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paper. In case of place composition type safe and combined types composition is contemplated. The process
of composition is proposed and analysed in three separate cases with respect to the general approaches with
minimal composition interface in each case but an analogous extension of the interface follows immediately
from the approach introduced. Properties of the composition mechanism are analysed, namely preserving of
boundedness, liveness and deadlock freedom. Conditions for preserving of the desired properties are introduced.
Usability of the compositional mechanism is analysed in the process of de/compositional analysis.
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1. Introduction

Formal description techniques (FDT) are widely regarded as the only tool with ability to design, analyse and maintain
complex discrete systems used in real word applications. Several FDT have been proposed in this field of academic
research, the best known of which is probably Petri nets. These provide a very simple designing tool and they are
appreciated especially for their simplicity and analytical properties.

Petri nets (PN) have been developed from the first proposal by C.A. Petri [12] and a wide family covering many aspects of
real word systems and even including advantages of some other FDT (for instance stochastic/time extensions [7], object
Petri nets [1], algebraic PN [2, 3] and so on) have been established. The most significant extension in general are High
Level Petri Nets (HLPN) [9]. The extension was proposed for several types of Petri nets including time aspects. HLPN
provide very high modelling power although their analysis is very difficult.

Since the first PN proposal one of the main reservations concerns their unability of de/composition which is actually
not included in the original conception. This motivated a lot of research and several de/compositional approaches
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(e.g. [4, 5, 8, 14]) including separate classes of de/compositional PN [11] have been proposed for modelling and/or
analysis of Petri nets.

In this paper we focus on composition of HLPN. Instead of defining a separate class of composable HLPN or defining
composition by means of compositional operators similar to the ones used in process algebras which have been proposed
early on [4, 14], we concentrate on the HLPN class defined in the international standard [9] and composition is carried out
as joining relevant places and/or transitions forming the interface of composition. In the first section the HLPN definition
is introduced. Subsequently the process of composition is considered in three separate cases - place composition,
transition composition and place-transition composition. The cases are introduced with minimal composition interface
but an analogous extension to more elements in the interface follows immediatly from the definitions established. In
section 4 properties of the composition mechanism are analysed with respect to preserving some of the important Petri
nets characteristics, namely boundedness, liveness and deadlock freedom. Since it turns out that in general these
properties are not preserved, the conditions for preserving are stated in the relevant propositions and it is shown that
a restricted version of the composition mechanism preserves all the desired characteristics. For the sake of simplicity
propositions are proven by very trivial examples where it is possible.

2. HLPN definition

In order to investigate composition of HLPN we focus on the HLPN standard [9]. The authors of the standard claim
that it covers the ideas forming basic HLPN classes, namely Pr/T nets [6], colored nets [10] and algebraic nets [15].
There are some preliminaries we leave out in this paper such as multiset, formal term definitions, binding of variables,
transition enabling and so on. For more detailed information we refer to [9]. The standard includes two main definitions
- HLPN and HLPN graphs. Since composition is more illustrative in the case of HLPN graphs, we consider them a
base for our treatment and refer to this class as HLPN(G). The following definitions of HLPN graph and marking are
taken from [9], to which the reader may refer for more details regarding the theory of HLPN.

Definition 2.1.
HLPN graph. HLPN graph (HLPNG) is a structure

HLPNG = (NG, Sig, V, H, Type, AN, my),

where

NG = (P, T, F) is a net graph with
P — set of places
T — set of transitions
F C(PxT)U(TxP) - set of directed arcs referred to as flow relation

Sig = (S, O) is a many-sorted Boolean signature with the set of sorts S = {Integer, Boolean, Natural...}
and operations O = {<, <, #,=,+,—, ...}

V — S-indexed set of variables, VN O =0

H = (Su, Oy) - many-sorted algebra for the signature Sig defining its meaning

Type: P — Sy — mapping assigning types (sorts) for places

AN = (A, TC) - net annotation with
A: F — Term(O U V) - mapping assigning terms to arcs. The result of term evaluation is
a multiset over the types of associated places, i.e. Y((p, t), (t', p) € F) Va: Val,(A(p. 1)),
Val,(A(t', p)) € Bag(Type(p)), where Term(O U V) is a set of terms over variables and
operations, a is an assigning of token values to variables, Val,(term) is term evaluation and
Bag(B) is a set of multisets over B
TC: T — Term(OU V)g,,/is @ mapping assigning boolean expressions to transitions

my: P— Upep Bag (Type (p)) is initial marking
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Definition 2.2.
HLPN marking. Marking of HLPNG = (NG, Sig, V, H, Type, AN, my) is a mapping

m: P — | Bag(Type(p)),
peP

such that Vp € P: m(p) € Bag (Type (p)).

3. HLPN composition

HLPN composition in contrast to the low level one has to take into account the net notations, i.e. a set of arc
expressions and transition conditions. Moreover, since HLPN from definition contain a number of types for particular
places, composition must take into account the types of these places. Composition of HLPN viewed as bipartite graphs
may be performed through a set of places P, transitions T. or both. We call the places P. and transitions T. the
interface of composition denoted as /.. In terms of [8] we have P composition if /. = P., T composition if /. = T. and
PT composition if /. = P. U T.. Note that we consider composition a junction. Composition may be divided into the
following two steps:

1. structural composition
2. composition of net annotation

In the following we consider particular composition approaches as inverse operations to decomposition [13] and define
the resulting net as a compound of two subnets. It is clear that composition may be generalized for n subnets. We focus
on the elementary cases (in case of P composition /. = {p}, T composition /. = {t} and for PT we have I. = {p, t}) but
an analogous extension of /. to more elements is possible provided that the composition definition is extended properly.

Definition 3.1.
Composition. Let Ny, N € HLPN(G), N; = (NG, Sig,, Vi, Hi, Type, AN, mq), i = {1, 2}, and xc be a
function defined on the HLPN(G) domain such that

xe: HLPN(G)xIx HLPN(G) — HLPN(G),

where
I[Py x Py = PcJU[Ty x To = Te|,(PrUP)NPc=8,(TiUuTo) N Te =@, [A — Blis a set of
functions defined from A to B. | is a set of the functions creating the interface of composition /¢,
lc = PcU T¢
C € {P, T, PT} is index determining the type of composition and its interface.

For xc we assume that the signatures Sig, = (51, 04) and Sig, = (S2, O) do not contain the same operator definitions
using different number nor different types of arguments, i.e. the following hold

Yop € O, U O, : op(m,SHEOM\op( )602:>U1= NS = sy,

7, )

where op is the same operator defined in the signatures, o; is a string of the types of the operator’s input arguments,
s; is the type of the operator result.

In order to extend the initial markings of subnets let us introduce an auxiliary function

extppr: | ) Bag(Type(p) > |J Bag(Type(p')),
peP p'epP’

provided that P C P’. The function represents an extension of the set of multisets for places from P to the set of
multisets for places from P’ such that bag(Type(p’)) = bag(Type(p)) iff p € PN P, bag(Type(p’)) = 8(Type(p’))
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otherwise. In this case #(Type(p’)) is an empty multiset over Type(p’).
We also use the overloaded function
extapg: Bag(A) — Bag(B),
provided that A C B, (AU B) N (P) = @, P = set of places. The function represents an extension of the multiset over A
to the multiset over B such that

Vb € bag (B): bag(b) = bag(b) & b € A bag(b)=0& b ¢ A,

where bag(x) stands for multiplicity of the x element in the relevant multiset and bag(B) € Bag(B).

3.1. P composition

P composition is carried out as an inverse operation to P decomposition, i.e. a junction of places. Let p; € P,
and p; € P, and Type,(p1) € Type,(p2) V Type,(p2) € Type(p1). Then N = xp(N1, {(p1,p2) = {p}}, N2) we call

type safe composition. If 3(cy € Type,(p1), 2 € Type,(p2)) : ¢1 # ¢, then composition is of combined place types.
3.1.1. P type safe composition

Definition 3.2.
P composition. Let Ny, N, € HLPN(G), p1 € Py, p; € P2, 1 = {(p1,p2) — {p}}. te. Ip = {p}. Then the resulting net
N = xp(N;, 1, N;) of composition of two subnets through places p4, p2is given as

N = (NG, Sig, V, H, Type, AN, my),

where
NG= (P, T, F)
P = PruP,U{p}—{p1, p2}
T =Tuhlh

F = FURU{(p ), (t) plt € TAlpi 1), (£ p) € Fi= (p, £), () p) € F}
—{(p, 1), (¢, p)| €T} i€{1, 2}

Slg = Slg1 ) Slgz = (51 ) 52, 01 U Oz)

V=V,uV,

H=H/UH, = (S,A-{1 U S/—/Z, OH1 U OHZ)

Type: P — (Su, U Sy,), Vp' € P\{p1. p2}: Type(p’) = Typep’). Type(p) = Type,(p1),
if Type,(p2) € Type,(p1), Type(p) = Type,(p2), it Type, (p1) € Type, (p2)

AN = (A, TC),
A: F—> Term(0,U O, U V), A(f) = Alf) for f € F\{(pi, t), (t', p)|t' € T},
Allp, 1) =Allpi, 1)), AL, p)) = A((t', pi)), for (pi, t), (', p) e Fi, e T
TC: T - Term(OyUO,U V)g,,,.Vt' € T: TC(t) = TC(t),

mo = extp,_ip}, P(Mylp) + €xte,_(p,}, p(My,lp,), where mg,, is a restriction of the marking mo; to

all places except p;,

mo(p) = eXtrype(py), Typelpr)uTypeps) (Mo(P1)) + €XTrype(py), Typelpr)uType(ps) (Mo(P2))-

The resulting initial marking after composition is a sum of initial markings of the subnets N;, N, over P considering
the new place added as well.

Notice that composition extends the state space of the resulting net to composition of state spaces of the subnets. By state
space we mean a set of sets of multisets over the types of places, that is Upep Bag (Type (p)). Composition of state spaces
with respect to interface /, Ic is given as |, Bag(Type(p)), where P" = {(P1 U P, U {p|p € Ic}) — {p1, p2l(p1. p2) —
p € I,p; € P;}}. In our extended version, the state space is a set of all reachable markings of all nets over a set of
places. Thus the reachability set of a net N is only a subset of state space as meant in this paper.

3.1.2. P combined types composition

It is possible to compose subnets through places of different types and the result is similar as in the case of P type safe
composition with the following difference

Type: P — (Su, U Sk,), Typelp) = Type(pr) U Type(ps).
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((t, p1))

P

Allp1, 12))

N= 'X'P(N‘I, Nz)

Figure 1. P composition principle.

Composition of different types extends the marking of p so that the type of p is union of types of p; and p,. On the
other hand P type safe composition does not extend the type of p.

3.2. T composition

T composition is carried out as an inverse operation to T decomposition, i.e. junction of transitions. Let t; € T, t, € T,
and t be the resulting transition. The transition condition of ¢ is the logical disjunction of the conditions of ¢ and t,.

Definition 3.3.
T composition. Let Ny, N, € HLPN(G), t, € Ty, t, € To,1 = {(t1, t,) — {t}}, te. It = {t}. Then the resulting net
N = x7(N1, 1, N;) of composition of two subnets through transitions t;, t, is given as

N = (NG, Sig, V, H, Type, AN, my),

where

NG= (P, T, F),
P=P,UP,
T=TuTLU{t}-{t, t}
F= FRUFRU{{p, 1)t p)lp'ePAp, t) (t, pYUF = (p' 1), (t. p) € F}
—{(p', t), (t. P p' € P},

Sig = Sig1 U Sigz = (51 us,, O;uU 02)

V=V,uV,

H=H/UH, = (SH1 U 5/-/2, OH1 U OHZ)

Type: P — (Su, USk,), Type = Type, UType, Vp" € Pi: Type(p’) = Type(p’)

AN = (A, TO),
A: F = Term(0; U 0, U V), A(f) = Alf) if f € FA{(p', t), (t., p))lp’ € P}
Allp's 1) = Allp". ), Allt, p) =A(t, p), for (p', t), (t, P)EF, pEP,
TC: T > Term(0U0,U V), Vt' € T\{t}: TC(t)=TCi(t),
TC(t) = TCi(t) vV TCo(t2)

mo = extp, p(my) + extp,p(mgy,).

As in the case of P composition, the resulting initial marking is a sum of initial markings of the subnets N;, N, over P.
The transition condition of the new transition t is the logical disjunction of the original transition conditions of ¢ and
t,. The choice of logical disjunction of transition conditions is justified by the fact that logical conjunction would block
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((p1, 1) A,
11 L
TC(tr) TC()
Allt1, p2)) A
4
[] TC(t) = TC{t1) v TC(t2)

N = %T(N‘l, Nz)

Figure 2. T composition principle.

the firing of the transition (if TC(t) = ~TC(t:) = TC(t1) A TC(t,) = false). Disjunction is therefore a less strict
condition and allows the execution in N in a more favorable way.

Notice that T composition extends the state space of the resulting net N to composition of the state spaces of the
subnets. Furthermore it does not change the place types as well as P type safe composition.

3.3. PT composition

PT composition combines features of P and T composition so it is based on joining places and transitions at the
same time as an inverse operation to PT decomposition. Consequently P and T composition are special cases of more
general PT composition. In order to point out the principle let us consider the easiest case — composition through places
p1 € Py, p2 € Pywith the resulting place p and transitions ¢, € Ty, t, € Trwith the resulting transition t.

Definition 3.4.
PT composition. Let Ny, N, € HLPN(G),p1 € P1,p2 € Po,ti € Th, t, € Ty, 1 = {(p1, p2) — {p}. (1, &) — {t}} Le.
Ipr = {p, t}. Then the resulting net N = xpr(Ny, I, N5) is given as

N = (NG, Sig, V, H, Type, AN, my),

where
NG = (P, T, F),
P=PiUP,U{p}—{p1, p2}
T=TuTnLU{t}-{t, t}
F= FRUFRU{{p, 1), (t PP ePAp, t) (t, pheFi=(p, 1), (t p')EF}
Ul(p, ), (¢, p)l £ €T Alpi ©), (t, p) € Fi= (p, t), (f', p) € F})
U{lp. 1), (t. p)l(pi ), (ti p) € Fi= (p. 1), (t, p) € F}
—{(pi, ti), (i pi). (pi ¥), (£, po). (P, 1), (tu P E THUTL, p' € PrUP},
Slg = Slg1 U Slgz = (51 U 52, 01 U 02)
V=VuV,
H= H1 U H2 = (SH1 U SHZ' OH1 U OHZ)
Type: P — (Su, USy,), Type = Type, U Type,,
Type(p) = Type(p1) U Type(pa)
AN = (A, TC),
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Allts, p1))

A((D1 t))

A((tr, p3)) Allps, 1))
Type(p) = Type(p1) w Type(pz)

N = yer(N:, Ne)

Allp, 1) =Al(p1, 1)) + Al(pz, 1))

Al(ps, 1))
TC() = TC(t) v TC(t)

Figure 3. PT composition principle.

A: F— Term(O,UO,U V),
A(f) = Ai(f) for £ € F\{(pi, ). (t', pa), (' 1), (ti, P'), (P ). (ti p)It’ UT, p'€ PLUPy},
Allp’, 1) = Allp’, 1), Allt, p) = Al(t, p). Allp, ) = Allpi, 1), A, pi)) = At p)),
for (pi, ), (¢, p)), (p', 1), (t, pleF, ' €ThUT, p'ePrUP,;
Allp. 1) = Allp1, 1) +Allp2, 1) A((t, p)) =Al((ti, p1)) + Al(t2, p2)), where A()=f < f & F,
TC: T —>Term(0O1UOUV)g,, .Vt € T\{t:}: TC(t")=TC;(t),
TC(t) = TCi(t) v TCo(t2)
mo = extp,_ip,}, P(Mylpy) + €xte,_(p,}, P(My,lp,) Le. sum of initial markings of the subnets
N1, N, over P, where mg;|,, is a restriction of the marking mg; to
all places except p;,

mo(p) = extrype(py), Type(p1)uType(p2) (Mo(P1)) + EXEType(py), Type(pr)uType(pz) (Mo(P2))-

As in the case of P composition, the resulting initial marking is a sum of initial markings of the subnets N;, N, over P.
Notice that PT composition is union of P and T composition as outlined above.

4. Properties of composition

In the following we are interested in properties of the composition mechanism, i.e. preserving some of the Petri net
properties, namely boundedness, deadlock freedom and liveness.

4.1. Boundedness

Definition 4.1.
Boundedness. Let N = (NG, Sig, V., H, Type, AN, mo) € HLPN(G).N is bounded if Vp € P ¥Ym € R(N) Va €
Type(p) Ik € N : k > bag(a) in m(p).

In the definition R(N) stands for the reachability set of net N,IN is a set of natural numbers.

Proposition 4.1.
Let N; = (NG;, Sig;, Vi, Hi;, Type;, AN;, my;) € HLPN(G) be two bounded nets. Then N = xc(Nq, I, N;) may not
be neccessarily be bound, i.e. xc does not preserve boundedness for C € {P, T,PT}.
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Ni: Nz:
ps ps b
ts'
o2
t B
2
P1

Figure 4. Source bounded nets for xp, xpr.

Proof. We are going to prove the proposition for each case separately.

1.

XP

For the sake of simplicity let us consider the low level Petri nets N;, N, depicted in Fig. 4 where only relevant
parts are labelled. Let us construct N = xp(N;, I, N;) by junction of places p; and p}, ie. | = {(p1,p] —
{phH}. Ip = {p}. It is obvious that N is unbounded due to activation of the unbounded section. Similarly an
equivalent high level net may be found.

2. xpT

Since yp does not preserve boundedness, neither does ypr. If we construct N = xpr(Ny, I, N;) from the source
nets depicted in Fig. 4 by junction of places p; and p} and transitions t; and ¢}, i.e. I = {(p1,p} = {p}). (k. t; =
{tH}. It = {p. t} the resulting net N is unbuounded. Again a high level net equivalent may be found.

3. XT

Let us consider the two high level nets depicted in Fig. 5. For the sake of simplicity only relevant parts are labelled
and places containing initial tokens are depicted with black dots. In this case black dots do not represent low
level tokens. For these nets we have: Yp € Py U P, : Type(p) = {2,3}, mo(p1) = {02, 1’3}, mo(p}) = mo(p3) =
{172,0'3}, mg(p2) = mo(ps) = mo(ps) = {0'2,0'3}. Notation x’y means that the number of y element in the
multiset is x.

Let us construct N = x7(Ny, I, N;) by junction of transitions t; and t;, te. I = {(t,t; — {t})}. Iy = {t}. The
resulting transition condition of the new transition is TC(t) = x > 4V x < 3 and this enables the unbounded
section. By x + +x we mean that two tokens of type and value corresponding to the bounded variable x are added
to py.

Remark 4.1.

Notice that in the proof we exploited the “dead” unbounded sections in separate subnets by their activating. Such
a situation is not very likely in practise but it is sufficient to construct the proof. The situation may arise after
decomposition of unbounded net.

Although ¢ does not preserve boundedness in general case under some conditions this may not hold.

Proposition 4.2.
Let N; = (NG, Sig;, Vi, Hi, Type;, AN;, my;) € HLPN(G), i € {1,2} be two bounded nets and N = xp(Ny, I, N;) be
the result of their composition. Then N is bounded if¥(p1 € Py, p; € P2) : (p1,p2) = p' € 1: Type(p1)NType(p,) = 8.
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Nz:

Figure 5. Source bounded nets for 7.

Proof. Since Y(p; € Py, p2 € Py) : (p1,p2) = p' € 1: Type(p1) N Type(pz) = @, the reachability set of N (denoting
R(N)) is given as

R(N) c {mlm = eXtP17lpfargs(/p), P(m1|args(/p)) + eXth*/P*ﬂfgS(lp), P(m2|urgs(lp))r m; € R(Nl)l
Vp € Ip : m(p) € comb(p1, p2), (p1, p2) € args(lp). p1 € P1,p2 € P»},

where
args(lp) = {(p1. p2)l(p1.p2) = p" € I.p" € Ip}
comb(p1, p2) = {extrypep:).Type(pr)uType(ps) (M1(P1)) + EXEType(ps), Type(pr)uType(po) (M2(p2))m: € R(N;)}.

Informally speaking R(N) is “concatenation” of R(N;) and R(N,) such that markings in places from the composition
interface are sum of markings of places which create the composition interface, i.e. if p; and p, are joined to p, marking
in p is sum of markings in p1 and p, at each step of net execution. This is a consequence of the fact that if the types of
all the places to be junctioned are completely different the execution of the subnets N; and N, is not affected by each
other since Y(py € Py, p2 € P2): (p1,p2) € args(lp) there is no arc from p, that can bind values from p, and conversely.

Having a look at R(N) we can see that if N; and N, are bounded, N is bounded as well and Vm € R(N)Vp &
(PruP)n P m(p) < max(R(N(p)). Y(p" € Ip, (p1. p2) € args(lp) : (p1,p2) = p’ € 1) : m(p’) < max(comb(pn, p2)),

where
R(N(p)) = {m(p)|m € R(N)}
max(Bag(A)) returns maximum of multisets from Bag(A), iL.e.
max(Bag(A)) = bag(A) = Ybag'(A) € Bag(A) : bag’'(A) < bag(A).

4.2. Deadlock freedom

Definition 4.2.
Deadlock-free net. Let N = (NG, Sig, V, H, Type, AN, my) € HLPN(G) and R(N) be the reachability set of N.
N is deadlock-free iff Vm € R(N) 3t € T such that t is enabled in m.

Proposition 4.3.
Let N; = (NG;, Sig:, Vi, Hi, Type:, AN;, mg) € HLPN(G),i € {1,2} be two deadlock-free nets. Then N =
xc(Ni, 1, N3) may not be necessarily deadlock-free, i.e. xc does not preserve deadlock freedom for C € {P, T,PT}.
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Na: Nz: p1'

P1

p2 P2

Figure 6. Source deadlock-free nets for xp, xpr.

Figure 7. Source deadlock-free nets for XT-

Proof. Let us prove each case separately.

1.

XpP

We are going to prove the proposition by an example. Let us consider the two low level nets depicted in Fig. 6 and
construct N = xp(Nq, I, Ny) by junction of places pq, pj to ppq and p2, p5 to ppa, I = {(p1, py — {pp1}). (p2. P} —
{pp2H}. Ir = {pp1, pp2}. Obviously the resulting net N may reach a deadlock state, namely by firing t, first.
Similarly a high level example may be easily found.

2. xp7 As in the case of P composition let us construct N = ypr(N;, I, N;) from the same source nets depicted

in Fig. 6 by junction of places pq,p} to pp; and p,, p5 to pps, and transitions 6, t; to tt, | = {(p1,p}) —
{pp1}. (p2, py) = {pp2}, (2, 1)) = {tt2}}, Ier = {pp1, pp2, tt2}. The resulting net N may reach a deadlock state,
namely by firing tt, first. This obviously holds for high level nets as well since a high level equivalent may be
found.

3. XT

Let us consider composition of the two high level nets depicted in Fig. 7 so that the resulting net N = x7(Nj, 1, Ny)
is obtained by junction of the transitions t;, t] to tt; and t,, t to tty, | = {(t1, t; — {tt1}), (t2. t; — {tt.})}. I+ =
{tt1, tt;}. Note that in Fig. 7 only relevant parts are labelled and black dots do not stand for low level tokens
but symbolize high level ones. The neccessary notation is as follows: Yp € Py UP; : Type(p) = {1,2}, mo(p1) =
{071,172}, mo(p2) = mo(p3) = mo(pa) = mo(ps) = {1"1,0'2}, mo(pe) = ... = mo(p11) = {0"1,0°2}, TC(tt;) = x >
3Vx <3, TC(tty) =y > 1V y < 1. Although N;, N, separately can not deadlock, N on the other hand can,
namely by firing tt; and tt, first since tt, tt, are enabled after composition.
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As shown above x¢ in general does not preserve deadlock freedom. If we restrict the mechanism to place composition
it can preserve deadlock freedom under some conditions which are described below. In the text below pe = {t|(p, t) €
(P x T)}op = {tl(t,p) € (T x P)}, te = {pl(t,p) € (T x P)}, ot = {pl(p, 1) € (P x T)}.

Proposition 4.4.
Let N; = (NG;, Sig;, Vi, Hi, Type; AN, mqy) € HLPN(G),i € {1,2} be two deadlock-free nets. Construct
N = xp(Ni, I, Ny) such that | = {(p1,p2) — {p}lp € Ip, p1e = B}. Then N = xp(N;, I, N,) is deadlock-free.

Proof. let FS; ={olo=t,...t,,t; € TN T;} be a set of all firing sequences of transitions in Nj. It is sufficient
to show that after composition the set of firing sequences of subset N; does not change. Suppose contrary. Then
dp’ € {ot|t € TNT}3m € R(N) : m(p’) & {m(p)jm € R(N1)} and thus 3t € T\T; : p’ € te. Since T\T; = T and
Vte T,:te C P,Ulp such a t nor p’ do not exist and therefore FS; does not change. In other words there is no token
adding from subset N, through /p to the subset N; and no place from N; which creates /p adds tokens to N, (because
I'={(p1,p2) = {p}p € Ip, p1® = B}) and therefore all firing sequences in N for the subset N are the same as in N,
and from our assumption it follows that N; can not reach a deadlock state.

Remark 4.2.
According to the proposition if we compose nets and all the places of one of them which create the composition interface
are final places containing no outgoing arcs, the resulting net is always deadlock-free.

Proposition 4.5.

Let N; = (NG;, Sig;, Vi, Hi., Type;, AN; my) € HLPN(G),i € {1,2} be two deadlock-free nets and N =
xp(N1, 1, N3) be the result of their composition. Then N is deadlock-free if V(p1 € Py, p2 € P2) i (p1,p2) = p' € |
Type(p1) N Type(pz) = 0.

Proof. Since Y(p1 € Py, p2 € P2): (p1,p2) = p’ € 1: Type(p1) N Type(p,) = @, the reachability set of N is given
as

R(N) C {m|m = extp,_jp—argsiip), P(M1]argsiip)) + €XtPs—ip—argsiip), P(M2]argsiip), Mi € R(N;),
Vp € Ip : m(p) € comb(p1, p2), (p1,p2) € args(lp). p1 € P1,p2 € P},

where

args(lp) = {(p1, p2)l(p1,p2) = p" € 1,p" € Ip}

comb(p1, p2) = {eXtype(p1). Typelpr1uTupe(pa) (M1(P1)) + EXTType(pa) Tupepr)uTypelp) (M2(p2))[mi € R(Ni)}-
As far as we consider R(N) this is the same situation as in proposition 4.2, i.e. the subnets Ny and N, behave like
separate nets. It is straightforward that whenever 3t € T; that is enabled in N; for some m, i € {1,2} then t is enabled

in N. As Ny, N, are by assumption both deadlock-free thus YVm € R(N;)3t € T; : t is enabled in m, N is neccessarily
deadlock-free as well.

4.3. Liveness

Definition 4.3.
Liveness. Transition t is live (L(t)) iff Vm € R(N)do € T* : m(g) A a(t) > 1. Petri net is live iff Vt € T : L(t).

In the definition T* is Kleene's closure over the set of transitions T, m(g) is valid transition sequence from marking m
and o(t) is number of occurrences of t in transition sequence g.

As in the case of preserving boundedness and deadlock freedom, x¢, not surprisingly, does not preserve liveness in
general for C € {T,PT}.

Proposition 4.6.
Let N; = (NG;, Sig;, Vi, Hi, Type;, AN;, mq) € HLPN(G), i € {1,2} be two live nets. Then N = xc(Ny, I, N2)
may not be necessarily live, i.e. xc does not preserve liveness for C € {T,PT}.
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Figure 8. Source live nets for x7, xpr.

Proof. The proof is constructed for each case separately.

1. XT
Let us prove the proposition using a small example. Consider the two live low level nets depicted in Fig. 8 and
construct N = x7(Ny, I, No) with | = {(t1, ;) — {tt:1}. (2, t;) — {tt2}}, Ir = {tt1, tt,}. Obviously the resulting
net N is not live since it is deadlocked and cannot fire tt; nor tt, from its initial marking. It is easy to find
equivalent high level nets.

2. xpr

As xr does not preserve liveness, neither does xpr. The proof is again trivial and it is sufficient to construct
N = XT(N1,/,N2) with | = {(p‘|,pq) — {pp1},(t1,t1,) — {tt1},(t2,té) — {ttz}},/PT = {pp1,tt1,tt2} from the
source nets depicted in Fig. 8. By this construction we obtained a deadlocked net N since it cannot fire tt; nor
tt, from its initial marking. A high level net example can be easily found.

Although x7, xpr do not preserve liveness in general, we can define a restricted version of the xp, which does.

Proposition 4.7.
Let N; = (NG;, Sigi, Vi, Hi, Type;, AN;, my) € HLPN(G),i € {1,2} be two live nets and N = xp(N1, I, N,) be
the result of their composition. Then N is live if V(p1 € Py, p2 € P2) : (p1,p2) = p' € 1: Type(p1) N Type(p,) = 8.

Proof. As far as we consider R(N) this is the same situation as in proposition 4.2, proposition 4.5, i.e. the subnets
N; and N, behave like separate nets after composition without affecting each other during execution.

Thus we remind that since V(p; € Py, p2 € P2) : (p1,p2) = p' € 1: Type(p1) N Type(pz) = @, the reachability set of N
is given as

R(N) C {m|m = extp,_ip—argsiip), P(M1|argsiip) + XtP,—ip—argsiip), P(M2]argsiip)), Mi € R(N;),
Vp € Ip : m(p) € comb(p1, p2), (p1, p2) € args(lp), p1 € P1,p2 € Py},

where
args(lp) = {(p1, p2)l(p1,p2) = p" € 1,p" € Ip}
comb(p1, p2) = {extrypep:), Type(pr)uType(ps) (M1(P1)) + EXEType(pa), Type(pr)uType(po) (M2(P2))m: € R(N;)}.

Due to the specific nature of composition it is obvious that whenever 3t € T; that is enabled in N; for some m, i € {1,2}
then t is enabled in N. As N;, N, are by assumption both live thus VYt € T;¥Ym € R(N;)3oc € T*: m(o)Aa(t) > 1, N is
neccessarily live as well.
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5. Composition in de/compositional analysis

So far we have defined a compositional mechanism and analysed its properties from general point of view. However,
in practise composition is only a part of de/compositional analysis of nets performed after previous decomposition and
analysis of the resulting subnets.

Let 8¢ : HLPN(G) x I — HLPN(G)? be a function decomposing a net through the interface / C P U T duplicating
elements i € | in each subnet. Index C has the same meaning as in the case of composition. We are not deeply
interested in Jc; it is sufficient to assume that such a function exists [13].

The compositional mechanism as introduced preserves any property of the analysed Petri net in de/compositional analysis
under some conditions stated in the following proposition.

Proposition 5.1.

Let N = (NG, Sig, V, H, Type, AN, mg) € HLPN(G),30¢c(N, I) = (N4, N») such that no type of any place is affected
and N, Ny, N, have a property 7, i.e. dc preserves the property 7. Let Ic = {(i,i) — i|i € I}. Then N' = xc(Ny, Ic, N2)
has the property wt iff Vp € IN P : my(p) = mo(p), YVt € INTVa : Val,(TC'(t)) = Val,(TC(t),Vf € {(x,y)|lx e IVy €
IYNF:Val (A(f)) = Val,(A(f)) .

Proof. Trivial. From the definitions of ¢ for C € {P, T,PT} and construction of /¢ in the proposition it directly
follows that NG = NG, Sig’ = Sig,V' = V,H = H, Type’ = Type. Considering xc together with our requirement
that Vp € IN P : my(p) = mo(p) gives my = mg. The definitions of x¢ with the requirements that ¥t € I N TVa :
Vall (TC'(t)) = Val,(TC(t),Vf € {(x,y)|lx € IVy € I} : Val (A(f)) = Val,(A(f)) lead to equal operational semantics
and the same reachability set, thus R(N’) = R(N). Since the static structure of N and N’ is the same except the terms
(arc expressions and transition conditions) possibly affected by decomposition and evaluation of such terms is the same
in the both nets leading to the same reachability sets and considering the fact that each property depends on static
structure and semantics of the nets we may conclude that if N has a property 1 = N’ has the same property.

Remark 5.1.

If we admit that in de/compositional analysis decomposing a net may lead to changes of the terms of the respective
transitions and arcs between places/transitions from the de/compositional interface and those outside the interface,
backward composition may be a bit different than that introduced in the definitions of xc. Namely the difference is given
by the requirements in the proposition. It is not important to obtain the same terms after backward composition but
their evaluation with the same bindings of variables must be the same in the original net and the resulting net after the
composition. The usage of x¢ in de/compositional analysis must take into account the requirements therefore creating
TC'(t), my(p) and A'(f) for each t € I and f = {(x, y)|x € IV y € I} may be different with respect to the requirements.
In practise decomposition of a net leading to the necessity of modifying any terms is a very rare case. Thus the
compositional approach ¢ may be used without any or with minimal changes. The proposition demonstrates its valid
usage in de/compositional analysis.

6. Conclusion

The paper is divided into two main parts. In the first part composition of the chosen HLPN class defined according to
the international standard is considered. The class covers three main HLPN classes - predicate/transition nets, colored
nets and algebraic nets. The approach used comes out from general principles of composition used for low level PN
in terms of joining relevant places and/or transitions. Other approaches are possible such as composition using special
compositional operators but the aim of the paper is to study the extended high level version of composition for the chosen
HLPN class without any extensions needed.

Since (HL)PN are bipartite graphs in their graphical form, composition in our approach is defined as place, transition or
place-transition junction. The places/transitions form the interface of composition and we considered only the minimal
interface in each case believing that the respective extension to more elements is clear enough from the sketched approach.
In the case of place composition type safe and composition of places of different types are considered separately because
of the natural feature of HLPN - types of places. Type safe composition combines places of the same type or may be
used when the type of one place is a subtype of the second. Place and transition compositions are special cases of more
general place-transition composition.

In the second main part of the paper we study the properties of the composition mechanism introduced, namely preserving
boundedness, liveness and deadlock freedom. It turns out that the approach is very benevolent and in general it does not
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preserve any of the desired PN characteristics. This fact is for the sake of simplicity proven using very simple examples
instead of technical proofs. A restricted version of the compositional operator is defined in order to ensure the properties
to be preserved. It is shown in the proofs of the corresponding propositions that boundedness, liveness and deadlock
freedom are kept using this restricted operator. Subsequently usability of the composition mechanism in the process of
de/compositional analysis is considered.
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