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Abstract: Composition of High Level Petri Nets in terms of joining relevant places and/or transitions is considered in the
paper. In case of place composition type safe and combined types composition is contemplated. The process
of composition is proposed and analysed in three separate cases with respect to the general approaches with
minimal composition interface in each case but an analogous extension of the interface follows immediately
from the approach introduced. Properties of the composition mechanism are analysed, namely preserving of
boundedness, liveness and deadlock freedom. Conditions for preserving of the desired properties are introduced.
Usability of the compositional mechanism is analysed in the process of de/compositional analysis.
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1. Introduction
Formal description techniques (FDT) are widely regarded as the only tool with ability to design, analyse and maintaincomplex discrete systems used in real word applications. Several FDT have been proposed in this field of academicresearch, the best known of which is probably Petri nets. These provide a very simple designing tool and they areappreciated especially for their simplicity and analytical properties.Petri nets (PN) have been developed from the first proposal by C.A. Petri [12] and a wide family covering many aspects ofreal word systems and even including advantages of some other FDT (for instance stochastic/time extensions [7], objectPetri nets [1], algebraic PN [2, 3] and so on) have been established. The most significant extension in general are HighLevel Petri Nets (HLPN) [9]. The extension was proposed for several types of Petri nets including time aspects. HLPNprovide very high modelling power although their analysis is very difficult.Since the first PN proposal one of the main reservations concerns their unability of de/composition which is actuallynot included in the original conception. This motivated a lot of research and several de/compositional approaches
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(e.g. [4, 5, 8, 14]) including separate classes of de/compositional PN [11] have been proposed for modelling and/oranalysis of Petri nets.In this paper we focus on composition of HLPN. Instead of defining a separate class of composable HLPN or definingcomposition by means of compositional operators similar to the ones used in process algebras which have been proposedearly on [4, 14], we concentrate on the HLPN class defined in the international standard [9] and composition is carried outas joining relevant places and/or transitions forming the interface of composition. In the first section the HLPN definitionis introduced. Subsequently the process of composition is considered in three separate cases - place composition,transition composition and place-transition composition. The cases are introduced with minimal composition interfacebut an analogous extension to more elements in the interface follows immediatly from the definitions established. Insection 4 properties of the composition mechanism are analysed with respect to preserving some of the important Petrinets characteristics, namely boundedness, liveness and deadlock freedom. Since it turns out that in general theseproperties are not preserved, the conditions for preserving are stated in the relevant propositions and it is shown thata restricted version of the composition mechanism preserves all the desired characteristics. For the sake of simplicitypropositions are proven by very trivial examples where it is possible.
2. HLPN definition
In order to investigate composition of HLPN we focus on the HLPN standard [9]. The authors of the standard claimthat it covers the ideas forming basic HLPN classes, namely Pr/T nets [6], colored nets [10] and algebraic nets [15].There are some preliminaries we leave out in this paper such as multiset, formal term definitions, binding of variables,transition enabling and so on. For more detailed information we refer to [9]. The standard includes two main definitions- HLPN and HLPN graphs. Since composition is more illustrative in the case of HLPN graphs, we consider them abase for our treatment and refer to this class as HLPN(G). The following definitions of HLPN graph and marking aretaken from [9], to which the reader may refer for more details regarding the theory of HLPN.
Definition 2.1.HLPN graph. HLPN graph (HLPNG) is a structure

HLPNG = (NG, Sig, V , H, Type, AN, m0),
where

NG = (P, T , F ) is a net graph with
P – set of places
T – set of transitions
F ⊆ (P×T ) ∪ (T×P) – set of directed arcs referred to as flow relation

Sig = (S, O) is a many-sorted Boolean signature with the set of sorts S = {Integer, Boolean,Natural...}and operations O = {<,≤, 6=,=,+, −, ...}
V – S-indexed set of variables, V ∩ O = ∅
H = (SH , OH ) - many-sorted algebra for the signature Sig defining its meaning
Type : P → SH – mapping assigning types (sorts) for places
AN = (A, TC ) – net annotation with

A : F → Term(O ∪ V ) - mapping assigning terms to arcs. The result of term evaluation isa multiset over the types of associated places, i.e. ∀((p, t), (t′, p) ∈ F ) ∀α : Valα (A(p, t)),
Valα (A(t′, p)) ∈ Bag(Type(p)), where Term(O ∪ V ) is a set of terms over variables andoperations, α is an assigning of token values to variables, Valα (term) is term evaluation and
Bag(B) is a set of multisets over B
TC : T → Term(O ∪ V )Bool is a mapping assigning boolean expressions to transitions

m0 : P → ⋃
p∈P Bag (Type (p)) is initial marking
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Definition 2.2.HLPN marking. Marking of HLPNG = (NG, Sig, V , H, Type, AN, m0) is a mapping
m : P → ⋃

p∈P

Bag (Type (p)),
such that ∀p ∈ P : m(p) ∈ Bag (Type (p)).
3. HLPN composition
HLPN composition in contrast to the low level one has to take into account the net notations, i.e. a set of arcexpressions and transition conditions. Moreover, since HLPN from definition contain a number of types for particularplaces, composition must take into account the types of these places. Composition of HLPN viewed as bipartite graphsmay be performed through a set of places Pc , transitions Tc or both. We call the places Pc and transitions Tc theinterface of composition denoted as Ic . In terms of [8] we have P composition if Ic = Pc , T composition if Ic = Tc and
PT composition if Ic = Pc ∪ Tc . Note that we consider composition a junction. Composition may be divided into thefollowing two steps:

1. structural composition
2. composition of net annotation

In the following we consider particular composition approaches as inverse operations to decomposition [13] and definethe resulting net as a compound of two subnets. It is clear that composition may be generalized for n subnets. We focuson the elementary cases (in case of P composition Ic = {p}, T composition Ic = {t} and for PT we have Ic = {p, t}) butan analogous extension of Ic to more elements is possible provided that the composition definition is extended properly.
Definition 3.1.Composition. Let N1, N2 ∈ HLPN(G), Ni = (NGi, Sigi, Vi, Hi, Typei, AN i, m0i), i = {1, 2}, and χC be afunction defined on the HLPN(G) domain such that

χC : HLPN(G)×I×HLPN(G)→ HLPN(G),
where

I : [P1 × P2 → PC ] ∪ [T1 × T2 → TC ], (P1 ∪ P2) ∩ PC = ∅, (T1 ∪ T2) ∩ TC = ∅, [A → B] is a set offunctions defined from A to B. I is a set of the functions creating the interface of composition IC ,
IC = PC ∪ TC
C ∈ {P, T , PT} is index determining the type of composition and its interface.

For χC we assume that the signatures Sig1 = (S1, O1) and Sig2 = (S2, O2) do not contain the same operator definitionsusing different number nor different types of arguments, i.e. the following hold
∀op ∈ O1 ∪ O2 : op(σ1 , s1) ∈ O1 ∧ op(σ2, s2) ∈ O2 =⇒ σ1 = σ2 ∧ s1 = s2,

where op is the same operator defined in the signatures, σi is a string of the types of the operator’s input arguments,
si is the type of the operator result.
In order to extend the initial markings of subnets let us introduce an auxiliary function

extP,P ′ : ⋃
p∈P

Bag(Type(p))→ ⋃
p′∈P ′

Bag(Type(p′)),
provided that P ⊆ P ′. The function represents an extension of the set of multisets for places from P to the set ofmultisets for places from P ′ such that bag(Type(p′)) = bag(Type(p)) iff p ∈ P ∩ P ′, bag(Type(p′)) = ∅(Type(p′))
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otherwise. In this case ∅(Type(p′)) is an empty multiset over Type(p′).
We also use the overloaded function

extA,B : Bag(A)→ Bag(B),provided that A ⊆ B, (A ∪ B) ∩ (P) = ∅, P = set of places. The function represents an extension of the multiset over Ato the multiset over B such that
∀b ∈ bag (B) : bag (b) = bag (b)⇔ b ∈ A, bag(b) = 0⇔ b 6∈ A,

where bag(x) stands for multiplicity of the x element in the relevant multiset and bag(B) ∈ Bag(B).
3.1. P composition
P composition is carried out as an inverse operation to P decomposition, i.e. a junction of places. Let p1 ∈ P1and p2 ∈ P2 and Type1(p1) ⊆ Type2(p2)∨Type2(p2) ⊆ Type1(p1). Then N = χP (N1, {(p1, p2)→ {p}}, N2) we calltype safe composition. If ∃(c1 ∈ Type1(p1), c2 ∈ Type2(p2)) : c1 6= c2 then composition is of combined place types.
3.1.1. P type safe composition
Definition 3.2.P composition. Let N1, N2 ∈ HLPN(G), p1 ∈ P1, p2 ∈ P2, I = {(p1, p2) → {p}}, i.e. IP = {p}. Then the resulting net
N = χP (N1, I, N2) of composition of two subnets through places p1, p2 is given as

N = (NG, Sig, V , H, Type, AN, m0),
where

NG = (P, T , F )
P = P1 ∪ P2 ∪ {p} − {p1, p2}
T = T1 ∪ T2
F = F1 ∪ F2 ∪ {(p, t‘), (t‘, p)|t‘ ∈ T ∧ (pi, t‘), (t‘, pi) ∈ Fi ⇒ (p, t‘), (t‘, p) ∈ F}
−{(pi, t‘), (t‘, pi)| t ∈ T}, i ∈ {1, 2}

Sig = Sig1 ∪ Sig2 = (S1 ∪ S2, O1 ∪ O2)
V = V1 ∪ V2
H = H1 ∪ H2 = (SH1 ∪ SH2 , OH1 ∪ OH2 )
Type : P → (SH1 ∪ SH2 ), ∀p′ ∈ Pi\{p1, p2} : Type(p′) = Typei(p′), Type(p) = Type1(p1),if Type2(p2) ⊆ Type1(p1), Type(p) = Type2(p2), if Type1 (p1) ⊆ Type2 (p2)
AN = (A, TC ) ,

A : F → Term (O1 ∪ O2 ∪ V ) , A(f ) = Ai(f ) for f ∈ Fi\{(pi, t‘), (t‘, pi)|t‘ ∈ T},
A ((p, t‘)) = A ((pi, t‘)) , A ((t‘, p)) = A ((t‘, pi)) , for (pi, t‘) , (t‘, pi) ∈ Fi, t‘ ∈ T
TC : T → Term(O1 ∪ O2 ∪ V )Bool, ∀t‘ ∈ T : TC (t‘) = TC i(t‘),

m0 = extP1−{p1}, P (m01|p1 ) + extP2−{p2}, P (m02|p2 ), where m0i|pi is a restriction of the marking m0i toall places except pi,
m0(p) = extType(p1),Type(p1)∪Type(p2)(m0(p1)) + extType(p2),Type(p1)∪Type(p2)(m0(p2)).The resulting initial marking after composition is a sum of initial markings of the subnets N1, N2 over P consideringthe new place added as well.Notice that composition extends the state space of the resulting net to composition of state spaces of the subnets. By statespace we mean a set of sets of multisets over the types of places, that is ⋃

p∈P Bag (Type (p)). Composition of state spaceswith respect to interface I, IC is given as ⋃
p∈P ′ Bag(Type(p)), where P ′ = {(P1 ∪P2 ∪ {p|p ∈ IC})− {p1, p2|(p1, p2)→

p ∈ I, pi ∈ Pi}}. In our extended version, the state space is a set of all reachable markings of all nets over a set ofplaces. Thus the reachability set of a net N is only a subset of state space as meant in this paper.
3.1.2. P combined types compositionIt is possible to compose subnets through places of different types and the result is similar as in the case of P type safecomposition with the following difference

Type : P → (SH1 ∪ SH2 ), Type(p) = Type(p1) ∪ Type(p2).
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Figure 1. P composition principle.

Composition of different types extends the marking of p so that the type of p is union of types of p1 and p2. On theother hand P type safe composition does not extend the type of p.
3.2. T composition
T composition is carried out as an inverse operation to T decomposition, i.e. junction of transitions. Let t1 ∈ T1, t2 ∈ T2and t be the resulting transition. The transition condition of t is the logical disjunction of the conditions of t1 and t2.
Definition 3.3.T composition. Let N1, N2 ∈ HLPN(G), t1 ∈ T1, t2 ∈ T2, I = {(t1, t2) → {t}}, i.e. IT = {t}. Then the resulting net
N = χT (N1, I, N2) of composition of two subnets through transitions t1, t2 is given as

N = (NG, Sig, V , H, Type, AN, m0) ,
where

NG = (P, T , F ),
P = P1 ∪ P2
T = T1 ∪ T2 ∪ {t} − {t1, t2}
F = F1 ∪ F1 ∪ {(p‘, t), (t, p‘)|p‘ ∈ P ∧ (p‘, ti), (ti, p‘) ∪ Fi ⇒ (p‘, t), (t, p‘) ∈ F}
−{(p‘, ti), (ti, p‘)| p‘ ∈ P},

Sig = Sig1 ∪ Sig2 = (S1 ∪ S2, O1 ∪ O2)
V = V1 ∪ V2
H = H1 ∪ H2 = (SH1 ∪ SH2 , OH1 ∪ OH2 )
Type : P → (SH1 ∪ SH2 ), Type = Type1 ∪ Type2, ∀p′ ∈ Pi : Type(p′) = Typei(p′)
AN = (A, TC ) ,

A : F → Term(O1 ∪ O2 ∪ V ), A(f ) = Ai(f ) if f ∈ Fi\{(p′, ti), (ti, p′)|p′ ∈ P},
A ((p′, t)) = A ((p′, ti)) , A ((t, p′)) = A ((ti, p′)) , for (p′, ti) , (ti, p′) ∈ Fi, p′ ∈ P,
TC : T → Term (O1 ∪ O2 ∪ V )Bool, ∀t‘ ∈ Ti\{ti} : TC (t‘) = TC i (t‘) ,
TC (t) = TC 1(t1) ∨ TC 2(t2)

m0 = extP1 ,P (m01) + extP2,P (m02).As in the case of P composition, the resulting initial marking is a sum of initial markings of the subnets N1, N2 over P .The transition condition of the new transition t is the logical disjunction of the original transition conditions of t1 and
t2. The choice of logical disjunction of transition conditions is justified by the fact that logical conjunction would block
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Figure 2. T composition principle.

the firing of the transition (if TC (t1) = ¬TC (t2) ⇒ TC (t1) ∧ TC (t2) = false). Disjunction is therefore a less strictcondition and allows the execution in N in a more favorable way.Notice that T composition extends the state space of the resulting net N to composition of the state spaces of thesubnets. Furthermore it does not change the place types as well as P type safe composition.
3.3. PT composition
PT composition combines features of P and T composition so it is based on joining places and transitions at thesame time as an inverse operation to PT decomposition. Consequently P and T composition are special cases of moregeneral PT composition. In order to point out the principle let us consider the easiest case – composition through places
p1 ∈ P1, p2 ∈ P2with the resulting place p and transitions t1 ∈ T1, t2 ∈ T2with the resulting transition t.
Definition 3.4.PT composition. Let N1, N2 ∈ HLPN(G), p1 ∈ P1, p2 ∈ P2, t1 ∈ T1, t2 ∈ T2, I = {(p1, p2) → {p}, (t1, t2) → {t}}, i.e.
IPT = {p, t}. Then the resulting net N = χPT (N1, I, N2) is given as

N = (NG, Sig, V , H, Type, AN, m0),
where

NG = (P, T , F ),
P = P1 ∪ P2 ∪ {p} − {p1, p2}
T = T1 ∪ T2 ∪ {t} − {t1, t2}
F = F1 ∪ F2 ∪ {(p′, t), (t, p′)|p′ ∈ P ∧ (p′, ti), (ti, p′) ∈ Fi ⇒ (p′, t), (t, p′) ∈ F}
∪{(p, t′), (t′, p)| t′ ∈ T ∧ (pi, t′), (t′, pi) ∈ Fi ⇒ (p, t′), (t′, p) ∈ F}
∪{(p, t) , (t, p)| (pi, ti) , (ti, pi) ∈ Fi ⇒ (p, t), (t, p) ∈ F}
−{(pi, ti), (ti, pi), (pi, t′), (t′, pi), (p′, ti), (ti, p′)|t′ ∈ T1 ∪ T2, p′ ∈ P1 ∪ P2},

Sig = Sig1 ∪ Sig2 = (S1 ∪ S2, O1 ∪ O2)
V = V1 ∪ V2
H = H1 ∪ H2 = (SH1 ∪ SH2 , OH1 ∪ OH2 )
Type : P → (SH1 ∪ SH2 ), Type = Type1 ∪ Type2,
Type(p) = Type(p1) ∪ Type(p2)
AN = (A, TC ) ,
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Figure 3. PT composition principle.

A : F → Term(O1 ∪ O2 ∪ V ),
A(f ) = Ai(f ) for f ∈ Fi\{(pi, t′), (t′, pi), (p′, ti), (ti, p′), (pi, ti), (ti, p)|t‘ ∈ T1 ∪ T2, p‘ ∈ P1 ∪ P2},
A((p′, t)) = A((p′, ti)), A((t, p′)) = A((ti, p′)), A((p, t′)) = A((pi, t′)), A((t′, pi)) = A((t′, p)),for (pi, t′) , (t′, pi) , (p′, ti) , (ti, p′) ∈ Fi, t′ ∈ T1 ∪ T2, p′ ∈ P1 ∪ P2
A ((p, t)) = A ((p1, t1)) + A ((p2, t2)) , A ((t, p)) = A ((t1, p1)) + A ((t2, p2)) , where A(f )=∅ ⇔ f /∈ F ,
TC : T → Term (O1 ∪ O2 ∪ V )Bool, ∀t′ ∈ Ti\{ti} : TC (t′) = TC i (t′) ,
TC (t) = TC 1(t1) ∨ TC 2(t2)

m0 = extP1−{p1}, P (m01|p1 ) + extP2−{p2}, P (m02|p2 ), i.e. sum of initial markings of the subnets
N1, N2 over P , where m0i|pi is a restriction of the marking m0i toall places except pi,
m0(p) = extType(p1),Type(p1)∪Type(p2)(m0(p1)) + extType(p2),Type(p1)∪Type(p2)(m0(p2)).

As in the case of P composition, the resulting initial marking is a sum of initial markings of the subnets N1, N2 over P .Notice that PT composition is union of P and T composition as outlined above.
4. Properties of composition
In the following we are interested in properties of the composition mechanism, i.e. preserving some of the Petri netproperties, namely boundedness, deadlock freedom and liveness.
4.1. Boundedness
Definition 4.1.Boundedness. Let N = (NG, Sig, V , H, Type, AN, m0) ∈ HLPN(G).N is bounded if ∀p ∈ P ∀m ∈ R (N) ∀a ∈
Type(p) ∃k ∈ N : k ≥ bag(a) in m(p).
In the definition R (N) stands for the reachability set of net N,N is a set of natural numbers.
Proposition 4.1.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G) be two bounded nets. Then N = χC (N1, I, N2) may not
be neccessarily be bound, i.e. χC does not preserve boundedness for C ∈ {P, T , PT}.
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Ivan Peťko, Štefan Hudák

Figure 4. Source bounded nets for χP , χPT .

Proof. We are going to prove the proposition for each case separately.
1. χPFor the sake of simplicity let us consider the low level Petri nets N1, N2 depicted in Fig. 4 where only relevantparts are labelled. Let us construct N = χP (N1, I, N2) by junction of places p1 and p′1, i.e. I = {(p1, p′1 →
{p})}, IP = {p}. It is obvious that N is unbounded due to activation of the unbounded section. Similarly anequivalent high level net may be found.

2. χPTSince χP does not preserve boundedness, neither does χPT . If we construct N = χPT (N1, I, N2) from the sourcenets depicted in Fig. 4 by junction of places p1 and p′1 and transitions t1 and t′1, i.e. I = {(p1, p′1 → {p}), (t1, t′1 →
{t})}, IPT = {p, t} the resulting net N is unbuounded. Again a high level net equivalent may be found.

3. χTLet us consider the two high level nets depicted in Fig. 5. For the sake of simplicity only relevant parts are labelledand places containing initial tokens are depicted with black dots. In this case black dots do not represent lowlevel tokens. For these nets we have: ∀p ∈ P1 ∪ P2 : Type(p) = {2, 3},m0(p1) = {0′2, 1′3},m0(p′1) = m0(p3) =
{1′2, 0′3},m0(p2) = m0(p4) = m0(p5) = {0′2, 0′3}. Notation x ′y means that the number of y element in themultiset is x .Let us construct N = χT (N1, I, N2) by junction of transitions t1 and t′1, i.e. I = {(t1, t′1 → {t})}, IT = {t}. Theresulting transition condition of the new transition is TC (t) = x > 4 ∨ x < 3 and this enables the unboundedsection. By x++x we mean that two tokens of type and value corresponding to the bounded variable x are addedto p1.

Remark 4.1.Notice that in the proof we exploited the “dead” unbounded sections in separate subnets by their activating. Sucha situation is not very likely in practise but it is sufficient to construct the proof. The situation may arise afterdecomposition of unbounded net.
Although χC does not preserve boundedness in general case under some conditions this may not hold.
Proposition 4.2.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two bounded nets and N = χP (N1, I, N2) be
the result of their composition. Then N is bounded if ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2)→ p′ ∈ I : Type(p1)∩Type(p2) = ∅.
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Figure 5. Source bounded nets for χT .

Proof. Since ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2)→ p′ ∈ I : Type(p1) ∩ Type(p2) = ∅, the reachability set of N (denoting
R (N)) is given as
R (N) ⊆ {m|m = extP1−IP−args(IP ), P (m1|args(IP )) + extP2−IP−args(IP ), P (m2|args(IP )), mi ∈ R (Ni),
∀p ∈ IP : m(p) ∈ comb(p1, p2), (p1, p2) ∈ args(IP ), p1 ∈ P1, p2 ∈ P2},

where
args(IP ) = {(p1, p2)|(p1, p2)→ p′ ∈ I, p′ ∈ IP}
comb(p1, p2) = {extType(p1),Type(p1)∪Type(p2)(m1(p1)) + extType(p2),Type(p1)∪Type(p2)(m2(p2))|mi ∈ R (Ni)}.Informally speaking R (N) is “concatenation” of R (N1) and R (N2) such that markings in places from the compositioninterface are sum of markings of places which create the composition interface, i.e. if p1 and p2 are joined to p, markingin p is sum of markings in p1 and p2 at each step of net execution. This is a consequence of the fact that if the types ofall the places to be junctioned are completely different the execution of the subnets N1 and N2 is not affected by eachother since ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2) ∈ args(IP ) there is no arc from p1 that can bind values from p2 and conversely.

Having a look at R (N) we can see that if N1 and N2 are bounded, N is bounded as well and ∀m ∈ R (N)∀p ∈(P1 ∪ P2) ∩ P : m(p) ≤ max(R (N(p))), ∀(p′ ∈ IP , (p1, p2) ∈ args(IP ) : (p1, p2)→ p′ ∈ I) : m(p′) ≤ max(comb(p1, p2)),where
R (N(p)) = {m(p)|m ∈ R (N)}
max(Bag(A)) returns maximum of multisets from Bag(A), i.e.
max(Bag(A)) = bag(A)⇒ ∀bag′(A) ∈ Bag(A) : bag′(A) ≤ bag(A).

4.2. Deadlock freedom
Definition 4.2.Deadlock-free net. Let N = (NG, Sig, V , H, Type, AN, m0) ∈ HLPN(G) and R (N) be the reachability set of N .
N is deadlock-free iff ∀m ∈ R (N) ∃t ∈ T such that t is enabled in m.
Proposition 4.3.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two deadlock-free nets. Then N =
χC (N1, I, N2) may not be necessarily deadlock-free, i.e. χC does not preserve deadlock freedom for C ∈ {P, T , PT}.
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Figure 6. Source deadlock-free nets for χP , χPT .

Figure 7. Source deadlock-free nets for χT .

Proof. Let us prove each case separately.
1. χPWe are going to prove the proposition by an example. Let us consider the two low level nets depicted in Fig. 6 andconstruct N = χP (N1, I, N2) by junction of places p1, p′1 to pp1 and p2, p′2 to pp2, I = {(p1, p′1 → {pp1}), (p2, p′2 →
{pp2})}, IP = {pp1, pp2}. Obviously the resulting net N may reach a deadlock state, namely by firing t2 first.Similarly a high level example may be easily found.

2. χPT As in the case of P composition let us construct N = χPT (N1, I, N2) from the same source nets depictedin Fig. 6 by junction of places p1, p′1 to pp1 and p2, p′2 to pp2 and transitions t2, t′2 to tt2, I = {(p1, p′1) →
{pp1}, (p2, p′2)→ {pp2}, (t2, t′2)→ {tt2}}, IPT = {pp1, pp2, tt2}. The resulting net N may reach a deadlock state,namely by firing tt2 first. This obviously holds for high level nets as well since a high level equivalent may befound.

3. χTLet us consider composition of the two high level nets depicted in Fig. 7 so that the resulting netN = χT (N1, I, N2)is obtained by junction of the transitions t1, t′1 to tt1 and t2, t′2 to tt2, I = {(t1, t′1 → {tt1}), (t2, t′2 → {tt2})}, IT =
{tt1, tt2}. Note that in Fig. 7 only relevant parts are labelled and black dots do not stand for low level tokensbut symbolize high level ones. The neccessary notation is as follows: ∀p ∈ P1 ∪P2 : Type(p) = {1, 2},m0(p1) =
{0′1, 1′2},m0(p2) = m0(p3) = m0(p4) = m0(p5) = {1′1, 0′2},m0(p6) = ... = m0(p11) = {0′1, 0′2}, TC (tt1) = x >3 ∨ x < 3, TC (tt2) = y > 1 ∨ y ≤ 1. Although N1, N2 separately can not deadlock, N on the other hand can,namely by firing tt1 and tt2 first since tt1, tt2 are enabled after composition.
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As shown above χC in general does not preserve deadlock freedom. If we restrict the mechanism to place compositionit can preserve deadlock freedom under some conditions which are described below. In the text below p• = {t|(p, t) ∈(P × T )}, •p = {t|(t, p) ∈ (T × P)}, t• = {p|(t, p) ∈ (T × P)}, •t = {p|(p, t) ∈ (P × T )}.
Proposition 4.4.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two deadlock-free nets. Construct
N = χP (N1, I, N2) such that I = {(p1, p2)→ {p}|p ∈ IP , p1• = ∅}. Then N = χP (N1, I, N2) is deadlock-free.

Proof. Let FS1 = {σ|σ = t1, ..., tn, ti ∈ T ∩ T1} be a set of all firing sequences of transitions in N1. It is sufficientto show that after composition the set of firing sequences of subset N1 does not change. Suppose contrary. Then
∃p′ ∈ {•t|t ∈ T ∩ T1}∃m ∈ R (N) : m(p′) /∈ {m(p′)|m ∈ R (N1)} and thus ∃t ∈ T\T1 : p′ ∈ t•. Since T\T1 = T2 and
∀t ∈ T2 : t• ⊆ P2 ∪ IP such a t nor p′ do not exist and therefore FS1 does not change. In other words there is no tokenadding from subset N2 through IP to the subset N1 and no place from N1 which creates IP adds tokens to N1 (because
I = {(p1, p2)→ {p}|p ∈ IP , p1• = ∅}) and therefore all firing sequences in N for the subset N1 are the same as in N1and from our assumption it follows that N1 can not reach a deadlock state.
Remark 4.2.According to the proposition if we compose nets and all the places of one of them which create the composition interfaceare final places containing no outgoing arcs, the resulting net is always deadlock-free.
Proposition 4.5.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two deadlock-free nets and N =
χP (N1, I, N2) be the result of their composition. Then N is deadlock-free if ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2) → p′ ∈ I :
Type(p1) ∩ Type(p2) = ∅.
Proof. Since ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2) → p′ ∈ I : Type(p1) ∩ Type(p2) = ∅, the reachability set of N is givenas
R (N) ⊆ {m|m = extP1−IP−args(IP ), P (m1|args(IP )) + extP2−IP−args(IP ), P (m2|args(IP )), mi ∈ R (Ni),
∀p ∈ IP : m(p) ∈ comb(p1, p2), (p1, p2) ∈ args(IP ), p1 ∈ P1, p2 ∈ P2},

where
args(IP ) = {(p1, p2)|(p1, p2)→ p′ ∈ I, p′ ∈ IP}
comb(p1, p2) = {extType(p1),Type(p1)∪Type(p2)(m1(p1)) + extType(p2),Type(p1)∪Type(p2)(m2(p2))|mi ∈ R (Ni)}.As far as we consider R (N) this is the same situation as in proposition 4.2, i.e. the subnets N1 and N2 behave likeseparate nets. It is straightforward that whenever ∃t ∈ Ti that is enabled in Ni for some m, i ∈ {1, 2} then t is enabledin N . As N1, N2 are by assumption both deadlock-free thus ∀m ∈ R (Ni)∃t ∈ Ti : t is enabled in m, N is neccessarilydeadlock-free as well.

4.3. Liveness
Definition 4.3.Liveness. Transition t is live (L(t)) iff ∀m ∈ R (N)∃σ ∈ T ∗ : m(σ ) ∧ σ (t) ≥ 1. Petri net is live iff ∀t ∈ T : L(t).
In the definition T ∗ is Kleene’s closure over the set of transitions T, m(σ ) is valid transition sequence from marking mand σ (t) is number of occurrences of t in transition sequence σ .
As in the case of preserving boundedness and deadlock freedom, χC , not surprisingly, does not preserve liveness ingeneral for C ∈ {T ,PT}.
Proposition 4.6.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two live nets. Then N = χC (N1, I, N2)
may not be necessarily live, i.e. χC does not preserve liveness for C ∈ {T ,PT}.
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Figure 8. Source live nets for χT , χPT .

Proof. The proof is constructed for each case separately.
1. χTLet us prove the proposition using a small example. Consider the two live low level nets depicted in Fig. 8 andconstruct N = χT (N1, I, N2) with I = {(t1, t′1) → {tt1}, (t2, t′2) → {tt2}}, IT = {tt1, tt2}. Obviously the resultingnet N is not live since it is deadlocked and cannot fire tt1 nor tt2 from its initial marking. It is easy to findequivalent high level nets.
2. χPTAs χT does not preserve liveness, neither does χPT . The proof is again trivial and it is sufficient to construct
N = χT (N1, I, N2) with I = {(p1, p′1) → {pp1}, (t1, t′1) → {tt1}, (t2, t′2) → {tt2}}, IPT = {pp1, tt1, tt2} from thesource nets depicted in Fig. 8. By this construction we obtained a deadlocked net N since it cannot fire tt1 nor
tt2 from its initial marking. A high level net example can be easily found.

Although χT , χPT do not preserve liveness in general, we can define a restricted version of the χP , which does.
Proposition 4.7.
Let Ni = (NGi, Sigi, Vi, Hi, Typei, ANi, m0i) ∈ HLPN(G), i ∈ {1, 2} be two live nets and N = χP (N1, I, N2) be
the result of their composition. Then N is live if ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2)→ p′ ∈ I : Type(p1) ∩ Type(p2) = ∅.
Proof. As far as we consider R (N) this is the same situation as in proposition 4.2, proposition 4.5, i.e. the subnets
N1 and N2 behave like separate nets after composition without affecting each other during execution.Thus we remind that since ∀(p1 ∈ P1, p2 ∈ P2) : (p1, p2)→ p′ ∈ I : Type(p1)∩ Type(p2) = ∅, the reachability set of Nis given as
R (N) ⊆ {m|m = extP1−IP−args(IP ), P (m1|args(IP )) + extP2−IP−args(IP ), P (m2|args(IP )), mi ∈ R (Ni),
∀p ∈ IP : m(p) ∈ comb(p1, p2), (p1, p2) ∈ args(IP ), p1 ∈ P1, p2 ∈ P2},

where
args(IP ) = {(p1, p2)|(p1, p2)→ p′ ∈ I, p′ ∈ IP}
comb(p1, p2) = {extType(p1),Type(p1)∪Type(p2)(m1(p1)) + extType(p2),Type(p1)∪Type(p2)(m2(p2))|mi ∈ R (Ni)}.Due to the specific nature of composition it is obvious that whenever ∃t ∈ Ti that is enabled in Ni for some m, i ∈ {1, 2}then t is enabled in N . As N1, N2 are by assumption both live thus ∀t ∈ Ti∀m ∈ R (Ni)∃σ ∈ T ∗ : m(σ )∧ σ (t) ≥ 1, N isneccessarily live as well.
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5. Composition in de/compositional analysis
So far we have defined a compositional mechanism and analysed its properties from general point of view. However,in practise composition is only a part of de/compositional analysis of nets performed after previous decomposition andanalysis of the resulting subnets.Let δC : HLPN(G) × I → HLPN(G)2 be a function decomposing a net through the interface I ⊆ P ∪ T duplicatingelements i ∈ I in each subnet. Index C has the same meaning as in the case of composition. We are not deeplyinterested in δC ; it is sufficient to assume that such a function exists [13].The compositional mechanism as introduced preserves any property of the analysed Petri net in de/compositional analysisunder some conditions stated in the following proposition.
Proposition 5.1.
Let N = (NG, Sig, V , H, Type, AN, m0) ∈ HLPN(G), ∃δC (N, I) = (N1, N2) such that no type of any place is affected
and N,N1, N2 have a property π, i.e. δC preserves the property π. Let IC = {(i, i)→ i|i ∈ I}. Then N ′ = χC (N1, IC , N2)
has the property π iff ∀p ∈ I ∩P : m′0(p) = m0(p), ∀t ∈ I ∩ T∀α : Val′α (TC ′(t)) = Valα (TC (t)), ∀f ∈ {(x, y)|x ∈ I ∨ y ∈
I} ∩ F : Val′α (A′(f )) = Valα (A(f )) .

Proof. Trivial. From the definitions of χC for C ∈ {P, T , PT} and construction of IC in the proposition it directlyfollows that NG′ = NG,Sig′ = Sig, V ′ = V ,H ′ = H, Type′ = Type. Considering χC together with our requirementthat ∀p ∈ I ∩ P : m′0(p) = m0(p) gives m′0 = m0. The definitions of χC with the requirements that ∀t ∈ I ∩ T∀α :
Val′α (TC ′(t)) = Valα (TC (t)), ∀f ∈ {(x, y)|x ∈ I ∨y ∈ I} : Val′α (A′(f )) = Valα (A(f )) lead to equal operational semanticsand the same reachability set, thus R (N ′) = R (N). Since the static structure of N and N ′ is the same except the terms(arc expressions and transition conditions) possibly affected by decomposition and evaluation of such terms is the samein the both nets leading to the same reachability sets and considering the fact that each property depends on staticstructure and semantics of the nets we may conclude that if N has a property π =⇒ N ′ has the same property.
Remark 5.1.If we admit that in de/compositional analysis decomposing a net may lead to changes of the terms of the respectivetransitions and arcs between places/transitions from the de/compositional interface and those outside the interface,backward composition may be a bit different than that introduced in the definitions of χC . Namely the difference is givenby the requirements in the proposition. It is not important to obtain the same terms after backward composition buttheir evaluation with the same bindings of variables must be the same in the original net and the resulting net after thecomposition. The usage of χC in de/compositional analysis must take into account the requirements therefore creating
TC ′(t), m′0(p) and A′(f ) for each t ∈ I and f = {(x, y)|x ∈ I ∨ y ∈ I} may be different with respect to the requirements.In practise decomposition of a net leading to the necessity of modifying any terms is a very rare case. Thus thecompositional approach χC may be used without any or with minimal changes. The proposition demonstrates its validusage in de/compositional analysis.
6. Conclusion
The paper is divided into two main parts. In the first part composition of the chosen HLPN class defined according tothe international standard is considered. The class covers three main HLPN classes - predicate/transition nets, colorednets and algebraic nets. The approach used comes out from general principles of composition used for low level PNin terms of joining relevant places and/or transitions. Other approaches are possible such as composition using specialcompositional operators but the aim of the paper is to study the extended high level version of composition for the chosenHLPN class without any extensions needed.Since (HL)PN are bipartite graphs in their graphical form, composition in our approach is defined as place, transition orplace-transition junction. The places/transitions form the interface of composition and we considered only the minimalinterface in each case believing that the respective extension to more elements is clear enough from the sketched approach.In the case of place composition type safe and composition of places of different types are considered separately becauseof the natural feature of HLPN - types of places. Type safe composition combines places of the same type or may beused when the type of one place is a subtype of the second. Place and transition compositions are special cases of moregeneral place-transition composition.In the second main part of the paper we study the properties of the composition mechanism introduced, namely preservingboundedness, liveness and deadlock freedom. It turns out that the approach is very benevolent and in general it does not
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preserve any of the desired PN characteristics. This fact is for the sake of simplicity proven using very simple examplesinstead of technical proofs. A restricted version of the compositional operator is defined in order to ensure the propertiesto be preserved. It is shown in the proofs of the corresponding propositions that boundedness, liveness and deadlockfreedom are kept using this restricted operator. Subsequently usability of the composition mechanism in the process ofde/compositional analysis is considered.
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