/
Cent. Eur. J. Comp. Sci. * 2(3) « 2012 « 261-271 VERSITA
DOI: 10.2478/s13537-012-0016-6

Central European Journal of Computer Science

On building an object-oriented parallel
virtual reality system

Research Article

Branislav Sobota*, Stefan Koreéko?, Franti§ek Hrozek?*

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of KoSice,

Letnd 9, 041 20 Kosice, Slovakia

Received 10 February 2012; accepted 17 August 2012

Abstract: The paper deals with an issue of a design, development and implementation of a fully immersive virtual reality
(VR) system and corresponding virtual worlds, specified in an object—oriented fashion. A virtual world object
structure, reflecting a division of VR system into subsystems with respect to affected senses, is introduced. It also
discusses virtual worlds building process, utilizing the software development technique of stepwise refinement,
and possibilities of parallel processing in VR systems. The final part describes a VR system that has been
implemented at the home institution of the authors according to some of the ideas presented here.

Keywords: virtual reality « virtual object « stepwise refinement « parallel computing
© Versita Sp. z o.o.

1. Introduction

A Virtual reality (VR) system represents an interactive computer system that is able to create an illusion of physical
presence in places in an imaginary world or in the real one. It can be also seen as a tool providing a perfect simulation
within the environment of tightly coupled human—computer interaction [8]. VR systems are improving to provide more
immersive experiences and they are becoming more interactive. On the other hand the complexity of their implementation
and their hardware requirements are rising significantly. The VR system can be divided to subsystems with respect to
senses affected [8]: Visualization subsystem, Acoustic subsystem, Kinematic (and statokinetic) subsystem, Subsystems
of touch and feel and other senses (e.g. smell, taste, sensibility to pheromones, or pain). Of course, not all of these are
included in a typical VR system. Some are omitted because the related senses have only limited impact on people’s
everyday experience. Others have their importance, but we can question the possibility of their implementation in virtual
reality. Taste belongs to such senses, so we do not expect a virtual food to come into existence in a nearby future. From

* E-mail: branislav.sobota@tuke.sk
t E-mail: stefan.korecko@tuke.sk (Corresponding author)
* E-mail: frantisek.hrozek@tuke.sk

261

On building an object-oriented parallel virtual reality system

262

the point of view of VR systems design and implementation, it is necessary to think about some of the above mentioned
subsystems, at least about the visualization, acoustic and kinematic and statokinetic.

VR systems provide virtual worlds that consist of a number of objects with defined properties, appearance, relations,
behaviour and so on. To specify these worlds various description and scripting languages are used [2, 8, 14]. Description
languages, such as VRML (23], Open Inventor [17, 18] or X3D [24], are similar in their nature to HTML or XML.
Scripting languages are used to describe dynamic (behavioural) aspects of the worlds and usually belong to a group
of interpreted languages. This means that a script is “executed” directly from a source code in most cases. To boost
the performance the scripts are sometimes executed from a pre—compiled code and some VR systems even allow to use
compiled languages such as C++ or C#. The interpreted scripts are usually referred to as “soft—coded” [1] to distinguish
them from “hard—coded” compiled parts of the VR system itself. Many scripting languages are used for virtual reality
nowadays, for example RUBY [20], PYTHON [19] or LUA [16]. Because of the high price of some specialised VR
equipment the recently available VR systems, or graphics engines, usually limit themselves to classical input (keyboard,
mouse, gamepad, joystick) and output (display) devices and are optimised to run on a single machine. Many of them are
supplied with sophisticated world editors with built-in support for scripting (Unity 3 [22]) and some of them are built
around existing editors (Blender [15]).

The next two sections of the paper present our ideas on the design, development and implementation of a fully immersive
virtual reality system and corresponding virtual worlds. Section 2 focuses on an overall architecture of the system
that is composed from subsystems mentioned above and on a process for building virtual worlds. Parallel computing
possibilities for the system are discussed in Section 3. Section 4 describes the implementation of a VR system developed
at Technical University of KoSice (KoSice, Slovakia) that obeys some of the principles described in this paper. The paper
concludes with a few words about the actual and intended utilization of the implemented system and goals for future
research and development.

2. Virtual world building process

A VR system is usually designed to host various virtual worlds. While the appearance and purpose of these worlds
may vary significantly, they all have to follow the same strictly defined structural rules, which are, at least partly, given
by the used description and scripting languages. The reverse is also true: We can have two virtual worlds similar in
appearance and purpose implemented in different VR systems. A definition of virtual world’s architecture greatly affects
possibilities of the VR system, e.g. how it can be modularised or optimised for parallel processing. In general, the
process of virtual world building can be seen as consisting of the following tasks:

1. Definition of virtual world objects (VR objects) and data that will be received from an input or shared among
the objects. This task includes determining how the input data will be stored in the objects, what properties are
important for individual subsystems of the VR system and what other information the object should contain. We
can also specify what operations will be available for the objects or how they will interact.

2. Implementation of the VR objects and operations on them by means of a stepwise refinement. The properties and
methods of a VR object can be divided into two groups:

e Properties (variables, constants) and methods related to sensory information received from the object, i.e. to
its representation in the VR system (appearance, sounds, etc.). The process of their creation mostly consists
of modelling in appropriate editors rather than programming.

e Properties and methods defining object behaviour (often referred to as “logic” or “Al”). The methods define

what can be done with the object, how it reacts to a given situation and how it interacts with other objects.
They can call underlying representation methods.

Usually it is good to keep these two groups separated, to allow more freedom in a VR system choice.

3. Adjustment for parallel processing.

The third task is not mandatory but when it is required, it should be accomplished together with the first two ones. An
issue of interaction level between an observer and the virtual environment is of great importance. From our point of view
the most interesting type of VR system is the Dynamic Environment Dynamic Observer (DEDO) as we intend to use a
fully immersive VR model. For the sake of simplicity we consider just one observer.

Branislav Sobota, Stefan Koregko, Frantidek Hrozek

.
2.1. Specification of data and virtual world structure

Because we deal with fully interactive systems, it is necessary to acquire information about the movement of a human (an
observer or his avatar) in the virtual world. These input data are acquired from the kinematic and statokinetic subsystem
that contain devices such as position trackers or data gloves. They include

e information concerning the position of all the rotational joints on the human body (position of head, hands,
individual finger phalanxes position, position of body, etc.) and

e information about observer view direction.

Some VR objects properties need to be shared. Such properties are acquired from global data of the objects (Fig. 2)
and provide information about

e the position or location of individual objects in the virtual world from the point of view of their interaction with
other objects or observers, and

e material features of the objects that have to be taken into consideration when dealing with interaction between
objects or between an object and the observer. This is primarily connected to the so called feedback, i.e. what
sort of sound should be generated for the given object after the interaction with another one, how it should be
deformed, etc.

The design of the virtual world representation is a non—trivial problem because it determines the implementation of the
VR system as well. We need the best possible implementation providing fast modification, visualization and information
retrieval [6, 12]. A possible structure is shown in Fig. 1. The Virtual World object is composed of and described by the
regular objects that will appear in the world, the special sensor objects and characteristic frames. Other attributes are

also included.

Metadata
. Regular
tz/rl:‘ar;i:%it Sensors list ob'egcltls list (non-graphic data:
) text, GPS,..)

v v
|map/terrain 1| | sensor 1 | >| object 1 |<r61‘”’.0”[‘1
I [/ [

relat;‘/onj,l

¥ ¥ ’ ¥ v
map/terrain i sensorj - object k [<elationnk | oniy
(o] L] [ogerich 74 [omya]

Figure 1. Virtual world elements.

While realisation of the virtual world is an implementation task, some related issues should be considered from the
very beginning of its development. Three—dimensional area modelling used in VR systems is not yet a well-researched
field [7]. The first question arising is whether to model the whole environment as one complex entity, including all the
details, or to create a less concrete model and postpone the details processing to a phase of actualization [9]. Another
important question is about the way models are design. There are several alternatives:

e the use of existing concept material,
e the creation of a model from new data and
e a combination of the previous two alternatives.

The problem of the first alternative lies in the questionable actuality of the existing data, which are often outdated and
therefore their quality might not meet today's standards. Errors can be included in the representation as well. The
second alternative does not suffer from these problems, but it is much more expensive. There are technologies that allow

263

On building an object-oriented parallel virtual reality system

264

for the acquisition of a lot of actual data quite quickly, such as laser scanning of large areas, but their price is very high.
Because it is also necessary to integrate non—graphical data into the VR system, the combination of the methods is the
most effective and feasible option. Besides mentioned scan techniques, terrain can also be modelled using polygons.
Surface textures are also applicable for modelling terrain. Another good approach is the use of geodetic surface maps
(in the form of height maps where vertical coordinates are represented by different colours), which allows automatic
surface model generation. Textures are applicable in this case as well.

Sensors are objects used with collision detection and they are useful in the case of interactive or automated presentations
of the virtual reality (VR) scenarios. Events on sensors are of two kinds:

e Stop an actual movement if collision occurs
e Change the movement direction if collision occurs
The use cases of sensor objects are:
e Prevent a camera from moving through VR objects
e Display non—graphical information about the VR object when entering its checked area

The collision detection is executed on the scene objects (reqgular and sensor objects) and the camera, which is represented
as a sphere object. Depending on the kind of the object in collision, the VR system stops the camera and/or displays
additional information related to the selected reqular or sensor object. In general, we do not have to assign a sensor to
each regular object, and the system also might have more types of sensors implemented. The types of the sensors are
as follows:

e Vertical sensor polygon — used for detection of manual object selection in the case that appropriate tools (e.g.
mouse or data gloves) are used.

e Horizontal sensor polygon — for camera position detection. The camera status is set to active when collision
between the camera and other object occurs.

e Point-of-view sensor — the sensor status is active if the object is inside the view frustum and it is the closest one
to the camera (observer).

2.2. Virtual world as object-oriented system

The whole virtual world can be defined as a strictly object—oriented system. This means that everything that exists in
the world is an object (maps, buildings, sensors etc.). Even the VR system itself can be defined as an object which
contains other objects. In terms of such definition it is possible to use the features of inheritance, encapsulation and
polymorphism. In Fig. 2 a structure of objects, reflecting the division of properties and methods into two groups and the
VR system composition, is shown.

The higher position of the behaviour block is given by a development process, described in the next section. The
representation block is divided to frames, according to the basic subsystems of VR system. Each of these frames
contains internal information invisible for other frames. Some of the object properties are necessary for each of these
frames and for the logic part, so they are shared as global data. A portion of the global data is also accessible by other
objects.

Virtual object implementation naturally implies parallel problem solution by means of computer with parallel architecture.
However, the problem concerning data structures creation is very extensive. Its optimization is of great importance. It is
obvious when we consider that the whole system consists of great number of objects and each of these objects must be
defined in terms of its shape and visual features, mechanical features, sound features and time characteristics.

2.3. Development of virtual worlds by means of stepwise refinement

To cope with the extensive problem of designing and implementing the data structures and operations (i.e. classes)
for VR objects we propose to adapt the well-known software engineering technique of stepwise refinement, introduced
by Niklaus Wirth [13]. The technique should be used in such a way that after preparing an initial specification of

Branislav Sobota, Stefan Kore&ko, Franti§ek Hrozek

(_ Logic |

behaviour

v AW
. other frames | [Visualization frame] [Acoustic frame] [Kinematic frame]

Colour Deformation of
Ontical features the object

internal data
internal data

<

Sound of the object

Reflected sound
of the object

Interactional sound

Taste of the object :
i Sense of touch :

internal data

internal data

representation
N

{ Location of the object o
i Material of the object

{ Dimensions and shape of the object i global data

i, Time characteristic of the object ...}

Figure 2. Virtual world object structure.

Person Bed
Name Dimensions
Walk can Tic in Make specification
Lie down —— = Become occupied
Person Bed
VR system—independent
. o . implementation
Lie down M> Become occupied
VR system—specific impl. 1 VR system—specific impl. 2
Person Bed Person Bed
Lie down _canliein __ Become occupied Lie down _canliein __ Become occupied
) <) <) <)
vis. acc. vis. acc. vis. acc. vis. acc.

Figure 3. Example of stepwise refinement.

the world, the developers focus on representation—independent behavioural aspects of the objects. When the world’s
behaviour is implemented suitably, properties, methods and other resources for the individual frames of the VR system
are added. Of course, the process is not always straightforward and sometimes facts revealed in the later phases require
a re-implementation of parts already done.

The whole idea is illustrated in Fig. 3, which depicts a three—step refinement of objects Person and Bed. Both objects
may have many properties and methods, but here we deal only with one of relations between them, the one described
by an association “A person can lie down in bed”. In the first step an abstract specification is created. The specification
can have a diagrammatical form (e.g. UML diagrams) and should name all the important properties and methods.
In our objects the relation “can lie in” materializes into methods Lie down and Become occupied. Some description
of the properties and methods is also required. It can be informal, written in a natural language or formal, written

265

On building an object-oriented parallel virtual reality system

266

in a description language with fixed semantics. The second option is preferred as it allows some automation of the
refinement process and verification of the specification against requirements. We can also define a set of operators for
basic operations on the objects. For example, we can have an operator “><” for merging of objects and define what
happens when a person lies down in bed by an expression “person 1 bed = occupiedBed”. The specification is
refined to a VR system-independent implementation in the second step. Here concrete data types are associated to the
object variables and constants and methods contain code defining the corresponding behaviour. The code of Lie down
method can, for example, define that the pulse of the person is decreased, his position changed to horizontal and there is
a higher probability to fall asleep. The code is represented by white sheets of paper in Fig. 3. For debugging purposes
the objects can also have some visual representation.

Finally, in the third step a specific implementation for a given VR system is developed. As it was already mentioned,
this includes many “non—coding” tasks such as creation of 3D models of the objects or recording sounds for them. The
code and resources created here will be used as a representation of the object and its behaviour by the subsystems
of the VR system. They should be kept separated from the VR system-independent parts to allow an easy change of
the system itself. The independent parts are also extended in this step — at least it is needed to define how they will
communicate with the newly added ones. We can have several specific implementations for a single independent one.
They can differ in the VR system used or in the way how some processes are implemented. This can be also seen in
Fig. 3, where we have two implementations. Both of them use recorded sounds to represent a process of lying down in
the acoustic subsystem (acc.). But they differ in the implementation for the visualisation subsystem (vis.).

e The first implementation computes an exact move of the human body for the Person object according to its properties
and corresponding equations. Similarly a deformation and how a blanket will cover the lying person is computed
for the Bed object. The code of these computations is represented by gray sheets of paper in Fig. 3.

e The second implementation uses an animation prepared before to represent the process visually.

The first implementation will provide more convincing visualisation of the process and the second will be less resource—
demanding. We can also combine these approaches, for example in the form of selecting from several prepared animations
on the basis of a simple computation. Implementations can also differ in complexity of computations or used resources.

3. VR objects parallel processing

To fulfil the aforementioned requirement for the fast implementation a parallel processing of virtual worlds has to be
utilised. The levels of parallelism can be as follows [8]:

e parallelism on the level of virtual realities — parallel processing of more virtual worlds,

parallelism on the level of subsystems — parallel processing of individual VR system subsystems such as visual-
ization, kinematic and acoustic,

parallelism on the objects level — parallel processing of individual VR world objects,
e frames level parallelism — parallel processing of individual object frames,
e algorithms level parallelism — e.g. parallel computing in individual frames.

Thus, according to these levels we can graduate granularity of parallelism, from coarse—grained (VR realities level) to
fine—grained (algorithms level).

Parallelization on the virtual realities level and subsystems level is trivial. The objects level parallelism is achievable
thanks to the fact that objects in VR system are relatively independent. So each object can be processed in an
independent branch. The graph in Fig. 4 shows one of possible parallel solutions. In this highly parallel system it
is possible to make the initialisation of VR world with N objects and processing of the individual VR objects parallel.
Parallelization can be also made on the basis of other “objects” that occur in the VR system, for example collisions. This
is illustrated in Fig. 5 where each of M collisions is processed in parallel.

For parallelism on the frames level it is obvious that the possibility of its parallel implementation relies on properties
of individual frames. Nevertheless, some level of parallelism is available for each of them. An example of using parallel
processing for the kinematic frame is:

Branislav Sobota, Stefan Koregko, Frantidek Hrozek

| VR world initialization |

\

Object 1 Object 2 Object N
initialization initialization initialization

.

Collision situations establishment and
solving in VR world

. . . . A “

Kinematic frame Visualization frame Acoustic frame i other frames :
processing processing processing i processing

J : ;

Figure 4. Parallel implementation of virtual objects and their frames.

[Collision situations establishment and solving in VR world]

P v T~

[Collision 1 solving] [Collision M solving]

-
Gathering and re-distribution of information
about solution of collision among VR objects

Figure 5. Parallel computing of “Collision situations establishment and solving in VR world” block.

e object information input (position, time, etc.),
e parallel computing of new object position (parallel matrix computing) and
e writing of new parameters into internal or global variables of the object.

The whole virtual world processing in a VR system that utilizes object and frames level parallelism is shown in Fig. 6.
It is difficult to deal with the algorithms level in general as individual algorithms differ significantly.

4. Parallel VR system implementation

The virtual world structure and parallel processing described in the previous sections have been partially implemented
in the VR system developed at the home institution of the authors. The system uses up-to-date VR hardware, such
as a large-screen stereoscopic rear projection system, 42" Philips WOWvx autostereoscopic 3D display, Intersense
I1S900 ultrasonic tracking system, nVisor ST data helmet with see-through displays and DG5 VHand 2.0 data gloves.
The software of the system runs on a computer cluster where the subsystem level parallelism and a parallelism within
subsystems is utilized: one node serves as a master that controls the whole computation. It also serves as the acoustic
subsystem. Two nodes (computers) are used for the visualization subsystem; each computes one part of the stereoscopic
image. The fourth node runs the kinematic subsystem, which processes data from the tracking system. The kinematic
subsystem is able to process data from 7 independent tracking inputs in parallel.

The most advanced and complex part of the VR system is its visualization subsystem, which we would like to present
in more detail. The subsystem works in real-time and is based on the OpenSceneGraph [4, 5] 3D graphics toolkit. 3D
scenes are represented using a scene graph data structure provided by the toolkit. Python and Ruby interpreters have
been adapted for the system [11] to allow soft—coding (scripting). The system supports two stereoscopic visualization
methods, the first one computes left and right image for passive stereoscopy on the rear projection system and the second
one produces 3D images in the 2D-plus-depth format for Philips WOWvx display. To maintain a constant frame rate

267

On building an object-oriented parallel virtual reality system

268

[VR world initialization |

Object 1 Object 2 Object N
initialization initialization initialization

Collisions establishment and solving in VR
world

Collision 1 solving] [Collision M solving] [Situation without collision]
\ ‘
Gathering and re-distribution of information
about solution of collision among VR objects

ik\;
Object 1 processing : [Object N processing]

(Receiving object data for f Receiving object data for Receiving object data for Receiving object data for
kinematic frame visualization frame acoustic frame other frames
(e.g. position) \(e,g. position, colour, lighting) k(e,g position, material, collision) (e.g. smell, taste)

léél(léélvléelvle;l
(Processing/computation \(Processing/computation Processing/computation Processing/computation

(e.g. parallel computing of new | | (e.g. computing of new object | [(.g. computing of new sounds | { (e.g. computing of new features

position of the object) color or shadows by raytracing) of object or collision) of object)
N\ J \ J "

[

-

¥) .

fAssigning computed values) [Drawing the object h (Playing sound of the object\ i Assigning values to object
to internal or global (e.g. geometry, colours, or of an associated collision [{ variables or application of

variables of the object materials, shadows) (e.g. by using sound card) object features

\ (e.g. position) JAR JAN) (e.g. by.:using special output devices?:

Figure 6. Global structure of parallel computing in VR system.

the subsystem also implements some optimization techniques, such as an omission of invisible objects from rendering. It
can render 2 times 3 million triangles and complexity of models can be up to 10 million points in 3D space. For a better
management of the virtual objects in the scene, references to the objects are stored in a dedicated array and unique
identification numbers are used to recognize objects needed. All other subsystems can get the desired object just by
calling the proper getter method of the visualizing subsystem with the object identification number as a parameter.

A scene saving and loading subsystem is also an essential part of the subsystem. Several methods can be used to save
the virtual scene to disk. The first and the simplest one is saving the scene as one large three dimensional graphic
model directly from some editing software such as Google SketchUp [21] or Blender [15]. The second method is to use
an internal binary structure to hold the scene information data. Loading and saving the scene in its own binary format is
probably the fastest method. The text formats, like XML can also be used. In our implementation a text format has been
chosen to save the scene data. To be more precise, the scripting language of the VR system is used as the text format
that holds the virtual scene data. With this method, the user can save and load the scene from the disk and also edit
the saved scene and insert some dynamic parts into it [11]. These parts include animating object movement, animating
camera movement, playing sounds, music, setting a skybox and so on.

To increase the feel of being a part of the virtual scene, moving objects can be added. There can be cars moving around
or airplanes flying above the terrain. In our system an object movement module is soft-coded in Python and provides two
implementations that differ in the way how the object movement trajectory is computed. In the first method the trajectory
(path) is defined by a set of fixed points, in the second it is computed by some known algorithm, such as Bezier. The
path is then used to compute the object position for each picture frame. Code illustrating a use of the first method for a
car movement visualisation is

Branislav Sobota, Stefan Kore&ko, Frantiek Hrozek

ITRTRL)
nnn

Figure 7. Example: animated car on road.

timeForCar = 20; height = 8.0; s = 3.0;

car = gis.CreateModel(”data/models/offroadcar.osg”);

gis.SetModelScale(car, s, s, s);

road = gis.CreateAnimPath();

road (path) construction
gis.AddAnimPathPoint(road,0.0*timeForCar,5067.496,height,-194.935,1.57,0.0, 0.0,s,s,s);
gis.AddAnimPathPoint(road,0.4*timeForCar,4238.538,height,-107.304,1.57,0.0, 0.0,s,s,s);
gis.AddAnimPathPoint(road, 1.0*timeForCar,166.176,height,-139.565,1.57,0.0, 0.0,s,s,s);

road (path) assign to the model

gis.SetModelAnimPath(car,road);

and a code for the second method is:

s =3.0;

car = gis.CreateModel(”data/models/offroadcar.osg”);

gis.SetModelScale(car, s, s, s);

road (path) properties

numPaths = 100; duration = 30; radius = 2000;

cl = gis.CreateAnimPath();

road (path) construction

for i in range(0, numPaths):

fac = float(i)/float(numPaths);
gis.AddAnimPathPoint(cl,fac*duration,(math.sin(fac*3.14159*2.0)*radius)
+1988,400.0,(math.cos(fac*3.14159%2.0)*radius)-2431,(fac*3.14159%2.0)
+1.57,0.0, -1.57, s, s, 8);

road (path) assign to the model

gis.SetModelAnimPath(car, cl);

Visualisation results are shown in Fig. 7 and in Fig. 8 a part of our VR setting with the large—screen projection system
and a user wearing the data gloves and nVisor ST helmet can be seen.

269

On building an object-oriented parallel virtual reality system

270

Figure 8. User working with VR system through interaction with virtual world (DCI FEEI TU Kosice).

5. Conclusion

In this paper we introduced a virtual worlds building process that adapts stepwise refinement development, and a virtual
world object structure that reflects a division of a VR system into subsystems. We also discussed parallel computing
possibilities in the system and presented the VR system that partially implements the described structure and parallel
processing strategies. This VR system is still under development (fourth generation) and primarily provides an immersive
stereoscopic visualization of complex virtual scenes and worlds. Some of the already implemented worlds are a part of the
Kosice city and several historical buildings from other locations such as Spis castle [10]. In addition the visualisation the
system also provides some information about the objects represented, so it can be used as a fully immersive interactive
information system working in real time. The system will also be used for interactive presentations of various products
and projects, for example from the areas of engineering and construction. We also intend to use the system for simulation
and visualisation of devices that are not available in their real form but are important for teaching purposes, especially
in some specific subjects such as formal methods. Another rather exotic use of the system is as a training environment
for robots. The system can be compared with other VR systems, most notably with VRECKO [3], that uses the same
basic technology (OpenSceneGraph), and has some similar goals but utilizes different hardware and thus, implements
different algorithms.

High hardware requirements of the stereoscopic visualisation were the primary motivation for the parallelisation. In the
current version of the system the parallel processing is mostly implemented at the subsystem level. Further paralleli-
sation, including an utilisation of the GPGPU technology, is one of the primary goals for the future development of the
system. Another important goal is an implementation of a support for the stepwise refinement development process. This
can lead to an extension of some of existing VR scene formats, such as VRML or X3D, that will include more dynamic
properties. The process can be also helpful for the games design and development where it can simplify the development
of multiplatform games.

Acknowledgment

This work has been supported by KEGA grant project No. 050TUKE-4/2012: “Application of Virtual Reality Technologies
in Teaching Formal Methods”".

Branislav Sobota, Stefan Koregko, Frantidek Hrozek

References

[1] Bartle RA., Designing Virtual Worlds, New Riders Pub., 768, 2003
[2] Dietrich A., Gobbetti E., Yoon S~-E., Massive-Model Rendering Techniques: A Tutorial, IEEE Comput. Graph., 27,
20-34, 2007
[3] Flasar J., Pokluda L., Oslejsek R. Koltarek P, Sochor J.,, VRECKO: Virtual Reality Framework, In: Theory and
Practice of Computer Graphics 2005 (Canterbury, United Kingdom), Eurographics Association, 203-208, 2005
[4] Kuehne B., Martz P., OpenSceneGraph Reference Manual ver. 2.2, In: Skew Matrix Software and Blue Newt
Software, 2007
[5] Martz P., OpenSceneGraph Quick Start Guide, In: Skew Matrix Software, 2007
[6] Sobota, B., Straka, M., Sobotov4, D., 3D interface of an information system, In: Informatics and information tech-
nology (1&1T°'04) (Banské Bystrica, Slovakia), 52-56, 2004 (in Slovak)
[7] Sobota B., Straka M., Hlinka F., Perh&¢ J., Parallel processing of visualization of 3D virtual map project, In: Modelling
and Simulation in Management, Informatics and Control (MOSMIC 2007) (Zilina, Slovakia), 9-14, 2007
[8] Sobota, B., Perha¢, J., Straka, M., Szabé, Cs., Applications of parallel, distributed and network computer systems
for solving of computational processes in an area of large graphical data volumes processing, elfa KoSice, Slovakia,
2009 (in Slovak)
[9] Sobota, B., Perha¢, J., Petz, I., Surface modeling in 3D city information system,] Comp. Sci. Contr. Syst., 2, 53-56,
2009
[10] Sobota B., Koretko S., Perhat ., 3D Modeling and Visualization of Historic Buildings as Cultural Heritage Preser-
vation, In: Tenth International Conference on Informatics, Informatics 2009 (Her[ang, Slovakia), 94-98, 2009
[11] Sobota B., Control of Large Graphics Data Set Visualization Using Script Language, Acta. Electron. Inform., 11,
33-36, 2011
[12] Vokorokos L., Perhdt J., Kleinova A., Parallel Computer System Utilization in Data Visualization, In: Informatics’
2007 (Bratislava, Slovakia), 89-92, 2007
[13] Wirth N., Program Development by Stepwise Refinement, Communications of the ACM, 14, 221-227, 1971
[14] Yangl X., Petriu D.C., Whalen T.E., Petriu E.M., Script Language for Avatar Animation in 3D Virtual Environ-
ments, In: VECIMS 2003 - International Symposium on Virtual Environments, Human Computer Interfaces, and
Measurement Systems (Lugana, Switzerland), 101-106, 2003
[15] Blender - official website, url: http://www.blender.org/ [cited May 2012]
[16] LUA - the programming language - official website, url: http://www.lua.org/ [cited May 2012]
[17] Openlnventor VSG impl. - official website, url: http://www.vsg3d.com/open-inventor/sdk [cited May 2012]
[18] Openlnventor SGI impl. - official website, url: http://oss.sgi.com/projects/inventor/ [cited May 2012]
[19] Python Programming Language - official website, url: http://www.python.org/ [cited May 2012]
[20] Ruby official website, url: http://www.ruby-lang.org/en/ [cited May 2012]
[21] SketchUp home page. url: www.sketchup.com [cited May 2012]
[22] UNITY 3 - official website, url: http://unity3d.com/ [cited May 2012]
[23] VRML - Virtual Reality Modeling Language - http://www.w3.org/MarkUp/VRML/ [cited May 2012]
[24] X3D - official website, url: http://www.web3d.org/x3d/ [cited May 2012]

=

	Introduction
	Virtual world building process
	VR objects parallel processing
	Parallel VR system implementation
	Conclusion
	Acknowledgment
	References

