domain
analyst” [23] as the person responsible for conducting domain analysis. By introducing the Draco approach, a code
generator system that works by integrating reusable components Neighbors stresses, that domain analysis is the key
factor for supporting reusability of analysis and design, not the code.

The most widely used approach for domain analysis is the FODA (Feature Oriented Domain Analysis) approach [13].
FODA aims at analysis of software product lines by comparing the different and similar features or functionalities. The
method is illustrated by a domain analysis of window management systems and explains what the outputs of domain
analysis are but remains vague about the process of obtaining them. Very similar to the FODA approach, and practically
based on it, is the DREAM (Domain Requirements Asset Manager) approach by Mikeyong et al. [20]. They also
perform commonality and variability analysis of product lines, but with the difference of using an analysis of domain
requirements, not features or functionalities of systems. Many approaches and tools support the FODA method, for
example Ami Eddi [7], CaptainFeature!, RequilLine? or ASADAL®.

There are also approaches that not only support the process of domain analysis, but also the reusability feature by
providing a library of reusable components, frameworks or libraries. Such approaches are for example the early Prieto-
Diaz approach [8] that uses a set of libraries; or the later Sherlock environment by Valerio et al. [29] that uses a library
of frameworks.

The latest efforts are in the area of MDD (Model Driven Development). The aim of MDD is to shield the complexity
of the implementation phase by domain modelling and generative processes. A presumption is that a mapping must be
created between domain model and the desired solution. This way they support reusability: in an ideal case, all the
user has to do is choosing functionalities he wants to have in the resulting system and the system will be automatically
generated. The MDD principle support provides for example the Czarnecki project Feature Plug-in [1, 6] or his newest
effort Clafer [5] and a plug-in FeaturelDE [17, 27, 28] from Thiim and Kdastner.

ToolDay (A Tool for Domain Analysis) [18] is a tool that aims to support all the phases of the domain analysis process.
It has possibilities for validation of every phase and a possibility to generate models and exporting to different formats.

! The webpage of CaptainFeature SourceForge.net project, https://sourceforge.net/projects/captainfeature

2 The webpage of Requiline project https://www-lufgi3-informatik.rwth-aachen.de/ TOOLS/requiline/index.php

3 A review of ASADAL CASE tool, Postech Software Engineering Laboratory, http://selab.postech.ac.kr/ASADAL-
Simple_Overview.pdf

303




Analyzing stereotypes of creating Graphical User Interfaces

304

definition of DA
practice
: MDD tools for DA
Neighbors
theory
1980 1985 1990 2005 2011

Figure 2. Atimeline of existing approaches and tools for domain analysis.

All these tools and methodologies support the domain analysis process by analyzing data, summarizing, clustering of
data, or modelling features. But the input data for domain analysis (i.e. the information about the domain) always
come from the users, or it is not specified where they actually come from. Only the DARE (Domain analysis and reuse
environment) tool from Prieto-Diaz [10] primarily aims at automatic collection and structuring of information and creating
a reusable library. The data are collected not only from human resources, but also automatically from existing source
codes and text documents. But as mentioned above, the source codes do not have to contain the domain terms and
domain processes. The DARE tool does not analyze the user interfaces specifically.

A timeline of the approaches can be seen in Fig. 2.

Very interesting process is also seen in [30] where authors transform ontology axioms into application domain rules
which is a reverse process compared to ours.

3. Our previous research

As showed by our previous research [2, 3], the difficulty of GUI analysis can depend on the style of programming or
on compliance of programming guidelines. In this work the component approach for formalization of user interfaces of
Java applications was practically verified. A tool was created with a support for semi-automatic formalization of Ul into
a form of a simple domain-specific language GUIIL. More about domain-specific languages can be found in [9, 15, 19].
Identification of components and extraction of information was implemented using reflection. The tool was able to display
a simple form of a component tree.

The tool was experimentally verified on a number of open source Java applications (Java scientific calculator, Java
notepad, jEdit, jEdit installer, Home3D, GuitarScaleAssistant). Two of them (jEdit and Home3D) were using their own
class loaders which prevented the analysis. The problem was resolved by creating external adapters using aspect
oriented programming. In GuitarScaleAssistant there was a problem caused by a custom component created by the
author of the application — the get and set methods were missing in the component’s implementation therefore the
analyzer was unable to identify the component’s value. The problem was resolved by implementing a specific adapter
for this component and using aspect oriented programming.

The result of this tool, i.e. a file written in GUIIL language, was a simple domain model. It contained a list of component
identifiers (if these identifiers existed in the target application), which were displayed in the Ul It did not describe
a domain structure nor the domain relations, it represented however simple domain processes in a shape of command
sequences.

The results of our previous research showed that it is possible to identify components in the Ul and to record domain-
specific information stored into components by their author, but only under certain conditions. These include: access to
these information; and correct implementation of components, so they contained the domain-specific information. These
problems can be resolved using the aspect oriented approach.



Michaela Bacikova, Jaroslav Poruban

-
4. User Interface as a source of domain information

A user interface (Ul) represents the layer of an application designed to interact with users. Based on their form, the
Uls can be divided into 4 basic groups described in the next subsections. Only these groups are relevant for our current
research.

4.1. Console Uls

It is written "Uls”, not “GUIs" because these are not fully “graphical” Uls. They are obsolete text interfaces that use
no graphics. A domain analysis of such interface is simple: because there are no graphics involved, the analysis is
performed at the source code level. There are approaches doing this type of analysis, for example Moore [21] transforms
the console interfaces into WIMP interfaces (more about WIMP Uls in section 4.2), but it is a research from 1997, quite
obsolete. The console Uls are rarely used today therefore they are not an important part of our current research.

4.2. WIMP GUIs

The “WIMP" abbreviation stands for “Windows, Icons, Mouse, Pointers” and it represents standard desktop applications
with windows. Difficulty of a domain analysis of such interfaces depends on the programming language used and on the
programming style of their author. As shown in our previous research in this field (2, 3]), if the author of Ul follows good
programming habits and programming guidelines (for example like Java Look & Feel Design Guidelines?), the possibility
of success of DA increases. And vice versa, it decreases when analyzing custom components designed by a programmer.
Using advanced implementation features, such as creating an own class loader, prevents the analysis and restricts it to
using only aspect-oriented programming.

4.3. Web GUIs

In the context of this article HTML documents are referred to in two different ways. The first is a web resource, that
is, a simple web document with no interactive elements other than web links. The second term is a web application
representing an application with an interactive graphical user interface. Such interfaces will also be called web-based
user interfaces, or Web GUIs. The difference between these two concepts can sometimes be very small or none. Interaction
with the Web interface is performed simply by clicking on web links, or (in the case of interactive web applications)
similar to WIMP applications — but the content of the Ul remains in a web browser (no windows). Interactive web
applications are those using advanced technologies such as Flash, JavaScript and so on.

4.4. Mobile GUIs

Mobile devices use a completely different and simpler kind of user interfaces, mainly because of hardware limitations of
mobile platforms. There are two types of mobile devices (and hence two types of Uls also) — non-touch screen devices
and touch screen devices. Both types of mobile interfaces in most cases consist of screens (a Screen class type), which
can be displayed on (pushed) or hidden from (popped) the device display. Each component of Screen type has its title
and its content. The content is organized using managers and it is a hierarchy of graphical components. A domain
analysis of such interfaces is rather simple: the screen and its components clearly form a hierarchy of terms. But the
process of connecting analyzer to a mobile device or a mobile device simulator could be complicated. But such analysis
would be similar to traditional WIMP Ul analysis.

4 Java Look & Feel Design Guidelines, version 2.0, http://java.sun.com/products/jlfled2/book

305




Analyzing stereotypes of creating Graphical User Interfaces

306

System Properties Color—

ey Stem Restore Automatic Updates Remote ' Red
General %ompuler Name Hardware Advanced  Yellow
i
) " Green

g_;) Home | 5% Our Products + | '.) More Info +

i) Product 1

iv)

Product 2 » 4 pocs Resizable /Moveable

Product 3 | How to Setup »

Resizable
Product4 B More Info Use resize frame
. Americano Resize all edges
v |
) Preview results i -

O Use move frame

vi) | Create Alert
5

ix) Interest rate: viii)

Figure 3. Examples of graphical components: i) a window with a tab pane, ii) a menu and menu items, iii) a combo-box (with one choice selection),
iv) radio buttons, v) a web link, vi) a button, vii) a list (with multiple selection), viii) check box buttons (with multiple selection), ix) a text
field with a label.

4.5. Terminology

In this article all dialogs, windows, mobile screens or web pages will be described with one term — a scene. This term was
also used by Kasters in [16]. Each Ul can contain one or more scenes and each scene contains one or more components.
The components can be of two types — a component, which do not contain other components and a container, which is
a component that can contain other components. A scene is also a container component. By creating different scenes
and by inserting components into scenes and containers, a hierarchy of components is created.

5. Graphical components as domain-specific units

Components are the fundamentals for component-based software development (CBSD) [11]. In this approach the aim
is to develop applications by assembling components to a bigger unit while reusing as many components as possible.
The main advantages of CBSD are a reduction of price and time, a higher quality and an easier maintainability.
A component is an independent and functional part of an application that has specific functionalities provided through
a clearly defined interface and it has specific dependencies on the surrounding environment, that are defined by the
interface. In applications based on components the graphical user interfaces also consist of components. Concretely they
consist of a special type of components - graphical components - which represent functional parts of GUI (for example
buttons, menu items, labels, text fields, etc.). The same as for the classic components holds also for graphic components,
i.e. they have a well-defined interface and they are depending on the surrounding code. Each graphical component also
contains a definition of its appearance and information, that appears in the interface, i.e. to the user.

There are several types of components (examples can be seen in Fig. 3):

e informative and text components — text fields, labels (ix in Fig. 3)
e functional components — buttons, web links, menu items (ii, v and vi in Fig. 3),

e components groupng their content graphically or logically — for example Windows, dialogs, tab panes, menu,
button groups, lists of items (i, ii, iii, iv, vii, viit in Fig. 3),

e custom components — components created by a programmer.

A GUI can be imagined as a tree of graphical components, where each component represents a domain-specific unit.
These domain-specific units can be seen as terms of the GUI language. For these terms there are specific rules, specific
relationships exist between them and their hierarchy is exactly determined. For example a form and a button represent



Michaela Bacikova, Jaroslav Poruban

- - JFrame
|| Person [ =i ﬂh’ | ] I .
JPanel | | JPanel | | JPanel |
Name: |
Surname: | -| JLabel | -| JLabel | JButton |
Age: | -| JTextFieIdl —PRadioButton‘ JButton ‘
Status: single " H Jlabel | HRadioButton| U Jsutton |
Single -
Married B - JTextField | H Jtabel |
Religion: ) believer ) atheist
; -l JLabel | -|JCheckBox|
Favourite color: ] White I Red
[ ] Blue ] Yellow -IJTextFieId | —|JCheckBox|
LI Green [ Black -1 JLabel | —|JCheckBox|
S— H Reset i -PComboBoxl -|JCheckBox|
 icrecen
creczn

Figure 4. A person form and mapping its components into a component tree.

terms. Their relationship is, that the button belongs to a form. The hierarchy is created by including a component into
a container (for example a form), which defines the membership of the component in a logically related group. The basis
of a hierarchy is a scene, which defines a domain or a sub-domain. A root of the Ul component tree is the basic scene,
which opens when you start the application. Actions performed on this scene can invoke other scenes to open, that are
placed this way into the hierarchy of scenes under the basic node. A component tree of a simple person form can be
seen in Fig. 4.

5.1. Stereotypes of creating GUIs

This section will summarize the basic stereotypes of creating GUIs, which lead to inserting domain-specific information to
the GUI by programmers. It also contains principles, which will enable recording this information during the automated
domain analysis.

The first and basic stereotype of creating GUIs is creating a scene and giving a title to a scene. Scenes are special
types of containers that can have a title, for example a window, a dialog, a web page or a mobile screen. The title
defines the domain or sub-domain of the scene. For example a window title defines the window domain or sub-domain.
Or a web-page title defines the web-page domain or sub-domain. For example, in the Person dialog in Fig. 4 the name
of the dialog defines the domain or sub-domain of all content of the dialog: the dialog contains information about a
person.

Next fundamental principle of creating component-based GUIs is putting all components related to a scene into the
scene. In other words, all relevant information (i.e. only information that is needed to create a scene) related with the
scene domain should be placed into the scene. That means all components in the scene represent domain-specific terms
that are related to the scene domain.

The components in the scene are often structured, i.e. placed into some form of a container. In Java there are the
Container components, in web there are forms or frames, in mobile devices there are managers. Often the containers
create groups of components that are logically or graphically related. For example, in the person dialog in Fig. 4 there
are three containers, the first container contains the basic information about a person, the second container holds some
additional information and the third container contains three functional units, related to the dialog.

Based on the presumption that a GUI is made of scenes and that all components are put into the scene and they create

307




Analyzing stereotypes of creating Graphical User Interfaces

308

Title:

Person

I | I 1
JPanel ‘ JPanel | | JPanel ‘
-| Name: ‘ -‘ Religion: | oK ‘
-| <TEXT> ‘ -‘ believer | Reset ‘
-|Surname:‘ -‘ atheist | Cancel ‘
| o
-| Age ‘ -‘ White |
H <Text> | H  Red |
{ Status: ‘ -‘ Blue |
-|JComboBox‘ -‘ Yellow |

Item: Single| -‘ Green |

Married

Figure 5. An extended component tree. The terms were derived from components and the additional items were taken from the combo-box
component.

Person

otherinfoPanel bottomPanel

basiclnfoPanel

-
Favorite
color:

e -
Item: Item:
Married Single

A Optional with single
choice selection

Optional with multiple
choice selection

Figure 6. A FODA diagram of the person form.

a hierarchy of containers and components, a simple component tree can be derived. However the desired output is much
more complex: the domain terms represented by components and also additional relations need to be derived. See for
example Fig. 5 with a little more complex component tree. All the domain terms were derived from the component'’s
attributes and also new items under the status combo-box were added, single and married. The combo-box contains
these two items and the list of items can be derived from the combo-box component. However this is not the end yet. The
combo-box component allows only selection of one item therefore the single and married items are mutually exclusive
terms. And that’s true; in the real world under normal circumstances a person cannot be both single and married at the
same time.

Also in the real world, the single or married items represent a relationship status of a person. However the combo-box



Michaela Bacikova, Jaroslav Poruban

does not contain such information. But it can be derived from the label-component relationship. Labels are commonly
used to describe components in forms. For example the status label describes the combo-box component. That can be
derived for example from the label's labelFor attribute. If there is no such attribute set, then it is possible to analyze
components from the graphical point of view and to determine their position in the Ul. The status label is in one line
with the combo-box component, therefore the status label describes the combo-box component.

As seen in this simple example with combo-box, different kind of rules for extracting domain-specific information can
be derived from the type of component and from the way the components are commonly used. First the stereotypes of
using these components to implement GUIs must be defined. The rules for extracting domain-specific information will
be derived based on these stereotypes. In Table 1 there is a list of stereotypes of creating GUIs in the first column and
in the second column there are the rules or facts that were derived based on these stereotypes. These rules will serve
for defining the extracting algorithm.

In the table these relations are listed:

e The belongs-to (or parent-child) relation is a relation between a parent node and a child node in the component
tree.

e The is-related-to relation represents a relation between two elements, which are somehow linked together logi-
cally. For example, they belong to the same domain.

e The is-a-functionality-of relation between a scene and a functional component defines that the functional com-
ponent represents one single functionality of the scene.

e The mutually-exclusive-to and not-mutually-exclusive-to relations are specified for a list of terms with many
options. If only one item can be selected from the list, then all the items are mutually exclusive. If multiple items
can be selected from the list, then all the items are not mutually exclusive.

e A label-for relationship between a label and a component defines that the label describes the component or
provides an additional information about the component.

5.2. DEAL - The Domain Extraction ALgorithm

The extraction process is based on a presumption that the target user interface consists of components and it is window-
based and of an object-oriented nature. For web user interfaces another approach using HTML parsers must be used.
Also it should be noted that the algorithm is not fully automated, but rather assisted: the user clicks on a running
application to invoke opening new windows or dialogs. A prototype of DEAL (Domain Extraction ALgorithm) is already
implemented and a simplified description will be presented here. The algorithm is implemented in Java and it uses
Aspect] for attaching to an existing domain application. Generics are used for traversing components.

The DEAL prototype contains two aspects: MainAspect for attaching the window listener to the target application and
ModelGeneratorAspect which in case of opening a new window or dialog creates a new domain model and adds it to
the viewer. It also contains a GUI for displaying the generated domain model. Each time a new window or a dialog
appears, a new node in the domain model is added and displayed in the DEAL application GUI.

A traversal algorithm which is the main process of DEAL is executed for each new opened window or dialog. Algorithm 1
represents the pseudo-code for the traversal algorithm. The traversal algorithm has two cycles: in the first one a search
for superclasses is performed to find the appropriate class for which the handler exists. If there is a handler, then a
feature is added into the tree. In the second cycle a traversal of all subcomponents is performed. The cycle will be
executed only if the component is a composite. For each subcomponent the same procedure will be executed.

After executing the traversal algorithm a domain model in a form of a feature tree is created. A feature is a representation
of a component that contains information about its title, label, description, toolTipText and type (class). Each feature
can contain other features. The last phase of DEAL is a simplification of the model:

e nodes that represent containers and do not contain any children are removed
e nodes of type container that have only one child of type container are replaced with its child

The DEAL prototype uses handlers for handling different types of components. There are two basic types of handlers:

e Composite — if a component is of type composite (a container), then it can contain other components. The
Composite handler gives the list of subcomponents of the given composite. The handler contains only one method
getComponents().

309




Analyzing stereotypes of creating Graphical User Interfaces

310

Table 1. Alist of stereotypes and facts derived from the stereotypes .

Stereotypes

Derived facts

The GUI is made of scenes. Scenes are special
types of containers that can have a title.

Domain model of an application contains models of domains defined by the
scenes (i.e. scene domain models).

The title of a scene defines the domain or subdo-
main of the scene.

A scene domain model has a domain specified by the scene title. Each term
in the scene belongs to this domain.

The scene is made of components.

The components represent domain-specific terms of the domain model.

The components in the GUI are structured using
containers. The components placed in containers
are often related.

The basic relations between terms are defined by the hierarchy of containers.
Two basic types of relations defined by containers:
e a belongs-to relation: between the container and a component placed
in the container,
e an is-related-to relation: between two or more components placed
in the container.

Functional components are used for creating the
functional parts of an application. Examples of
functional components are buttons, menu items or
web links.

In domain-specific applications the common words
(like “Open”, “Close”, “Save”, “Save as..") are
used for describing functional elements, but also
domain-specific terms (like “Bibliography”, “Furni-
ture”, “Gadget”).

Functional components placed together in a con-
tainer are often related to each other (for example
menu items in a menu).

The functional components define the basic set of functionalities of the scene.
Grouping of these components can be defined by different principles:
e menu items are grouped together by menus or submenus,

e buttons or web links can be grouped together:

— graphically (by putting the components near the others),

— by putting them into a scene,

— or by a container.
The grouping creates an is-a-functionality-of relation between a scene and
a functional component. If a menu is a context menu, then the relation is
between a component, on which can the context menu be displayed; and the
context menu items.
After removing all commonly used descriptors of functional elements like
“Open”, “Close”, “Save”, “Save as..”, etc.,, a domain functionality of a scene
can be derived.

The tabbed panes contain different views and the
user is able to switch between the views by click-
ing on the tab title. The whole tabbed pane is a
container and each tab is also a container. Tabs
usually have a title.

Commonly, the information contained in one tab
is related, but it is not related to the information
contained in other tabs.

The tab title defines the domain of the content of the specific tab view (similar
to a scene and scene title).

A tab defines the same relations as the container (belongs-to and is-related-
to relations).

A tabbed pane defines a mutually-exclusive-to relationship between the do-
mains defined by tab titles and between the content of different tabs.

The labels are used to describe components.

If there is a label, that describes a component, than every domain information
provided by this component is described (or defined) by the label text.
A label-for relation can be determined by:
e label attributes (for example a labelFor attribute in Java or a for
attribute in HTML),
e graphical position.

The radio button groups are used to offer options
with a single selection. The same holds for combo-
boxes and lists with a single selection or spinners.

The label of a radio button (or an item from a combo-box or from a list)
represents a domain-specific term.
There are two types of relations defined by radio button groups:
e an is-related-to relation between the terms represented by radio
buttons
e a mutually-exclusive-to relation between the terms represented by
radio buttons

The check-box button groups are used to offer op-
tions with a multiple selection. The same holds for
lists with multiple selection.

The label of a check-box (or an item from a list) represents a domain-specific
term.
There are two types of relations defined by radio button groups:
e an is-related-to relation between the terms represented by check-box
buttons
e mutually-not-exclusive relation between the terms represented by
check-box buttons




Michaela Bacikova, Jaroslav Poruban

Stereotypes

Derived facts

Textual components (i.e. text fields, text areas or
textual spinners) are used to gain text information
from the user.

Following information about the text components can be determined:
o their purpose (from their description, if there is any),
e restrictions for their content (for example minimal and maximal length,
regular expression) from component restrictions, if there are any,
e type of content (text, numbers, password),
e content, if there is any.

A tree is used for displaying structural data, for
example a file system or an offer of goods in a
shop.

The tree defines an is-related-to relationship between all its nodes because
they all belong to a same domain. It also defines a belongs-to or parent-
child relationship between the nodes, that is defined by node nesting.

If a tree has a description in some form (for example label or a tooltip text),
then this description defines a domain of the tree and its nodes.

Forms are used in HTML commonly to gain some
information from the user. Usually they contain
normal components, like labels, check-boxes, ra-
dio buttons, text components, buttons and menus.
Forms can be submitted and by submitting they
are sent for processing. They also can be reset,
i.e. brought to their initial state. A form can have
a title.

Some information in the form can be set to be re-
quired.

A form is similar to a (sub-)scene. The same rules as for the scene hold also
for the form.

A title of the form defines a (sub-)domain of its content.

If a component in the form is required, then it defines a required rule for the
data described by the component label.

Custom components are implemented to create a
functionality that is not supported by default com-
ponents and that is specific for the domain appli-
cation.

By implementing custom components the programmer inserts new terms into
the GUI language. The domain information defined by these components is
specific and it depends on the specific component implementation.

Algorithm 1 Traversal algorithm

Input:
e component - a window or a dialog as a root component to traverse;
e rootFeature - root node of a feature domain model

Output:

e domainModel - a domain model in a form of a root feature

componentClass « class of component;
while componentClass # null do
handler < Handler for componentClass;

> first cycle: traversing superclasses to find a handler

if handler # null and handler instanceof Domainldentifiable then

feature « createFeature(handler);
add feature to rootFeature

end if

add treeNode for thisComponent;

componentClass < superclass of componentClass;

end while

composite < Composite handler for component;
if composite #+ null then
if feature = null then

> if there is a handler, then it has the getComponents() method

if composite # null and composite instanceof domainldentifiable then

feature « createFeature(composite);
add feature into rootFeature;
end if
end if

for each subcomponent of composite.getComponents() do
call procedure Traversal algorithm(subcomponent, feature);

end for
end if

> second cycle: traversing subcomponents
> and recursively calling this procedure




Analyzing stereotypes of creating Graphical User Interfaces

312

L& Scientific Cakulstor _:_, _' ;_. =~ - [ ]
125%6+9+/4 N
0|
166.6666667 v |
OFF MODE | SHIFT sTO RCL M+ DEL AC
ol x* J 7 | 8 o | ( )
sin [ cos : tan " 4 | 5 6 | * | +
log In » 1 2 3 +
nCr i X 0 . : . e ANS =

Figure 7. The Java Scientific Calculator used for the experimental verification.

e CommandHandler — handles commands executed on a component (this is related to our previous research). The
handler contains the execute() method.

For ensuring, that the domain information will be extracted for each component differently a Domainldentifiable interface
was implemented. Each Composite or CommandHandler can implement this interface. The CommandHandler contains
following elementary methods:

e getDomainldentifier(T component) — returns the identifier of the component (for example a label of a button).

e getDomainDescriptor(T component) — returns the descriptor of the component (for example a toolTipText of a but-
ton).

e getDomainLabelDescriptor(T component) — returns the label descriptor of the component (for example a text of
a label of a text component).

Five basic handlers for Java applications are currently supported by the prototype: AbstractButton handler, Container
composite, Dialog composite, Frame composite, and JMenu composite. This algorithm was tested on an open-source Java
Scientific Calculator (see Fig. 7) which is implemented as an applet. The labels of buttons were combined with HTML
tags and this has worsen readability. Therefore also three domain-specific handlers for the Calculator application were
created to be able to properly extract domain-specific information: CalculatorButton handler, CalculatorDisplay handler
and CalculatorEntryLabel handler. The created model is in a form of a tree of domain terms representing components.
The result can be seen in Fig. 8. The additional information about components (for example toolTipText or a type) is
displayed as toolTipText on each feature, see Fig. 9. The DEAL prototype is only a starting point for implementing the
domain analyzer but the results show that the proposed solution is feasible.

6. Further research

In our previous and current work mentioned above an algorithm was created for extracting domain terms from each type
of component. A domain term can be extracted from different attributes: name, title, toolTipText, label or actionCommand.
Priorities of the attributes were defined and an algorithm was created which consisted of a number of sub-processes for
information extraction. The tool created in our previous research was able to display a basic hierarchy of terms in a
form of a component tree. There was only the belongs-to relation between the tree nodes derived from the hierarchy of
components and containers in a scene. A model of a component tree of the person form is displayed in Figure 1.

In this article we described the most common stereotypes that often occur when creating GUIs. Based on them we
derived a series of rules or facts describing the possibilities of extracting domain information from GUIs. We presented
the pseudocode of our DEAL algorithm and a DEAL prototype, which is able to extract a tree of components in a form of
a feature diagram. The prototype supports five basic Java components and three additional handlers for Java Scientific
Calculator were created in order to be able to analyze it.



Michaela Bac¢ikova, Jaroslav Poruban

— S
File File
U Scientific Calculator = 5 = I
¢ U container 2

OFF

-1
X

sin
log
nCr i
MODE

XZ

cos
In

i
SHIFT

tan

STO jscicalc.bulton.CalculatorBulton

jscicalc.bulton.CalculatorBuiton

jscicalc.bulton.CalculatorBuiton

jscicalc.bulton.CalculatorBuiton

jscicalc.bulton.CalculatorBuiton
Container

U Entry Label |

s Container .

- Q Display Label | | ‘

0 Container bl | |

L&Mﬂdel L‘ Editor [ | Luodel LEd'rt:)r [ Hl

Figure 8. Aresult of an analysis of the Java Scientific Calculator from fig 7 displayed as a feature model in a Feature plug-in notation.

o -
=

RCL

= O O o o0 0 0 o 0 0 0 o0 0 0 0 o o 0 o o o o o 0
w

Y >SS s

M N 00

R0 e el Co el Co ol o ol 0 Co D 0 Cod o ) o o0 0 0 0 O o o o 0 0
<
=

l

a)

OFF[y || MODE SHIFT

use to switch calculator off memory and |
— 1 | statistics memory are not cleared [Q]

b) Scientific Calculator
0 Container
I oFF
0 5
| use to switch calculator off. memory and
i

statistics memory are not cleared [Q]

log

Figure 9. Additional information about the domain term is displayed as a tooltip. Picture a) is taken from the Java Scientific Calculator and picture
b) is taken from the DEAL display.




Analyzing stereotypes of creating Graphical User Interfaces

314

The next step is to implement new handlers for different components to be able to support wider functionality. Also for
components that define relations between terms (like radio buttons, check-boxes, tab panes) an additional functionality
of the handler must be implemented, that defines these relations to be able to extract it into the feature diagram. Further
we will also continue to expand the number of stereotypes to make the DEAL algorithm more flexible. In Fig. 6 there
is an example of our research for future actions. There is a domain model (in FODA form - FeaturelDE notation) of
the person form derived from the component tree in Fig. 4 and based on the rules listed in the Table 1. The [TEXT¢
represents a real text value or the type of a value of the given term. In the end we would like our tool to support different
kinds of user interfaces starting with web.

7. Conclusion

In this paper we identified the most common problems in the domain analysis process during extraction of information
from different sources. We conducted an analysis of the state of the art in the area of automated domain analysis methods
and tools and we concluded that the least explored area is related with existing software systems. We proposed a DEAL
method for analyzing user interfaces which represent a very good source of domain information because of their purpose
— to serve the domain users. We defined the general goals of our research and also specific goals of this paper and
we also explained our previous research in this area. We provided a theory of graphical user interfaces representing
a source of domain information using a component approach. At the end we identified the most common stereotypes of
creating GUIs and based on them we derived facts and rules, that help us design the DEAL method. A raw description
of the DEAL method and of the the prototype was presented here. We also provided an insight to our future research.

Acknowledgement

This work was supported by VEGA Grant No. 1/0305/11 - Co-evolution of the artifacts written in domain-specific
languages driven by language evolution.

References

[1] Antkiewicz M., Czarnecki K., FeaturePlugin: feature modeling plug-in for Eclipse, In: Proceedings of the 2004
OOPSLA workshop on eclipse technology eXchange (ACM, New York, NY, USA, 2004)

[2] Batikova M., Porubén J., Defining computer languages via user interfaces (Technical University of Kosice, Faculty
of Electrotechnical Engineering and Informatics, 2010)

[3] Batikova M., Porubén J., Automating User Actions on GUI: Defining a GUI Domain-Specific Language, In: Pro-
ceedings of International Scientific conference on Computer Science and Engineering, 60-67, 2010

[4] Batikova M., Porubéan J., Lakato3 D., Introduction to Domain Analysis of Web User Interfaces, In: Proceedings of
the Eleventh International Conference on Informatics, INFORMATICS'2011, 115-120, 2011

[5] Bak K., Czarnecki K., Wasowski A., Feature and meta-models in Clafer: mixed, specialized, and coupled, In:
Proceedings of the Third international conference on Software language engineering (Springer-Verlag, Berlin,
2011)

[6] Czarnecki K., Antkiewicz M., Kim, Ch.H.P,, Lau S., Pietroszek K., fmp and fmp2rsm: eclipse plug-ins for modeling
features using model templates, In: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (ACM, New York, NY, USA, 2005)

[7] Czarnecki K., Bednasch T., Unger P., Eisenecker UW., Generative Programming for Embedded Software: An Indus-
trial Experience Report, In: Proceedings of the 1st ACM SIGPLAN/SIGSOFT conference on Generative Program-
ming and Component Engineering (Springer-Verlag, London, UK, 2002)

[8] Diaz Rubén P, Reuse Library Process Model. Final Report (Electronic Systems Division, Air Force Command,
USAF, Hanscomb AFB, MA, USA, 1991)



Michaela Bacikova, Jaroslav Poruban

[9] Fowler M., Domain-Specific Languages (Addison-Wesley Signature Series (Fowler)) (Addison-Wesley Professional,

2010)

[10] Frakes W, Prieto-Diaz R., Fox Ch., DARE: Domain analysis and reuse environment, Ann. Softw. Eng., 5, 125-141,
1998

[11] Heineman G.T., Councill W.T., Component-based software engineering: putting the pieces together (Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001)

[12] leff Gray J. et al, Domain-Specific Modeling, In: CRC Handbook of Dynamic System Modeling (CRC Press, 2007)

[13] Kang K.C., Cohen S.G., Hess J.A,, Novak W.E., Peterson A.S., Feature-Oriented Domain Analysis (FODA) Feasibility
Study (Carnegie-Mellon University Software Engineering Institute, 1990)

[14] Kiczales C. et al., Aspect-Oriented Programming, 220-242 (Springer-Verlag, 1997)

[15] Kosar, TomaZ et al., Comparing General-Purpose and Domain-Specific Languages: An Empirical Study, Comput.
Sci. Inf. Syst., 2, 247-264, 2010

[16] Kosters G., Six HW.,, Voss J., Combined Analysis of User Interface and Domain Requirements, In: Proceedings of
the 2nd International Conference on Requirements Engineering (ICRE '96), 1996

[17] Leich T., Apel S., Marnitz L., Saake G., Tool support for feature-oriented software development: featurelDE: an
Eclipse-based approach, In: Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, (ACM,
New York, NY, USA, 2005)

[18] Lisboa L., Garcia V., de Almeida E., Meira S., ToolDAy: a tool for domain analysis, Int. J. Softw. Tool. Tec. Trans.,
13, 337-353 2011

[19] Mernik M., Heering |., Sloane A.M., When and how to develop domain-specific languages, ACM Comput. Surv., 37,
316-344, 2005

[20] Moon M., Yeom K., Seok Chae H., An Approach to Developing Domain Requirements as a Core Asset Based on
Commonality and Variability Analysis in a Product Line, IEEE Trans. Softw. Eng., 31, 551-569, 19, 2005

[21] Moore MM, Rugaber S., Domain Analysis for Transformational Reuse, In: Proceedings of the Fourth Working
Conference on Reverse Engineering (WCRE '97) (Washington, DC, USA, 1997)

[22] Neighbors .M., Software construction using components (University of California, Irvine, USA, 1980)

[23] Neighbors J.M., The Draco approach to constructing software from reusable components, In: Readings in artificial
intelligence and software engineering (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986)

[24] Reinhartz-Berger I, Sturm A., Selected Readings on Database Technologies And Applications, In: Information
Science Reference - Imprint of: 1Gl Publishing (Hershey, PA, USA, 2008)

[25] Ristic S., Aleksic S., Lukovic I., Banovic J., Form-Driven Application Generation: A Case Study, In: Proceedings of
the Eleventh International Conference on Informatics, INFORMATICS'2011, 115-120, 2011

[26] Schmidt C.D., Guest Editor’s Introduction: Model-Driven Engineering, Computer, 39, 25-31, 2006

[27] Thum T., Batory D., Kastner Ch., Reasoning about edits to feature models, In: Proceedings of the 31st International
Conference on Software Engineering (IEEE Computer Society, Washington, DC, USA, 2009)

[28] Thum T., Kastner Ch., Erdweg S., Siegmund N., Abstract Features in Feature Modeling In: Software Product Line
Conference (SPLC), 2011 15th International (IEEE, 2011)

[29] Valerio A., Succi G., Fenaroli M., Domain analysis and framework-based software development, SIGAPP Appl.
Comput. Rev,, 5, 4-15, 1997

[30] Vasilecas O., Kalibatiene D., Guizzardi G., Towards a Formal Method for the Transformation of Ontology Axioms to
Application Domain Rules, Inf. Technol. Contro., 38, 271-282, 2009




	Introduction
	State of the art
	Our previous research
	User Interface as a source of domain information
	Graphical components as domain-specific units
	Further research
	Conclusion
	Acknowledgement
	References



