
Cent. Eur. J. Comp. Sci. • 2(3) • 2012 • 283-299
DOI: 10.2478/s13537-012-0015-7

Central European Journal of Computer Science

Supporting multiple configuration sources using
abstraction

Research Article

Milan Nosáľ∗, Jaroslav Porubän†

Department of Computers and Informatics,
Faculty of Electrical Engineering and Informatics,
Technical University of Košice,
Letná 9, 042 00 Košice, Slovakia

Received 31 January 2012; accepted 17 August 2012

Abstract: Software engineers have long recognized the need to shift focus from developing systems to developing system
families. One way to develop software family is to develop configurable systems. A configuration (initial settings
of a program), written in application-specific language, can be expressed using many different formats, such as
XML, YAML, attribute-oriented programming, etc., each one having pros and cons. Often the target group of users
is too wide to meet their expectations by using only one format. This paper analyzes options that system providers
have in supporting multiple configuration languages or sources. An enhanced abstraction tool is chosen as the
best solution, and its architecture is briefly presented. The main contribution to the tool’s design is advocation of
the declarative representation of mapping of input languages to output format.

Keywords: configuration • multiple sources • configuration language • declarative approach to language mapping
© Versita Sp. z o.o.

1. Introduction
In the 1980’s software engineers started to move from developing software systems to developing system families [3,5]. Configuration became the first tool in this movement. In this paper we use the term configuration to mean theinitial settings of a computer program, written in an application-specific language. This application-specific language(configuration language) is interpreted in deployment time. Using configuration in software systems allows configurablesystem to be modeled, customized or personalized to conform to specific requirements of customer or to be adapted tospecial circumstances or environment [2].On the side of the system’s provider, utilizing configuration brings advantages in a form of satisfying more clients,strengthening competitive advantages, providing more flexibility, robustness, quality and transparency in system. A sys-tem’s ability to evolve is crucial to the user of a system, and therefore to its provider, too (e.g., his income may dependson his user’s satisfaction) [1].
∗ E-mail: milan.nosal@tuke.sk (Corresponding author)
† E-mail: jaroslav.poruban@tuke.sk

283



Supporting multiple configuration sources using abstraction

On the other side stands the user, who wants to customize the system to meet her or his goals, preferences, abilitiesand skills the best [4]. This way a configurable system can be generic enough (the system is customizable) but stillsatisfying users’ individuality and raising effectivity of their work (the system can be customized in a way the userwants) [6]. Also, using a configurable system instead of a custom one means spending less money, because customizinga ready configurable system is usually cheaper than developing a new custom one (and also the evolution of such asystem is easier to manage) [5].As this speculation suggests, configuration is an important part of software development. This paper concerns possibilitiesin supporting multiple heterogenous configuration languages to increase a user’s satisfaction and this way possibly widenthe target group of users.The paper has following structure. Section 2 motivates our work. Section 3 analyses possible solutions to the problemwith regard to existing work and advocates a common abstraction of configuration sources as the best solution. Section 4introduces and advocates utilization of declarative definition of the language mapping. Section 5 presents designedarchitecture of the abstraction tool dealing with the issue presented in the paper. Section 6 introduces experimentalimplementation of the tool and states observed conclusions. Section 7 describes current state and future perspectivesin presented work. The paper concludes with the summarization of the work.
2. Motivation
A configuration structure is a set of configurations. This set defines what can be configured in a system family. A config-uration is a concrete member of a software system family. When implementing a configurable system, its author has todesign suitable configuration language for expressing concrete configurations of the system (we consider configurationlanguage an application-specific language interpreted in deployment time). A configuration as a concrete instance ofa configurable system is expressed as a sentence in a custom domain-specific language [7] (DSL), called configurationlanguage. In the same way the language matches the configuration structure, defining a set of all sentences that expresspossible configurations.In the design of the language a provider needs to consider many barriers and problems with adapting configurablesystems that are connected to the used format of the configuration language (for instance, ones presented in [3, 6]).There are not merely technical aspects to consider. Each user prefers a configuration language that best meets her orhis needs and taste.During the design process of the suitable configuration language, there are considered aspects as a simplicity of thelanguage, its verbosity and sententiousness, complexity of a configuration process, domain abstraction, etc. [3, 4]. Butuser’s preferences are based on subjective motives as well as on objective. It is easier to learn a new XML configurationlanguage than an annotation-based one, when you are familiar with XML but not with attribute-oriented programming(abbreviated @OP, it became very popular format for configuration languages [8, 11]). The wider the range of users, themore conflicts in requirements on a configuration language may occur.To encourage the user to utilize configuration, it is best to give him or her the option of expressing a concrete configurationin a language with which the user is most familiar. The most straightforward way to deal with the problem is to chooseone of the available formats (XML, YAML, INI, @OP, etc.) and to design a configuration language that best suits theneeds of potential users. But usually there is no format that would meet all important requirements and its drawbackwould be negligible.
2.1. Sample comparison of qualities of two configuration formats
As an example we can consider Java annotations and XML documents. In Fig. 1 there is listed a snippet of an annotation-based configuration of Java Persistence API. The equivalent partial configuration in XML is listed in Fig. 2. We can seethat the annotations are less verbose. XML needs both opening and closing tags and it duplicates names of source codeelements (classes, methods, etc.). Annotations are easier to write as they are located directly in the source code. Thisallows to configure simultaneously with programming. Configuration in annotations is tangled with sources, so it cannot be “lost” so easily (comparing to accidental deletion of a configuration file). On the other hand, XML centralizesconfiguration — the whole configuration can be read much easier than by inspecting source code. Another strongadvantage of XML documents is that changing a configuration file does not require a recompilation of the program

284



Milan Nosáľ, Jaroslav Porubän

(unlike changing annotations).
package pckg;

@Entity(name = "Person ")

@Table(name = "PERSON ")

public class Person {

@Id

@Column(name = "ID", length ="255")

private String id;

..

Figure 1. Snippet of annotation-based configuration of JPA.

<entity class ="pckg.Person" name=" Person">

<table name=" PERSON"/>

<attributes >

<id name="id">

<column name="ID" length ="255"/ >

</id >

...

</entity >

Figure 2. Equivalent snippet of XML-based configuration of JPA.

In Figures 1 and 2 we can find a one-to-one matching between an XML-based and an annotation-based configurationlanguage. Annotation @Entity is mapped to an XML element entity with attribute class referring to the anotatedclass. Property name of the @Entity annotation is mapped to the name attribute of the entity element. In the sameway the @Table annotation is mapped to the table element, that is a child to the entity element for correspondingannotated class. In the same manner as in case of the @Entity annotation we can see mapping of the name property tothe name attribute of the table element.The entity element has the attributes element that contains all attributes of the entity. In our example we can seethat class Person has a field id annotated with annotations @Id and @Column. The @Id annotation is mapped to the
id element in XML, its name attribute is referring to the annotated field – "id" is the name of the field. The @Columnannotation is mapped to the column element with corresponding attributes expressing the values of its properties.The same mapping could be found in languages’ definitions — XML Schema for XML language and annotation typesfor annotations. One can find even matches between default values for many XML attributes and annotation properties,like the length with the default value 255 in the case of the JPA configuration.For the sake of our simple example both XML and annotations code snippets described the same configuration. But itis important to state that we want to address pieces of information in multiple configurations that are not the same (orto be more precise, are not necessarily the same). We usually want data from one configuration to override the datafrom the others, but the pieces of information that are not stated in the first one to be supplemented from the others. Tomodel the situation in our example, if the XML language was prioritized but did not state the length of “id” column, wewould want to get that information from the secondary configuration in annotations.In general, we might want to take two totally different configuration languages (meaning their semantics do not intersect)and want them to be abstracted. In this case the output from abstraction would be a model that would carry informationfrom both configurations.

285



Supporting multiple configuration sources using abstraction

2.2. Suitability of configuration language for given configuration structure
There are also other aspects that complicate the decision for one configuration language. A configuration needed forlocalization of an application can be as trivial as listed in Fig. 3 (using .properties files format). This configuration isnot dependent on source code elements, and therefore it is not natural to define it through @OP. And imagine howcumbersome would be designing XML language for it (does not Fig. 3 feel more natural than Fig. 4?). Configurationstructure is sometimes so simple, that using XML is unnecessary complicated (of course, when hierarchy is needed,.properties are insufficient).
locale = en-gb

numberPrecision = 2

Figure 3. .properties localization configuration.

<local >

<locale >

en-gb

</locale >

<numberPrecision >

2

</numberPrecision >

</local >

Figure 4. XML-based localization configuration.

2.3. Summary
We came to the conclusion, that differences between available formats demand usage of multiple configuration languages.But implementing processing of more configuration languages requires more resources. The code that process configu-ration becomes larger, and its maintenance harder and error-prone (due to mixed processing of multiple configurationlanguages). There is also a negative impact on evolution of used configuration languages, because a change of languagesrequires changes in processing code.The situation can be summarized in the following two statements:

• 1 supported configuration language — higher risk of dissatisfied users.
• Multiple supported configuration languages — increased costs of implementation and maintenance of a system.

This reasoning brings up a question: How to support multiple configuration languages without a significant raise of
costs and decrease of processing code simplicity?

3. Analysis
Let’s suppose the system supports multiple configuration languages. Then it should be able to process configuration inany of supported languages. In other words, if the system supports for example INI files and XML documents, user mustbe able to freely choose between these two formats. A second, stronger requirement is the option of randomly mixingconfiguration languages. The complete configuration is expressed as composition of partial configurations expressed indifferent languages.These composition means that there might be two configurations, both in different languages, that would not even overlap,but joined together they must form complete configuration of a system. This means that there has to be some way to

286



Milan Nosáľ, Jaroslav Porubän

define a model of these languages that can be used to model any sentence in these languages and even to model theunion/intersection of these sentences. We will come back to this idea later later in section 4.1.So far, we can identify three solutions: Ad-hoc solutions, source transformations and common abstraction of configurationsources.
3.1. Ad-hoc solutions
As the title suggests, a provider needs to implement processing of all desired configuration languages. No dedicatedtool or framework is used. The concept of this solution is outlined in Fig. 5. Adding a new supported configurationlanguage is basically implementing a whole operation of processing configurations in a given language (the difficulty iscomparable to situation when the system supports only one configuration language). But the fact that the processingcode needs to be integrated into the existing configuration interface (processing code for other languages) makes theimplementation even more difficult. The code processing one language may interleave with the code for other languages,what results in worse maintenance implementation.

SystemSystemSystem

Data flow Configuration source/-s

Configuration

in XML

Processing XML

Configuration

in YAML

Processing YAML

Configuration

in INI

Processing INI

Configuration

using @OP

Processing attributes

Figure 5. Example of Ad-hoc solution with four configuration languages.

A clear advantage of this approach is having the ability to optimize code for performance.
3.1.1. Related workThis approach is the most common, but it is also the most inefficient. As it is implemented in a general-purpose language,it does not require working with new tool and developers are free to defining their own custom policy of mixing partialconfiguration into complete one. This approach can be recognized in many frameworks (e.g. Java Enterprise Edition,Microsoft Enterprise Library, GCore [9]), applications (Apache Tomcat), games (Fallout 2), and so on.
3.2. Source transformations
More elegant approach are source transformations. Instead of implementing processing for each configuration language,one processes merely one language. For the other languages compilers are provided (that can be considered dedicatedtools for translation) that translate configuration sources in unsupported languages to the supported one. The concept

287



Supporting multiple configuration sources using abstraction

is outlined in Fig. 6.
SystemSystemSystem

Configuration

in XML

Data flow Configuration source/-s

Configuration

in INI

MappingMapping

Compiler

INI -> XML

Compiler

INI -> XML

MappingMapping

Compiler

INI -> XML

Mapping
Compiler

INI -> XML

Mapping
CompilerCompilerCompilerCompiler

INI INI INI INI -> XML-> XML> XML> XML> XML> XML

Compiler

INI -> XML

Configuration

using @OP

Configuration

in YAML

MappingMapping

Compiler

YAML -> XML

Compiler

YAML -> XML

MappingMapping

Compiler

YAML -> XML

Mapping
Compiler

YAML -> XML

Mapping
CompilerCompilerCompilerCompiler

YAML YAML YAML YAML -> XML-> XML> XML> XML> XML> XML

Compiler

YAML -> XML

MappingMapping

Compiler

@OP -> XML

Compiler

@OP -> XML

MappingMapping

Compiler

@OP -> XML

Mapping

@OP @OP @OP 

Compiler

@OP @OP -> XML

Mapping
CompilerCompilerCompilerCompiler

@OP @OP @OP @OP @OP @OP @OP @OP @OP @OP @OP -> XML-> XML> XML> XML> XML> XML

Compiler

@OP -> XML

Processing XML

Figure 6. Example of source transformations with four configuration languages.

According to this approach there is a manual implementation for one language; processing of other languages is trans-formed into translations between them and the supported language. A description of translation is represented as amapping of one configuration language to another. Generally, translation description of a language is shorter and there-fore cheaper than implementing its processing. What’s more, usage of the compilers makes configuration processing codesimpler (it processes only one language) and easier to maintain (as processing of each language is clearly separatedfrom others).There is also a greater flexibility in this solution. It is possible for the user to write in an arbitrary configurationlanguage, so long as he or she has a compiler for the language to translate it to the supported language (or otherlanguage that can be translated to the supported one, creating a chain of compilers).The drawback of this approach is absence of support for combining (mixing) of configurations in multiple languages.Usually compilers just translate sentence from an input language to an output language. And even with compilerscapable of this functionality, the provider needs to deal with synchronization of the translations to ensure proper priorityof configuration languages. Fulfilling the stronger requirement for supporting multiple configuration languages is quitedifficult. Moreover, as in the next approach to be discussed, the source transformation approach can result in badperformance, because solutions like this can hardly be optimized to every possible situation while remaining general.But this performance drawback is negligable because the settings are read and processed during deployment whenbetter performance is not that critical.
3.2.1. Related workThis solution was used in our earlier project, A2X (Annotations to XML generator), but was found insufficient and latermatured to the common abstraction of configuration sources. A2X was a project for the first author’s Bachelor’s thesis.
3.3. Common abstraction of configuration sources
This paper suggests common abstraction of configuration sources as the best solution to the problem. A dedicatedabstraction tool is a program that processes the sources in multiple languages and by combining them generates acomplete model of a configuration in an output language as a virtual configuration source in memory. This virtual sourceis used by a configurable system for customization. Fig. 7 presents this solution. The complexity of a mapping description

288



Milan Nosáľ, Jaroslav Porubän

between configuration languages and an output language can be decreased if one of the input languages is chosen asthe output language (mapping between this input language and the output language is trivial as they are the same).This way resources (meaning the code needed to specify language mappings) needed to use this solution are the sameas with the source transformations. For example, in case of four input languages there would be need to define threemappings (not four, because one of the input languages is also the output language and the approach does not needthe mapping between them), just as in case of the source trasformations. The approach carries the same performancedrawback as source transformations, but its significance lies in clear, comprehensible and maintainable code.

Configuration

in INI

MappingMapping

Processing INIProcessing INI
MappingMapping

Processing INI

Mapping
Processing INI

Mapping
ProcessingProcessingProcessingProcessingProcessing INIINIINIINIProcessing INI

Configuration

using @OP

Configuration

in YAML

Abstraction

apparatus

Abstraction

apparatus

Abstraction

apparatus

Configuration

in XML

MappingMapping

Processing @OPProcessing @OP
MappingMapping

Processing @OP

Mapping
Processing @OP

Mapping
ProcessingProcessingProcessingProcessingProcessing @OP@OP@OP@OP@OPProcessing @OP

MappingMapping

Processing YAMLProcessing YAML
MappingMapping

Processing YAML

Mapping
Processing YAML

Mapping
ProcessingProcessingProcessingProcessingProcessing YAMLYAMLYAMLYAMLProcessing YAML

Processing

output format

Processing

output format

Virtual

source

SystemSystemSystem

MappingMapping

Processing XMLProcessing XML
MappingMapping

Processing XML

Mapping
Processing XML

Mapping
ProcessingProcessingProcessingProcessingProcessing XMLXMLXMLXMLProcessing XML

Data flow Configuration source/-s

Figure 7. Example of common abstraction of configuration sources.

3.3.1. Related workAn experimental tool, Mixer (developed at our department as a Bachelor’s thesis project), abstracts configurations inannotations and XML. But this tool does not allow any changes to the default mapping between XML and annotation-based configuration languages.As commercial examples of this approach we mention Zend Config framework and Apache Commons Configuration. Theseexamples abstract configuration in different formats (e.g. INI, XML, .properties). However, both of these lack effectivemeans to freely define how the concrete syntaxes of the supported languages should look like. While Zend Configstrictly requires default mapping between selected input formats (for instance, for one XML language there is only onesupported language in INI files), Commons Configuration allows modification of default mapping in procedural way thatappears to be too demanding for practical purposes.
4. Declarative definition of language mappings
The drawback of supporting multiple configuration languages lies in a larger and more tangled processing code. Usingan abstraction tool (or the source transformation approach) allows one to decrease code length and to clearly separateprocessing of a complete configuration (processing of a virtual source) and processing of multiple languages (definition of

289



Supporting multiple configuration sources using abstraction

language mappings). The problem with existing tools is that they lack sufficient support for different mappings betweenlanguages in multiple formats. Zend Config supports only one default mapping between formats or in case of ApacheCommons Configuration changing default mapping is too demanding. We believe that this demand is at least partiallycaused by procedural definition of mapping.Our point can be elucidated by following figures. Fig. 8 shows some C#-like pseudocode that implements simplemapping between two languages. In the first prioritized configuration language there are tables represented by nodeswith the “table” name. In the second language, the hierarchy is the same, merely name of tables’ representation ischanged to “Table”. This figure shows how their combination may be implemented.
public ConfigurationNode combine(ConfigurationNode firstConf ,

ConfigurationNode secondConf ){

// other code for combination

..

// For each child with name "Table"

foreach(ConfigurationNode child in secondConf.getChildren ("Table ")) {

// if there is not coressponding child in first configuration , add it

// (determining whether the node is

// corresponding may differ from case to case)

if(! firstConf.containsSame(child)) {

child.setName (" table ");

firstConf.addChild(child );

}

}

}

Figure 8. Procedural definition of partial mapping between two languages in C#-like code.

Counterpart of the procedural mapping is its declarative representation. In Fig. 9 we can see a definition of the samemapping in some DSL for mapping definition. Both figures represent only incomplete mapping (we can think of it asa difference from default mapping), but they already show how can declarative representation be shorter and easier tocomprehend.
map "Table" to "table"

Figure 9. Declarative definition of mapping between two languages in DSL.

4.1. Metamodel
In light of the comparison of declarative and procedural definition of mapping we propose using a metamodel of config-urations. A metamodel of configurations is a model of configuration models. It defines a common configuration structureand mappings of the configurations with different concrete syntaxes to it. Model of a configuration can be presented asa sentence in some configuration language, and therefore we can think of metamodel as a model of the configurationlanguages. In other words, ametamodel defines abstract syntax of a configuration language, with mappings to its concretesyntaxes and policies of their combination. Sentence in the language is parsed into an abstract syntax graph, which isa model of the configuration.“Common configuration structure” in this sense does not mean the intersection of the configuration languages. Insteadwe want a union of the languages so that we would be able to express everything that any of the configuration languagesis able to express. The languages do not necessarily need to be able to express the same configuration – we want touse them concurrently so they could complement each other.A metamodel of a configuration structure needs to be expressed somehow. We have to develop a declarative languagethat would be able to express a sentence describing a concrete metamodel.

290



Milan Nosáľ, Jaroslav Porubän

Currently we use Java classes as a language model definition. At runtime these classes are supplemented with Java ob-jects carrying information about mappings and combining policies. Currently we find this decision unfortunate, becausedealing with this objects may be quite cumbersome, and it lowers manipulation of the metamodel to using proceduraldefinition of mapping (we need to define how the objects pf Java classes are created). We implemented an annota-tion and an XML-based interface for definition and manipulation of these objects, but today we believe that using anative declarative approach would be a better idea (such an approach is presented in Subsection 7.1). Our currentimplementation is more elaborated in Subsection 6.1 under the paragraph Metamodel details.
5. Architecture of the tool
Fig. 10 shows a basic architecture of the tool we designed basing on an analysis of the existing tools and consideringutilization of the metamodel. The tool should be composed of these modules:

Metamodel generator

Configuration formats 
unifying unit

Combining unit

Metaconfiguration 
reader

Output module

Configuration 
sources locator

Configuration 
sources

Data flow Program module

Figure 10. Architecture of the tool.

• The metaconfiguration reader’s task is to process metaconfiguration - a configuration of the tool. Metaconfig-uration contains all necessary information for the tool’s operating. This module represents an interface for thesystem’s provider to define required metamodel and other system-specific settings such as configuration sourceslocations.
• The metamodel generator uses information mediated by the metaconfiguration reader to build up an in-memoryrepresentation of the metamodel.
• The configuration sources locator takes care of locating and preparing sources for their further processing.Purpose of this module is to separate locating and preparing of the sources from the translation process.

291



Supporting multiple configuration sources using abstraction

• When everything is prepared, the configurations from multiple sources are translated into an internal format usingthe metamodel as a guide. This format unification is performed by the configuration formats unifying unit. Theresult of this process is a set of configuration models in the internal format. Each of the models represents a wholeor a partial configuration of the system. The configuration formats unifying unit is basically a set of compilers,making the abstraction tool an expansion of the source transformations solution.
• According to a combining policy defined in a metamodel (created by the metamodel generator using metaconfig-uration) the combining unit combines all models into one that represents a complete configuration. Result of thiscombining can be one of the models created by configuration formats unifying unit, if source format of the modelhas the highest priority and the model represents the complete configuration (so no information has to be addedfrom other source).
• In the end of the process comes to play the output module. Its purpose is to return a unified model in a requestedformat (defined in metaconfiguration) to the user of the tool. If the requested format is not identical with internal,the module has to perform an additional translation.

A modular approach brings better scalability of the tool. Upgrading the tool can be easily performed module by module.Adding support for new configuration format demands providing a compiler for this format and upgrading a metamodelto take the new format into consideration. This is an another scenario when a careful design of the metamodel cancontribute, making this process smoother.
6. Experimental implementation
To provide a practical basis for the arguments stated in this paper, we implemented an experimental tool and carriedout few experiments. This section presents this tool and conclusions from the experiments.
6.1. Bridge To Equalia
Bridge To Equalia (BTE) is our proof-of-concept implementation of the abstraction tool.1 Its purpose is to provideabstraction of configuration sources for configuration languages based on Java annotations (implementation of @OP)and XML documents, the two most commonly used configuration formats on Java platform. A part of the BTE’s design is theconcept of metamodel to make it easier to customize the tool for specific requirements of tool’s users. This metamodel ideacame from experiences with the A2X implementation mentioned in Subsection 3.2, especially by cumbersome definitionof mappings between XML and annotations.As far as we know, BTE and Mixer 3.3 are the only implemented tools that abstract annotation and XML-basedconfiguration sources. Mixer does not allow user to change the default mapping to concrete syntaxes of annotationsand XML. Therefore we believe BTE is, today, the most flexible and general tool abstracting XML documents and Javaannotations.
6.1.1. Related workBTE is implemented in the Java programming language. The metaconfiguration reader module uses the implementationof BTE (a kind of a recursion) to read metaconfiguration written through Java annotations and/or XML documents. Foreasier and more effective access to annotations, tool’s configuration sources locator uses the Scannotation tool2. XMLdocuments are read using standard Java DOM parsers.The structure of an internal format is defined through our Java classes. An object tree of their instances representsa model of a configuration. Structure of the metamodel is defined by Java classes too. The metamodel describes detailsof creation of a configuration model in internal format from configuration in Java annotations or XML documents (in
1 BTE was designed and developed during 2010 as a part of the first author’s Dimploma thesis under supervision of
assoc. prof. Porubä.2 http://scannotation.sourceforge.net

292



Milan Nosáľ, Jaroslav Porubän

other words, it describes concrete syntaxes). The default metamodel is created according to annotation types that defineconfiguration language in annotations. In this sense usage of BTE is annotation-centric. The tool’s user defines inputconfiguration languages by designing annotation types of @OP-based configuration language and providing its mappingto an XML-based language. BTE provides a default mapping to XML, but it can be changed by altering the metamodel(through the metaconfiguration).
6.1.2. Metamodel detailsTo give some intuition about the current metamodel implemenation, we now present its basics. Fig. 11 shows a smallexcerpt from the code of Java class Information which is an implementation of a node of a configuration model. Insome sense this is a part of the metamodel, defining abstract syntax of the configuration languages. We can see thata node carries information about configuration value (that might be null value, if the node has only sense in creatinghierarchy), referres to source code elements that are target for the configuration information, carries reference to andadditional metamodel information, and provides many other important data, such as references to parent and children ofthe node in configuration hierarchy.
// Name of the source code element that this configuration information is bound to

private String targetQualifiedName;

// Configuration value of this node

private final String value;

// Reference to metamodel object for this information

private final ConfigurationType MMConfiguration;

Figure 11. Excerpt from the class defining configuration model.

The Information nodes are enough to represent the abstract syntax of the most (if not all) of common XML or annotation-based configuration languages. Important role in the metamodel plays the ConfigurationType class representingadditional details of the metamodel. Its main purpose is to define mapping of the configuration model to the configurationlanguage — in the words of language engineers, to define concrete syntaxes from abstract syntax. Fig. 12 shows a partof the ConfigurationType implementation that defines mapping to XML. There is a name of the corresponding XMLelement/attribute, possible default value (that can be used to generate XML Schema definition for the XML language),and a tag that defines whether the information is extracted from an XML element or an XML attribute.
// The name of the XML element/attribute this information is mapped to

private String name;

// Default value

private String defaultValue;

// Enum value defining whether the information is mapped to the element or attribute

private XMLProcessing XMLOutputType;

Figure 12. Excerpt from the metamodel class concerning concrete syntax in XML.

In a similar manner as in the Fig. 13 there is an excerpt from the ConfigurationType implementation that concernsmodel mapping to source code (or we can say that defines concrete syntax for an annotation-based configurationlanguage). There are pieces of information that say which configuration annotation types corresponding Informationnode is mapped to, whether the information is mapped to an annotation or its declared property, and so on. Thisinformation is necessary to generate a configuration model from the annotations.
ConfigurationType objects create a tree that defines abstract syntax and its concrete syntaxes in XML and annotations.This tree is created from configuration annotation types by the Metamodel generator module. Modifications to the default

293



Supporting multiple configuration sources using abstraction

// Class of configuration annotation that is source of the information

private final Class confAnnotation;

// Qualified name of the source of the information (annotation or its property)

private final String qualifiedNameOfSource;

// Enum type of the information source - annotation , its property or custom

// (there is option to define custom information extractor)

private final SourceType sourceType;

Figure 13. Excerpt from the metamodel class concerning concrete syntax in annotations.

metamodel can be carried out in memory on Java objects of ConfigurationType using some kind of a tree visitor, butas it was said in Subsection 4.1, this would lower the metamodel utilization to the procedural declaring of the languagemappings. Therefore we implemented a visitor that considers metaconfiguration and modifies the metamodel according toit. This way a metamodel modifications on the default state can be stated declaratively as annotations or XML document(an example of such @OP based configuration will be introduced and discussed on the Fig. 14 in the next section).A model is generated through the compilers we implemented. An XML compiler is basically a wrapper around astandard DOM model generator in Java. This wrapper translates the DOM model to our model using metamodel (tree of
ConfigurationType) as a guide. The same way a model for annotations is generated, but the source are annotationsthat are obtained using annotation scanner. We implemented our own annotation scanner, based on the Scannotationtool, that provides an interface similar to the interface of Annotation Processing Tool3 by Oracle (Sun) that works incompile time.A default output format is the XML-based input configuration language. Thanks to the fact that XML is used as theoutput format, there is need to define only one mapping, the mapping of annotations types to XML. XML to XML mappingis trivial (if we provided only one XML document to the tool, output would be the same document).Using JAXB technology, our output can be translated into a tree of Java objects. In this transformation, the defaultmapping by JAXB is used.
6.2. Experiments
To prove assumptions about three properties of the tool (usability, flexibility and effectivity), we performed variousexperiments.
6.2.1. UsabilityOur implementation of the metaconfiguration reader module using the tool itself allows user to define metaconfigurationof BTE using both XML documents and Java annotations. This implementation provides few most common mappingpatterns between annotations and XML. BTE’s metamodel is an in-memory object tree (Subsection 6.1), and therefore itis somewhat inconvenient to alter it. In the current state there are pluggable processors that can work with metamodel.But it is easier with metaconfiguration through anotations or XML that is processed by one generic processor (again,processors as procedural definition versus annotations/XML as declarative definition). Fig. 14 shows how the annotationsare used to express the metaconfiguration. Annotation type Table is mapped to an XML element table (by default itsmapped to element with the same case-sensitive name, in this case Table). Its declared property name is mapped to anXML attribute with the same name (it is not changed via the MapsTo annotation).This metaconfiguration in a form of annotations and/or XML documents is processed using BTE. The example showsjust a little part of the metaconfiguration structure. As we were able to cover the whole metaconfiguration structure, weconsider this implementation a proof of the usability of the tool.
3 http://docs.oracle.com/javase/6/docs/technotes/guides/apt/index.html

294



Milan Nosáľ, Jaroslav Porubän

@MapsTo(name="table")

public @interface Table {

@Attribute

String name ();

}

Figure 14. Sample metaconfiguration for mapping of annotation type Table to XML in BTE.

6.2.2. Flexibility and effectivityTo test flexibility, our tool was used to process a configuration of several Java EE technologies, that use both XMLand Java annotations as configuration sources formats. Tests were performed for parts of the Servlet, the Java ServerFaces and the Java Persistence API configuration and all were successful. Despite great differences from the defaultmapping between annotations and XML, the tool successed in fully abstracting both sources. We needed merely to alterdefault metamodel and did not have to change the tool. This flexibility was mainly caused by adapting a metamodelconcept in the tool’s design (there were changes that would go beyond the abilities of the XML and annotation-basedmetaconfiguration, but using processor on the in-memory metamodel was enough).At last, we carried our an experiment to compare direct processing of configuration to BTE-mediated ones. The purposeof the experiment was to show a decrease of code length (measured in LOC - lines of code) and to confirm assumptionsabout usage of the abstraction tool. Not only was the code simpler (code that process configuration had to deal merelywith XML instead of XML plus annotations) but it was shorter too (Fig. 15). As the analysis showed, the benefit wouldbe even more notable in less trivial case than in our example.

0

50

100

Direct processing / lines of code 24 58 0 0 82

BTE / lines of code 5 39 13 4 61

Accessing 

sources

Processing 

of conf.

Metaconfigu

ration
Mapping Total

Figure 15. Comparison of direct and BTE-mediated configuration processing.

In the same experiment we implemented translation of the default models of both formats to common internal model ina procedural manner (as one would need using approach of Apache Commons Configuration). This imlementation wasused to override the translation guided by the metamodel to analyze our assumption about declarative and proceduralexpression of languages’ mappings. The translation implementation for this particular case has around 120 LOC (linesof code) and is much more complicated than 13 + 4 LOC (Fig. 15) of the annotation-based declarative definition ofmappings. In fact, it is even larger and more complicated than ad-hoc solution (more complicated because it requiresadditional knowledge of our model implementation). We consider this an important fact proving our assumption aboutdeclarative definition of languages’ mappings from Section 4.

295



Supporting multiple configuration sources using abstraction

6.3. Conclusions of experiments
The experiments led to the following conclusions:

1. The significance of the benefits of using the abstraction tool rises with the increasing number of supportedconfiguration languages. This is a natural conclusion because abstraction of each language saves some codelength and therefore more abstracted languages means more saved code and less tangled configuration processing.
2. Let’s suppose that we have a given number of input configuration languages. A larger abstract syntax of theconfiguration requires more complicated processing (one has to process more semantically diverse information)and therefore more code for each supported language. But if the processing of languages is abstracted, this extracode is saved (the first conclusion). So larger abstract syntax of configuration (in other words, larger configurationstructure) results in more code saving.
3. Supposing we have a given number of input configuration languages, greater distance of language mappings fromdefault induce metaconfiguration growth. This is due to bigger effort needed in describing changes in defaultmapping. Of course, larger metaconfiguration means the less effective usage of the tool (there are resources savedon code, but they have to be used to define the metaconfiguration).
4. The metamodel allows easier and faster changes to the default tool’s usage (in comparison with the proceduralexpression used for instance in Apache Common Configuration).

Third conclusion brings urge to tool’s author for finding the most common mapping between formats supported by thetool and using it as default. By using the most common mapping as default there is a lower risk for users to need tochange it.To sum it up, for practical purposes using the abstraction tool instead of the ad-hoc solution is suggested in case ofmore supported configuration languages and configuration with larger abstract syntax, while languages are mapped tooutput format (or internal, depending on metaconfiguration policy) using a default mapping or one close to the default.On the other hand, with simple abstract syntax of configuration but complicated mapping of languages to output format,the tool’s usage is not recommended. But one has to take into consideration that it can make further upgrades andextensions easier. In short, using the tool should be carefully considered in design phase of software development,especially in development of small systems.
7. Current status and future perspectives
As we have mentioned in Section 6, BTE is a proof-of-concept implementation of the tool. Its primary purpose was totest the concepts of the source abstraction and the declarative approach to the language mapping. Although the tool wastested on aforementioned experiments, it would be necessary to put it through complex testing and debugging processbefore using it in “real-life” projects. The experiments we performed were designed merely to confirm theses aboutimportance of the common abstraction of configuration sources and the declarative approach to the language mapping.The BTE tool need to be put through tests to confirm its real-world applicability. We performed a few tests to find andremove major bugs, but we cannot guarantee that BTE is bug-free. In practical applications a bug can cause a crash oran undefined behavior of the system.Although the experiments were based mainly upon the LOC metrics, proving that using the tool decreases LOC neededto abstract multiple configuration sources, the main potential and strength of the tool lies in better scalability of thesystem. Extending configuration structure or adding more sources is much easier than with the ad-hoc solutions, becausethe implementation processes merely output format and so it is shorter and not tangling. Therefore we believe usingthis apporach in practice would be beneficial for system developers.We also think that adapting redesigned metamodel implementation presented in next section would give BTE more morechances in real world. This new metamodel implementation would be easier to learn and to work with.

296



Milan Nosáľ, Jaroslav Porubän

7.1. Future perspective
Currently, BTE uses a metamodel based on our Java classes. One concrete metamodel is a tree of objects in memory.This approach is sufficient, but makes life harder for the tool’s user. When the user wants to use BTE, first he or she hasto define an annotation-based language by defining annotation types. Then he/she has to define mapping, which canbe easy if the defaults are sufficient, but can become quite hard when he/she has to alter directly metamodel in memory(he/she would have to study our implementation and understand our abstractions). And at last, output format is XML,so he/she would have to implement processing of the XML-based language (there is also an option to use JAXB objectmodel). In this use case, user would have to deal with both annotations and XML, and moreover our own metamodel.We want to experiment with a new metamodel representation. Instead of the Java objects we propose using customannotated classes. A tree of Java classes (using an object-oriented composition relationship) would represent commonabstract syntax of configuration languages (or probably better term would be the language model as in [10]). Detailsabout its mapping to concrete languages would be expressed by annotations. An internal model and output format ofconfiguration would be an object tree of these classes.
7.1.1. Vision in detailFig. 16 shows an example of this vision. There is a class representing a configuration entity Table. This entity hassome properties, represented by fields of the Table class. One of the fields is list of Column objects. In this scenarion,Column would be another configuration entity (represented by Column class). This way the user can describe the wholeconfiguration structure using merely Java classes.
// Metamodel class Table

@AnnotationType(type = "config.annotations.Table")

public class Table {

@XmlAttribute

@DeclaredProperty

protected String name;

@XmlElement

@DeclaredProperty

protected String table;

@XmlElement

@Annotations(relationship = Annotations.ON_FIELDS)

protected List <Column > columns;

// getters and setters

}

Figure 16. Vision of new BTE metamodel.

7.1.2. Mapping annotationsAnnotations annotating the Table class and its fields are mapping annotations. @XmlAttribute and @XmlElement areannotations for concrete syntax of an XML configuration language. Annotations @AnnotationType, @DeclaredPropertyand @Annotations define concrete syntax for an annotation-based language. If we suppose that the default mappingof a field would be to an XML element in XML and a declared property in annotations, this source code would be evenshorter. We could omit annotations @DeclaredProperty and @XmlElement. If we had the default mapping set to theannotation type with the same name as is the class’, we could omit annotation @AnnotationType.We can also define a default relationship between annotations representing a class and annotations representing class’fields. In our example the configuration annotation @Table would be used on classes. Annotations of the @Column typewould be annotating fields of a class annotated by @Table. This is just one of multiple possible relationships betweenannotations’ usages (for more annotations’ usage constraints see [12]).
297



Supporting multiple configuration sources using abstraction

In the end, we can get to the state where for many common configuration structures there will be no need to change thedefault mapping. Only advanced users would need to annotate the metamodel. This reasoning can be considered anexample of how the default mapping should be worked out.
7.1.3. BenefitAnnotated metamodel classes would be used to generate annotation types for an annotation-based configuration lan-guage and an XML schema for an XML-based configuration language. This generative approach would help tool’s usernot to deal with the details of concrete syntaxes. If the default mapping would be fitting, the user would not need toget in touch with neither annotations nor XML. The user would be working only on abstract level of metamodel classes(output format would be Java objects of metamodel classes) – and these classes are his/her implementation. We believethis approach lowers the requirements on skills and resources of the users.
8. Conclusion
This paper concerns the configuration from multiple sources. Its main purpose is to show and explain importance of thecommon abstraction of configuration from multiple sources in comparison with other approaches. Paper presents newapproach in designing the abstraction tool which lies in declarative way of defining mapping of abstracted configurationlanguages to an output language. This design targets issues with tools usage caused by extensive configuration of thetool (in cases, when mapping between abstracted configuration languages is too far from default mapping supported bythe tool). The effect of this approach is proven by experiments performed with a proof-of-concept implementation of thetool for abstracting Java annotations and XML documents. Also, future perspectives are stated.
Acknowledgment
This work was supported by VEGA Grant No. 1/0305/11 - Co-evolution of the artifacts written in domain-specificlanguages driven by language evolution.
References

[1] Bennett K., Layzell P., Budgen D., Brereton P., Macaulay L., Munro M., Service-based software: the future forflexible software, In: Proceedings of the Seventh Asia-Pacific Software Engineering Conference, ser. APSEC ’00.Washington, DC, USA: IEEE Computer Society, 214, 2000[2] Dreiling A., Rosemann M., van der Aalst W., Heuser L., Schulz K., Model-based software configuration: patternsand languages, EJIS, 15, 583-600, 2006[3] Gross P.H., Ginzberg M.J., Barriers to the adoption of application software packages, Information Systems WorkingPapers Series, 4, 211-226, 1984[4] Hui B., Liaskos S., Mylopoulos J., Requirements analysis for customizable software goals-skills-preferences frame-work, In: Proceedings of the 11th IEEE International Conference on Requirements Engineering. Washington, DC,USA: IEEE Computer Society, 117, 2003[5] Lucas H.C., Walton E.J., Ginzberg M.J., Implementing packaged software, Manage. Inf. Syst. Q., 12, 537-549, 1988[6] Mackay W.E., Triggers and barriers to customizing software, In: Proceedings of the SIGCHI conference on Humanfactors in computing systems: Reaching through technology, ser. CHI ’91. New York, NY, USA: ACM, 153-160, 1991[7] Mernik M., Heering J., Sloane A.M., When and how to develop domain-specific languages, ACM Comput. Surv., 37,316-344, 2005[8] Newkirk J., Vorontsov A.A., How .NET’s Custom Attributes Affect Design, IEEE Software, 19, 18-20, 2002[9] Passos E.B., Sousa J.W.S., Clua E.W.G., Montenegro A., Murta L., Smart composition of game objects using depen-dency injection, Comput. Entertain., 7, 53:1-53:15, 2010

298



Milan Nosáľ, Jaroslav Porubän

[10] Porubän J., Forgáč M., Běhálek M., Annotation based parser generator, Computer Science and Information Systems:Special Issue on Advances in Languages, Related Technologies and Applications, 7, 291-307, 2010[11] Rouvoy R., Merle P., Leveraging Component-Oriented Programming with Attribute-Oriented Programming, In: 11thInternational ECOOP Workshop on Component-Oriented Programming (WCOP’06), 11, 10-18, 2006[12] Ruska Š., Porubän J., Defining Annotation Constraints in Attribute Oriented Programming, AEI, 10, 89-93, 2010

299


	Introduction
	Motivation
	Analysis
	Declarative definition of language mappings
	Architecture of the tool
	Experimental implementation
	Current status and future perspectives
	Conclusion
	Acknowledgment
	References



