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Abstract: This study aims to elaborate on the mineral potential maps using various models and verify the accuracy for the
epithermal gold (Au) – silver (Ag) deposits in a Geographic Information System (GIS) environment assuming that
all deposits shared a common genesis. The maps of potential Au and Ag deposits were produced by geological
data in Taebaeksan mineralized area, Korea. The methodological framework consists of three main steps: 1)
identification of spatial relationships 2) quantification of such relationships and 3) combination of multiple quantified
relationships. A spatial database containing 46 Au-Ag deposits was constructed using GIS. The spatial association
between training deposits and 26 related factors were identified and quantified by probabilistic and statistical
modelling. The mineral potential maps were generated by integrating all factors using the overlay method and
recombined afterwards using the likelihood ratio model. They were verified by comparison with test mineral deposit
locations. The verification revealed that the combined mineral potential map had the greatest accuracy (83.97%),
whereas it was 72.24%, 65.85%, 72.23% and 71.02% for the likelihood ratio, weight of evidence, logistic regression
and artificial neural network models, respectively. The mineral potential map can provide useful information for the
mineral resource development.

Keywords: GIS • likelihood ratio • weight of evidence • logistic regression • artificial neural network • mineral potential mapping
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1. Introduction

Many probabilistic, statistical and data mining models havebeen proposed for mineral potential mapping. They includelogistic regression [6, 7, 13, 15, 37], frequency ratio [27,29, 38], weights of evidence [3, 8, 35, 39], Dempster-Shafer[27, 34], support vector machine [36, 44], Bayesian network
∗E-mail: ohj@kigam.re.kr

classifiers [32], fuzzy logic [14, 20, 33], and artificial neuralnetworks [4, 28, 31, 40–42, 45]. All of these approacheshave been applied to mineral resource appraisal and others.But the studies have applied model separately. There areno studies which combine the results of mineral potential.So, the difference of the study is to combine the results ofmineral potential, which have made from 4 different modelsto make better accurate mineral potential map.
This application builds a model using observations aboutthe association of mineral occurrences with various geo-logical features in a quantitative manner. For the applica-

373



A case study for the integration of predictive mineral potential maps

Figure 1. Study area with tectonic boundary in the northeast Asian margin modified from Chough et al. 2000 [12].

tion, GIS was used to combine and analyze a variety ofgeoscientific data, including geological, geochemical andgeophysical maps. The GIS is the best tool for analyzingall kinds of geospatial data in mineral exploration anddelivering the means to organize the mineral explorationprocess. The objective of this study is to combine Au-Agpotential maps using likelihood ratio, weight of evidence,logistic regression and artificial neural network modelsand verify and compare the combined mineral potentialmap with each mineral potential map in the Taebaeksanmineralized area of Korea (Figure 1). This region hasmany mineral deposits and geological, geochemical andgeophysical survey data available and high mineral poten-tial, which is referred to Oh and Lee [29]. The preparationof mineral potential maps using GIS (ArcGIS 10) was ac-

complished in five major steps (Figure 2). (1) Compilationof a spatial database. A total of 46 Au-Ag mineral de-posits were used to create a spatial database using GIS.Geological, geochemical and geophysical maps were simi-larly treated. (2) Processing the data from the database.Using the GIS overlay method, the mineral deposits andthe factors were combined and their relationships weredetermined quantitatively using likelihood ratio, weight ofevidence, logistic regression and artificial neural networkmodels. (3) Application of an each model to generate amineral potential map. (4) Combination of the mineralpotential maps using likelihood ratio. (5) Verification andcomparison of each mineral potential map and combinedmineral potential map using test mineral deposits thatwere not used directly in the analysis.
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Figure 2. Study flow.

The data-processing step involves numerous operationsto extract and enhance predictive criteria from each ofthe initial data layers. Combination modeling refers tothe methods used for combining predictive-data layersinto a mineral potential map. The map does not estimatethe number and size of mineral deposits, but indicates,on a broad scale, areas considered to be prospective forexploration.
2. Geological setting of the Taebaek-
san basin
The Taebaeksan basin (TB) lies in the central east partof the Korean Peninsula and includes the Taebaeksanmineralized area, located within latitudes 37°15´24´´–37°30´00´´ N and longitudes 128°30´30´´–129°02´40´´E (Figure 1). The study area occupies approximately1,050 km2.The Korean peninsula is located on the northeastern mar-gin of the Eurasian plate. The major tectonostratigraphicunits of South Korea include the Gyeonggi Massif (GM),the Ogcheon Fold Belt (OFB), the Yeongnam Massif (YM),and the Gyeongsang Basin (GB) (Figure 1). The TB

occupies the northeastern part of the Korean peninsulaand is composed primarily of the Cambrian–Ordovician-aged Joseon Supergroup and Carboniferous–Triassic-agedPyeongan Supergroup. The Joseon Supergroup rests un-conformably on the Precambrian-aged granitic gneiss andmetasedimentary rocks of the YM and is overlain uncon-formably by the Pyeongan Supergroup [9]. The lowerPaleozoic sediments are primarily shallow marine in ori-gin and consist predominantly of carbonates with lesseramounts of sandstone and shale, whereas the PyeonganSupergroup is comprised of thick clastic successions ofmarginal marine to nonmarine environments containingeconomically important coal measures [10, 12]. The LateCarboniferous to Triassic sedimentary rocks of the Pyeon-gan Supergroup are well exposed in the TB. These depositsconsist predominantly of shale and sandstone with smallamounts of limestone, conglomerate and coal. Throughoutmuch of the TB, they rest unconformably on the JoseonSupergroup, except in the Jeongseon area. The Pyeongansedimentation initiated in a marginal marine environmentin the Late Carboniferous with a brief interruption in depo-sition, presumably in the latest Carboniferous to earliestPermian, followed by the deposition of a thick non-marinesandstone–shale succession in the Permian [10, 12].
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Figure 3. Geological map with mineral deposits (Combined geological map of Jeongseon, Imgye, Yemi and Homyeong sheets produced by the
Korea Institute of Geoscience & Mineral Resources at 1:50,000).

3. Mineralization of study area

The Taebaeksan mineralized area is the most importantdeposit in South Korea and is located in TB. The studyarea has a long history of metal production from veinsand skarns in sediments near granitoid intrusions [30].The mineralized area is rich in Pb-Zn-W-Fe-Cu-Mo-Au-Ag mineral resources with a diversity of deposit styles.These deposits principally coexist in time and space withporphyry-related epigenetic deposit types such as skarns,hydrothermal replacement, mesothermal veins, and Carline-like deposits. In the study area, the gold-silver deposits areof an epithermal type related to granites. The main opaqueminerals include electrum, pyrite, arsenopyrite, stibnite,and sphalerite. Some polished and microprobe sections ofsamples from structures cutting through Cambrian ooliticlimestone show zones of gold and arsenic enrichment alongthe perimeters of pyrite grains [30]. The occurrence of golddeposits that are stratigraphically localized in crystalline

limestone and altered argillaceous sediments is indicativeof disseminated gold. The arsenic anomaly has been shownto be related to metalliferous ore deposits (mainly Ag-Au),which are closely associated with the Sb anomaly. Someelements in the altered limestones in the study such asAu, Ag, As, Sb, Cu, Pb, Zn, and Mo are closely associatedtogether [43].The bedrock consists of Precambrian metamorphic andmetasedimentary rocks (the units Jugr and PCEt as shownin Figure 3), Paleozoic and Mesozoic sedimentary rocks(the units CEj, CEm, CEp, CEw, Od, Odu, Omg, Oj, Ch,Ps, TRg, TRn, TRn1, TRn2, TRn3, Jbc and Jbs), Mesozoicvolcanic rocks (the unit Jgr) and plutons (the unit Jigr), andminor occurrences of Quaternary sediments (the units Qdand Qr) [16]. Geologic structures in the eastern part of theTB suggest that the sequence underwent four deformationalstages [18, 19]. A D1 deformation event of unknown agegenerated NE-striking ductile shear zones with a reversesense of slip between the Precambrian massif and earlyPaleozoic sequences [17–19]. During the D2 deformation
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(the Songrim orogeny), NE-trending folds and thrusts weregenerated with mostly SE vergence. D3 deformation (theDaebo event) then produced NE-trending folds and thrustswith a SE vergence. During the late Cretaceous to earlyTertiary Bulgugsa event, the entire sequence underwentD4 deformation that caused E–W trending folds and faults[18]. Gold and silver bearing hydrothermal vein depositsin the study area occur in various host lithologies, consistof multiple generations of quartz and/or carbonates withbase metal sulfides, and have NNW, NS or NNE strikes,which seem to be related to NE strike-slip faults [21, 23].
4. Spatial database
Data on 46 epithermal Au-Ag deposits were selected inmineral deposit maps of the Taebaeksan mineralizationwith mineral variety and type, which were obtained fromthe MIRECO (Mine Reclamation Crop.), NHMRG (NaturalHazard Mitigation Research Group) and KIGAM (KoreaInstitute of Geoscience and Mineral Resources). The 26factors related to Au-Ag mineral occurrence are the geolog-ical data of lithology and fault structure, geochemical dataincluding the presence of Al, As, Ba, Ca, Cd, Co, Cr, Cu,Fe, K, Li, Mg, Mn, Na, Ni, Pb, Si, Sr, V, W, Zn, Cl− andF−, and the geophysical data on the magnetic anomalies[11, 24]. All of these factors were compiled in the GISdatabase.The geological data were derived from a 1:50,000 geo-logical map (Figure 3). The lithology and distance fromfracture were registered. The geochemical data were ac-quired through a stream water and sediment geochemicalsurvey. The geochemical maps were made from interpola-tion of values of geochemical elements. The geophysicaldata were acquired through airborne magnetic [22]. Thenthe data were interpolated to make the geophysical map.All factors were converted to raster form. In this studywe use 30 m × 30 m considering input data map scale(1:50,000). The numbers of rows and columns are 986 and1,183, and the total number of cells in the study area is1,166,438. Total number of Au-Ag mineral deposits is 46including 30 training and 16 verification deposits, whichwere randomly selected.In GIS, when converting vector to raster, if there are morethan two attributes, the attribute which occupies the largestarea is selected as the representative cell. The remainingattributes are ignored. Therefore, the selection of cellsize is important. Because the cell size is too big, manyattributes can be ignored and the cell size is too small,the file size is too big and computing time is too long.So, based on the input data scale, the adequate cell sizewas selected for the minimum loss of data and computingefficiency. Usually, in the 1:250,000 scale the 100 m cell

size is used and in the 1:50,000 scale the 30 m cell sizeis used.
5. Model
5.1. Likelihood ratio
The strength of the spatial relationship between depositoccurrence and its related factor is expressed in termsof the likelihood ratio in the study. Likelihood ratio isthe ratio of probability of a deposit occurrence (D) to itsnon-occurrence for the class i of factor B. The likelihoodratios [2], which are sufficiency ratio (LS) and necessityratio (LN), are required by the following Equations (1)and (2):

LSi = P(Bi|D)
P(Bi|D̄) (1)

LNi = P(B̄i|D)
P(B̄i|D̄) (2)

So, the ratio is higher than 1, the higher relationship be-tween deposit occurrence and the certain factors’ classand the ratio is lower than 1, the lower relationship be-tween deposit occurrence and the certain factors’ class.The likelihood ratio value was set to the range of eachfactor values, which are reclassified into 10 classes byequal area. The likelihood ratios for each factors’ range orclass (Table 1) were summed to calculate MPIL (MineralPotential Index), as shown in Equation (3) and Figure 4:
MPIL =∑ LS (3)

where LS = likelihood ratio (e.g., sufficiency ratio) for eachfactors’ range or class.
5.2. Weight of evidence
Weight of evidence modelling formulated for mineral po-tential assessment was first described by Bonham-Carterand others [3]. The weights of evidence analysis result ina set of statistically derived values reflecting the spatialassociation between deposit occurrence and a binary pat-tern of a factor. To generate the binary patterns for theoccurrence-related factors, they were classified into binarymaps as calculating W + and W − from Equations (4) and(5), and showing favorable and unfavorable areas.

W +
i = loge LSi (4)

W −
i = loge LNi (5)
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Table 1. Spatial relationship between mineral deposits and its related factors.

Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

Al
(ppb)

26.00-44.15
44.16-84.54

84.55-103.39
103.40-112.87
112.88-119.29
119.30-124.97
124.98-133.04
133.05-164.69
164.70-231.11
231.12-499.99

116666
116651
116737
116716
116695
116601
116613
116594
116586
116579

10.00 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 

3
2
4
2
7
7
1
2
2
0

10.00  
6.67  

13.33  
6.67  

23.33  
23.33  
3.33  
6.67  
6.67  
0.00  

1.00 
0.67 
1.33 
0.67 
2.33 
2.33 
0.33 
0.67 
0.67 
0.00 

0.00 
-0.41 
0.29 

-0.41 
0.85 
0.85 

-1.10 
-0.41 
-0.40 
NaN

0.00 
0.04 

-0.04 
0.04 

-0.16 
-0.16 
0.07 
0.04 
0.04 
0.11 

0.00 
-0.44 
0.32 

-0.44 
1.01 
1.01 

-1.17 
-0.44 
-0.44 
NaN

0
-0.6
0.6

-0.6
2.33
2.34

-1.15
-0.6
-0.6

NaN

0.01065 0.032 

As
(ppm)

1.01-14.58
14.59-21.78
21.79-27.56
27.57-35.09
35.10-43.43
43.44-47.59
47.60-49.47
49.48-49.99

50.00

116689
116779
116734
116702
116782
116901
116516
65606

283729

10.00 
10.01 
10.01 
10.00 
10.01 
10.02 
9.99 
5.62 

24.32 

0
7
0
2
1
4
0
3

13

0.00 
23.33 
0.00 
6.67 
3.33 

13.33 
0.00 

10.00 
43.33 

0.00 
2.33 
0.00 
0.67 
0.33 
1.33 
0.00 
1.78 
1.78 

NaN
0.85 
NaN
-0.41 
-1.10 
0.29 
NaN
0.58 
0.58 

0.11 
-0.16 
0.11 
0.04 
0.07 

-0.04 
0.11 

-0.05 
-0.29 

NaN
1.01 
NaN
-0.44 
-1.17 
0.32 
NaN
0.62 
0.87 

NaN
2.33
NaN
-0.6

-1.15
0.6

NaN
1.02
2.35

0.02370 0.034 

Ba
(ppb)

2.00-3.99
4.00-5.96
5.97-7.04
7.05-7.86
7.87-8.55
8.56-9.61

9.62 -10.87
10.88-13.28
13.29-17.38

17.39-200.97

117477
116734
117258
116532
116787
116822
116583
116120
116242
115883

10.07 
10.01 
10.05 
9.99 

10.01 
10.02 
9.99 
9.96 
9.97 
9.93 

0
7
2
3
5
4
2
1
3
3

0.00 
23.33 
6.67 

10.00 
16.67 
13.33 
6.67 
3.33 

10.00 
10.00 

0.00 
2.33 
0.66 
1.00 
1.66 
1.33 
0.67 
0.33 
1.00 
1.01 

NaN
0.85 

-0.41 
0.00 
0.51 
0.29 

-0.40 
-1.09 
0.00 
0.01 

0.11 
-0.16 
0.04 
0.00 

-0.08 
-0.04 
0.04 
0.07 
0.00 
0.00 

NaN
1.01 

-0.45 
0.00 
0.59 
0.32 

-0.44 
-1.17 
0.00 
0.01 

NaN
2.33

-0.61
0

1.2
0.6

-0.6
-1.15
0.01
0.01

0.05914 0.041 

Ca
(ppm)

1.53-6.24
6.25-18.99

19.00-28.24
28.25-35.41
35.42-40.44
40.45-43.42
43.43-46.01
46.02-48.04
48.05-49.16
49.17-50.00

116712
116637
116714
116742
116662
116679
116621
117223
116647
115801

10.01 
10.00 
10.01 
10.01 
10.00 
10.00 
10.00 
10.05 
10.00 
9.93 

2
4
1
3
2
2
2
4
5
5

6.67 
13.33 
3.33 

10.00 
6.67 
6.67 
6.67 

13.33 
16.67 
16.67 

0.67 
1.33 
0.33 
1.00 
0.67 
0.67 
0.67 
1.33 
1.67 
1.68 

-0.41 
0.29 

-1.10 
0.00 

-0.41 
-0.41 
-0.41 
0.28 
0.51 
0.52 

0.04 
-0.04 
0.07 
0.00 
0.04 
0.04 
0.04 

-0.04 
-0.08 
-0.08 

-0.44 
0.33 

-1.17 
0.00 

-0.44 
-0.44 
-0.44 
0.32 
0.59 
0.60 

-0.6
0.61

-1.15
0

-0.6
-0.6
-0.6
0.6
1.2

1.22

-0.00002 0.036 

Cd
(ppm)

1.0000-1.1008
1.1009-1.2239
1.2240-1.3473
1.3474-1.4928
1.4929-1.6538
1.6539-1.8480
1.8481-1.9829
1.9830-2.2506
2.2507-3.2164
3.2165-9.9992

116740
116647
116690
116699
116626
116640
116621
116610
116585
116580

10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 
9.99 

3
3
2
2
5
4
2
5
1
3

10.00 
10.00 
6.67 
6.67 

16.67 
13.33 
6.67 

16.67 
3.33 

10.00 

1.00 
1.00 
0.67 
0.67 
1.67 
1.33 
0.67 
1.67 
0.33 
1.00 

0.00 
0.00 

-0.41 
-0.41 
0.51 
0.29 

-0.41 
0.51 

-1.10 
0.00 

0.00 
0.00 
0.04 
0.04 

-0.08 
-0.04 
0.04 

-0.08 
0.07 
0.00 

0.00 
0.00 

-0.44 
-0.44 
0.59 
0.33 

-0.44 
0.59 

-1.17 
0.00 

0
0

-0.6
-0.6
1.2

0.61
-0.6
1.2

-1.15
0

-0.20344 0.035 
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Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

Cl-
(ppm)

1.0106-2.2074
2.2075-2.4546
2.4547-2.7386
2.7387-2.9874
2.9875-3.2353
3.2354-3.4804
3.4805-3.8803
3.8804-4.7479
4.7480-5.9843

5.9844-27.6669

116644
116681
116654
116642
116647
116642
116637
116635
116628
116628

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

1
0
3
4
0
7
5
5
2
3

3.33 
0.00 

10.00 
13.33 
0.00 

23.33 
16.67 
16.67 
6.67 

10.00 

0.33 
0.00 
1.00 
1.33 
0.00 
2.33 
1.67 
1.67 
0.67 
1.00 

-1.10 
NaN
0.00 
0.29 
NaN
0.85 
0.51 
0.51 

-0.41 
0.00 

0.07 
0.11 
0.00 

-0.04 
0.11 

-0.16 
-0.08 
-0.08 
0.04 
0.00 

-1.17 
NaN
0.00 
0.33 
NaN
1.01 
0.59 
0.59 

-0.44 
0.00 

-1.15
NaN

0
0.61
NaN
2.33
1.2
1.2

-0.6
0

0.00004 0.041 

Co
(ppb)

1.0000-1.5665
1.5666-2.5807
2.5808-1.9789
1.9790-3.1012
3.1013-3.3506
3.3507-3.6660
3.6661-3.9952
3.9953-4.4250
4.4251-5.0758
5.0759-9.9999

116648
116657
116722
116636
116651
116656
116621
116620
116620
116607

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

4
1
5
1
3
2
4
7
2
1

13.33 
3.33 

16.67 
3.33 

10.00 
6.67 

13.33 
23.33 
6.67 
3.33 

1.33 
0.33 
1.67 
0.33 
1.00 
0.67 
1.33 
2.33 
0.67 
0.33 

0.29 
-1.10 
0.51 

-1.10 
0.00 

-0.41 
0.29 
0.85 

-0.41 
-1.10 

-0.04 
0.07 

-0.08 
0.07 
0.00 
0.04 

-0.04 
-0.16 
0.04 
0.07 

0.33 
-1.17 
0.59 

-1.17 
0.00 

-0.44 
0.33 
1.01 

-0.44 
-1.17 

0.61
-1.15

1.2
-1.15

0
-0.6
0.61
2.33
-0.6

-1.15

-0.78378 0.041 

Cr
(ppb)

1.0000-1.1958 
1.1959-1.3244 
1.3245-1.4319 
1.4320-1.5656 
1.5657-1.8305 
1.8306-2.0343 
2.0344-2.3185 
2.3186-2.7629 
2.7630-3.2865 
3.2866-9.9987 

116649
116645
116772
116663
116650
116653
116625
116602
116601
116578

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 

6
0
2
5
4
3
4
1
5
0

20.00 
0.00 
6.67 

16.67 
13.33 
10.00 
13.33 
3.33 

16.67 
0.00 

2.00 
0.00 
0.67 
1.67 
1.33 
1.00 
1.33 
0.33 
1.67 
0.00 

0.69 
NaN
-0.41 
0.51 
0.29 
0.00 
0.29 

-1.10 
0.51 
NaN

-0.12 
0.11 
0.04 

-0.08 
-0.04 
0.00 

-0.04 
0.07 

-0.08 
0.11 

0.81 
NaN
-0.44 
0.59 
0.33 
0.00 
0.33 

-1.17 
0.59 
NaN

1.78
NaN
-0.61

1.2
0.61

0
0.61

-1.15
1.2

NaN

0.03562 0.040 

Cu
(ppb)

1.000-2.034
2.035-2.450
2.451-2.744
2.745-2.994
2.995-3.262
3.263-3.669
3.670-3.977
3.978-4.710
4.711-7.695

7.696-2.9999

116889
116787
116603
117174
116784
116566
116422
116412
116407
116394

10.02 
10.01 
10.00 
10.05 
10.01 
9.99 
9.98 
9.98 
9.98 
9.98 

1
4
4
6
6
2
3
2
1
1

3.33 
13.33 
13.33 
20.00 
20.00 
6.67 

10.00 
6.67 
3.33 
3.33 

0.33 
1.33 
1.33 
1.99 
2.00 
0.67 
1.00 
0.67 
0.33 
0.33 

-1.10 
0.29 
0.29 
0.69 
0.69 

-0.40 
0.00 

-0.40 
-1.10 
-1.10 

0.07 
-0.04 
-0.04 
-0.12 
-0.12 
0.04 
0.00 
0.04 
0.07 
0.07 

-1.17 
0.32 
0.33 
0.81 
0.81 

-0.44 
0.00 

-0.44 
-1.17 
-1.17 

-1.15
0.6

0.61
1.77
1.77
-0.6

0
-0.6

-1.15
-1.15

-0.57369 0.037 

F-

(ppm)

0.03-0.14
0.15-0.15
0.16-0.16
0.17-0.17
0.18-0.18
0.19-0.20
0.21-0.22
0.23-0.24
0.25-0.28
0.29-1.99

117101
116775
117073
117348
117148
116558
116117
116151
116321
115846

10.04 
10.01 
10.04 
10.06 
10.04 
9.99 
9.95 
9.96 
9.97 
9.93 

5
2
3
3
2
5
4
2
3
1

16.67 
6.67 

10.00 
10.00 
6.67 

16.67 
13.33 
6.67 

10.00 
3.33 

1.66 
0.67 
1.00 
0.99 
0.66 
1.67 
1.34 
0.67 
1.00 
0.34 

0.51 
-0.41 
0.00 

-0.01 
-0.41 
0.51 
0.29 

-0.40 
0.00 

-1.09 

-0.08 
0.04 
0.00 
0.00 
0.04 

-0.08 
-0.04 
0.04 
0.00 
0.07 

0.58 
-0.44 
0.00 

-0.01 
-0.45 
0.59 
0.33 

-0.44 
0.00 

-1.16 

1.19
-0.61
-0.01
-0.01
-0.61

1.2
0.62
-0.6
0.01

-1.14

-0.00701 0.038 
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Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

Fe
(ppm)

2.00-6.77   
6.78-7.86   
7.87-8.88   
8.89-9.91   

9.92-11.12  
11.13-12.99 
13.00-15.76 
15.77-21.24 
21.25-35.77 
35.78-99.99 

117031
116771
116611
117384
116592
116876
116535
116233
116234
116171

10.03 
10.01 
10.00 
10.06 
10.00 
10.02 
9.99 
9.96 
9.96 
9.96 

2
5
4
4
6
1
2
2
3
1

6.67 
16.67 
13.33 
13.33 
20.00 
3.33 
6.67 
6.67 

10.00 
3.33 

0.66 
1.66 
1.33 
1.32 
2.00 
0.33 
0.67 
0.67 
1.00 
0.33 

-0.41 
0.51 
0.29 
0.28 
0.69 

-1.10 
-0.40 
-0.40 
0.00 

-1.09 

0.04 
-0.08 
-0.04 
-0.04 
-0.12 
0.07 
0.04 
0.04 
0.00 
0.07 

-0.45 
0.59 
0.33 
0.32 
0.81 

-1.17 
-0.44 
-0.44 
0.00 

-1.17 

-0.61
1.2

0.61
0.59
1.78

-1.15
-0.6
-0.6
0.01

-1.15

0.00001 0.030 

K
(ppm)

0.1201-0.3403
0.3404-0.4005
0.4006-0.4634
0.4635-0.5461
0.5462-0.6365
0.6366-0.7389
0.7390-0.8133
0.8134-0.9078
0.9079-1.0807
10.808-4.7295

116712
116798
116644
116707
116600
116663
116604
116604
116575
116531

10.01 
10.01 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
9.99 
9.99 

2
1
4
2
5
4
5
3
2
2

6.67 
3.33 

13.33 
6.67 

16.67 
13.33 
16.67 
10.00 
6.67 
6.67 

0.67 
0.33 
1.33 
0.67 
1.67 
1.33 
1.67 
1.00 
0.67 
0.67 

-0.41 
-1.10 
0.29 

-0.41 
0.51 
0.29 
0.51 
0.00 

-0.40 
-0.40 

0.04 
0.07 

-0.04 
0.04 

-0.08 
-0.04 
-0.08 
0.00 
0.04 
0.04 

-0.44 
-1.17 
0.33 

-0.44 
0.59 
0.33 
0.59 
0.00 

-0.44 
-0.44 

-0.6
-1.15
0.61
-0.6
1.2

0.61
1.2

0
-0.6
-0.6

-0.00080 0.037 

Li
(ppb)

1.0000-1.0041
1.0042-1.1144
1.1145-1.2670
1.2671-1.4984
1.4985-1.9352
1.9353-2.6544
2.6545-3.5996
3.5997-4.7935
4.7936-6.6524
6.6525-9.9999

116661
116662
116704
116661
116631
116633
116624
116622
116623
116617

10.00 
10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

6
9
4
0
2
2
3
2
1
1

20.00 
30.00 
13.33 
0.00 
6.67 
6.67 

10.00 
6.67 
3.33 
3.33 

2.00 
3.00 
1.33 
0.00 
0.67 
0.67 
1.00 
0.67 
0.33 
0.33 

0.69 
1.10 
0.29 
NaN
-0.41 
-0.41 
0.00 

-0.41 
-1.10 
-1.10 

-0.12 
-0.25 
-0.04 
0.11 
0.04 
0.04 
0.00 
0.04 
0.07 
0.07 

0.81 
1.35 
0.32 
NaN
-0.44 
-0.44 
0.00 

-0.44 
-1.17 
-1.17 

1.78
3.39
0.6

NaN
-0.6
-0.6

0
-0.6

-1.15
-1.15

-0.18806 0.037 

Mg
(ppm)

0.36-1.12
1.13-2.50
2.51-3.04
3.05-3.64
3.65-4.41
4.42-5.26
5.27-6.18
6.19-7.30
7.31-9.32

9.33-49.99

116873
117756
118493
117481
116189
116652
116279
115792
115912
115011

10.02 
10.10 
10.16 
10.07 
9.96 

10.00 
9.97 
9.93 
9.94 
9.86 

0
7
4
3
1
5
3
5
1
1

0.00 
23.33 
13.33 
10.00 
3.33 

16.67 
10.00 
16.67 
3.33 
3.33 

0.00 
2.31 
1.31 
0.99 
0.33 
1.67 
1.00 
1.68 
0.34 
0.34 

NaN
0.84 
0.27 

-0.01 
-1.09 
0.51 
0.00 
0.52 

-1.09 
-1.08 

0.11 
-0.16 
-0.04 
0.00 
0.07 

-0.08 
0.00 

-0.08 
0.07 
0.07 

NaN
1.00 
0.31 

-0.01 
-1.17 
0.59 
0.00 
0.60 

-1.16 
-1.15 

NaN
2.31
0.57

-0.01
-1.15

1.2
0.01
1.22

-1.14
-1.14

-0.00003 0.039 

Mn
(ppb)

1.00-1.26
1.27-1.60
1.61-1.90
1.91-2.38
2.39-3.54
3.55-6.19

6.20-11.26
11.27-25.24
25.25-67.60

67.61-199.99

118658
117500
117854
118036
115883
115970
115651
115647
115630
115609

10.17 
10.07 
10.10 
10.12 
9.93 
9.94 
9.91 
9.91 
9.91 
9.91 

4
2
7
4
2
5
1
1
3
1

13.33 
6.67 

23.33 
13.33 
6.67 

16.67 
3.33 
3.33 

10.00 
3.33 

1.31 
0.66 
2.31 
1.32 
0.67 
1.68 
0.34 
0.34 
1.01 
0.34 

0.27 
-0.41 
0.84 
0.28 

-0.40 
0.52 

-1.09 
-1.09 
0.01 

-1.09 

-0.04 
0.04 

-0.16 
-0.04 
0.04 

-0.08 
0.07 
0.07 
0.00 
0.07 

0.31 
-0.45 
1.00 
0.31 

-0.43 
0.59 

-1.16 
-1.16 
0.01 

-1.16 

0.57
-0.61
2.31
0.58

-0.59
1.21

-1.14
-1.14
0.02

-1.14

0.03390 0.033 
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Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

Na
(ppm)

0.2200-0.5790
0.5791-0.6504
0.6505-0.6959
0.6960-0.7287
0.7288-0.7844
0.7845-0.8366
0.8367-0.8943
0.8944-0.9611
0.9612-1.1210
1.1211-4.1488

116685
116721
116839
116664
116629
116622
116676
116614
116524
116464

10.00 
10.01 
10.02 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 
9.98 

0
1
3
3
7
2
3
5
3
3

0.00 
3.33 

10.00 
10.00 
23.33 
6.67 

10.00 
16.67 
10.00 
10.00 

0.00 
0.33 
1.00 
1.00 
2.33 
0.67 
1.00 
1.67 
1.00 
1.00 

NaN
-1.10 
0.00 
0.00 
0.85 

-0.41 
0.00 
0.51 
0.00 
0.00 

0.11 
0.07 
0.00 
0.00 

-0.16 
0.04 
0.00 

-0.08 
0.00 
0.00 

NaN
-1.17 
0.00 
0.00 
1.01 

-0.44 
0.00 
0.59 
0.00 
0.00 

NaN
-1.15

0
0

2.33
-0.6

0
1.2

0
0

-0.00082 0.041 

Ni
(ppb)

1.0001-5.3709
5.3710-8.8292

8.8293-10.4420
10.4421-11.6711
11.6712-12.7538
12.7539-13.9820
13.9821-14.9556
14.9557-15.9219
15.9220-16.7251
16.7252-19.9999

116644
116646
116644
116651
116655
116648
116644
116646
116633
116627

10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 

1
4
3
5
1
2
1
1
7
5

3.33 
13.33 
10.00 
16.67 
3.33 
6.67 
3.33 
3.33 

23.33 
16.67 

0.33 
1.33 
1.00 
1.67 
0.33 
0.67 
0.33 
0.33 
2.33 
1.67 

-1.10 
0.29 
0.00 
0.51 

-1.10 
-0.41 
-1.10 
-1.10 
0.85 
0.51 

0.07 
-0.04 
0.00 

-0.08 
0.07 
0.04 
0.07 
0.07 

-0.16 
-0.08 

-1.17 
0.33 
0.00 
0.59 

-1.17 
-0.44 
-1.17 
-1.17 
1.01 
0.59 

-1.15
0.61

0
1.2

-1.15
-0.6

-1.15
-1.15
2.33
1.2

-0.71027 0.052 

Pb
(ppb)

1.00-8.76
8.77-17.68

17.69-21.65
21.66-24.56
24.57-27.30
27.31-30.38
30.39-33.10
33.11-36.51
36.52-39.37
39.38-49.99

116772
116678
116889
117006
116743
116786
116634
116709
116345
115876

10.01 
10.00 
10.02 
10.03 
10.01 
10.01 
10.00 
10.01 
9.97 
9.93 

1
5
0
4
3
2
1
4
5
5

3.33 
16.67 
0.00 

13.33 
10.00 
6.67 
3.33 

13.33 
16.67 
16.67 

0.33 
1.67 
0.00 
1.33 
1.00 
0.67 
0.33 
1.33 
1.67 
1.68 

-1.10 
0.51 
NaN
0.28 
0.00 

-0.41 
-1.10 
0.29 
0.51 
0.52 

0.07 
-0.08 
0.11 

-0.04 
0.00 
0.04 
0.07 

-0.04 
-0.08 
-0.08 

-1.17 
0.59 
NaN
0.32 
0.00 

-0.44 
-1.17 
0.32 
0.59 
0.60 

-1.15
1.2

NaN
0.6

0
-0.61
-1.15

0.6
1.21
1.21

0.35117 0.041 

Si
(ppm)

10.801-16.979
16.980-18.317
18.318-19.271
19.272-20.521
20.522-21.914
21.915-23.443
23.444-25.021
25.022-27.559
27.560-31.012
31.013-96.079

116655
116728
116675
116693
116619
116686
116607
116627
116583
116565

10.00 
10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 
9.99 

3
0
2
5
5
2
1
4
2
6

10.00 
0.00 
6.67 

16.67 
16.67 
6.67 
3.33 

13.33 
6.67 

20.00 

1.00 
0.00 
0.67 
1.67 
1.67 
0.67 
0.33 
1.33 
0.67 
2.00 

0.00 
NaN
-0.41 
0.51 
0.51 

-0.41 
-1.10 
0.29 

-0.40 
0.69 

0.00 
0.11 

-0.41 
-0.08 
-0.08 
0.04 
0.07 

-0.04 
0.04 

-0.12 

0.00 
NaN
-0.44 
0.59 
0.59 

-0.44 
-1.17 
0.33 

-0.44 
0.81 

0
NaN
-0.6
1.2
1.2

-0.6
-1.15
0.61
-0.6
1.78

0.00182 0.039 

Sr
(ppb)

8.00-20.48
20.49-42.65
42.66-57.42
57.43-66.48
66.49-71.81
71.82-76.94
76.95-84.38
84.39-96.47

96.48-134.78
134.79-499.92

116702
116644
116749
116649
116821
116630
116686
116540
116509
116508

10.00 
10.00 
10.01 
10.00 
10.02 
10.00 
10.00 
9.99 
9.99 
9.99 

2
6
1
2
2
3
7
3
4
0

6.67 
20.00 
3.33 
6.67 
6.67 

10.00 
23.33 
10.00 
13.33 
0.00 

0.67 
2.00 
0.33 
0.67 
0.67 
1.00 
2.33 
1.00 
1.33 
0.00 

-0.41 
0.69 

-1.10 
-0.41 
-0.41 
0.00 
0.85 
0.00 
0.29 
NaN

0.04 
-0.12 
0.07 
0.04 
0.04 
0.00 

-0.16 
0.00 

-0.04 
0.11 

-0.44 
0.81 

-1.17 
-0.44 
-0.44 
0.00 
1.01 
0.00 
0.33 
NaN

-0.6
1.78

-1.15
-0.6

-0.61
0

2.33
0

0.61
NaN

-0.01682 0.033 

Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

V
(ppb)

10.000-10.001
10.002-10.320
10.321-10.744
10.745-11.616
11.617-12.435
12.436-14.190
14.191-15.335
15.336-17.900
17.901-20.623
20.624-99.985

116806
116672
116623
116648
116656
116633
116625
116593
116598
116584

10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 

4
5
4
1
3
4
1
5
3
0

13.33 
16.67 
13.33 
3.33 

10.00 
13.33 
3.33 

16.67 
10.00 
0.00 

1.33 
1.67 
1.33 
0.33 
1.00 
1.33 
0.33 
1.67 
1.00 
0.00 

0.29 
0.51 
0.29 

-1.10 
0.00 
0.29 

-1.10 
0.51 
0.00 
NaN

-0.04 
-0.08 
-0.04 
0.07 
0.00 

-0.04 
0.07 

-0.08 
0.00 
0.11 

0.32 
0.59 
0.33 

-1.17 
0.00 
0.33 

-1.17 
0.59 
0.00 
NaN

0.6
1.2

0.61
-1.15

0
0.61

-1.15
1.2

0
NaN

0.30635 0.040 

W
(ppb)

1.000-2.152
2.153-2.458
2.459-2.683
2.684-2.988
2.989-3.363
3.364-4.015
4.016-4.478
4.479-4.946
4.947-6.530

6.531-49.994

116858
116646
116776
116706
116762
116577
116788
116606
116366
116353

10.02 
10.00 
10.01 
10.01 
10.01 
9.99 

10.01 
10.00 
9.98 
9.98 

1
2
4
4
0
5
4
6
4
0

3.33 
6.67 

13.33 
13.33 
0.00 

16.67 
13.33 
20.00 
13.33 
0.00 

0.33 
0.67 
1.33 
1.33 
0.00 
1.67 
1.33 
2.00 
1.34 
0.00 

-1.10 
-0.41 
0.29 
0.29 
NaN
0.51 
0.29 
0.69 
0.29 
NaN

0.07 
0.04 

-0.04 
-0.04 
0.11 

-0.08 
-0.04 
-0.12 
-0.04 
0.11 

-1.17 
-0.44 
0.32 
0.32 
NaN
0.59 
0.32 
0.81 
0.33 
NaN

-1.15
-0.6
0.6
0.6

NaN
1.2
0.6

1.78
0.61
NaN

-0.08502 0.040 

Zn
(ppb)

1.00-3.28
3.29-4.34
4.35-5.21
5.22-6.13
6.14-7.22
7.23-8.81

8.82-11.02
11.03-13.62
13.63-21.96
21.97-49.99

117143
117519
117200
116683
116931
116420
116562
116052
115998
115930

10.04 
10.08 
10.05 
10.00 
10.02 
9.98 
9.99 
9.95 
9.94 
9.94 

4
3
1
2
3
3
2
2
4
6

13.33 
10.00 
3.33 
6.67 

10.00 
10.00 
6.67 
6.67 

13.33 
20.00 

1.33 
0.99 
0.33 
0.67 
1.00 
1.00 
0.67 
0.67 
1.34 
2.01 

0.28 
-0.01 
-1.10 
-0.41 
0.00 
0.00 

-0.40 
-0.40 
0.29 
0.70 

-0.04 
0.00 
0.07 
0.04 
0.00 
0.00 
0.04 
0.04 

-0.04 
-0.12 

0.32 
-0.01 
-1.18 
-0.44 
0.00 
0.00 

-0.44 
-0.44 
0.33 
0.82 

0.6
-0.01
-1.16
-0.6

0
0

-0.6
-0.6
0.62
1.79

0.06363 0.047 

Magnetic
anomaly

(nT)

-145--101
-100--92
-91--83
-82--76
-75--68
-67--59
-58--49
-48--32
-31--9
-8-153

128137
121586
118890
131697
118478
115975
115502
110107
105926
100140

10.99 
10.42 
10.19 
11.29 
10.16 
9.94 
9.90 
9.44 
9.08 
8.59 

3
4
6
3
3
4
0
4
1
2

10.00 
13.33 
20.00 
10.00 
10.00 
13.33 
0.00 

13.33 
3.33 
6.67 

0.91 
1.28 
1.96 
0.89 
0.98 
1.34 
0.00 
1.41 
0.37 
0.78 

-0.09 
0.25 
0.67 

-0.12 
-0.02 
0.29 
NaN
0.35 

-1.00 
-0.25 

0.01 
-0.03 
-0.12 
0.01 
0.00 

-0.04 
0.10 

-0.04 
0.06 
0.02 

-0.10 
0.28 
0.79 

-0.14 
-0.02 
0.33 
NaN
0.39 

-1.06 
-0.27 

-0.17
0.52
1.73

-0.22
-0.03
0.62
NaN
0.72

-1.05
-0.37

-0.00592 0.040 

Distance
from fault

(m)

0-120
123-256
258-408
416-577
579-771
774-993

994-1268
1271-1632
1633-2292
2294-6224

119087
118526
118732
117138
115748
115764
115499
115411
115313
115220

10.21 
10.16 
10.18 
10.04 
9.92 
9.92 
9.90 
9.89 
9.89 
9.88 

0
4
3
6
5
2
2
6
0
2

0.00 
13.33 
10.00 
20.00 
16.67 
6.67 
6.67 

20.00 
0.00 
6.67 

0.00 
1.31 
0.98 
1.99 
1.68 
0.67 
0.67 
2.02 
0.00 
0.67 

NaN
0.27 

-0.02 
0.69 
0.52 

-0.40 
-0.40 
0.70 
NaN
-0.39 

0.11 
-0.04 
0.00 

-0.12 
-0.08 
0.04 
0.04 

-0.12 
0.10 
0.04 

NaN
0.31 

-0.02 
0.81 
0.60 

-0.43 
-0.43 
0.82 
NaN
-0.43 

NaN
0.57

-0.03
1.77
1.22

-0.59
-0.59

1.8
NaN
-0.59

0.00004 0.040
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Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

V
(ppb)

10.000-10.001
10.002-10.320
10.321-10.744
10.745-11.616
11.617-12.435
12.436-14.190
14.191-15.335
15.336-17.900
17.901-20.623
20.624-99.985

116806
116672
116623
116648
116656
116633
116625
116593
116598
116584

10.01 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
10.00 
9.99 

4
5
4
1
3
4
1
5
3
0

13.33 
16.67 
13.33 
3.33 

10.00 
13.33 
3.33 

16.67 
10.00 
0.00 

1.33 
1.67 
1.33 
0.33 
1.00 
1.33 
0.33 
1.67 
1.00 
0.00 

0.29 
0.51 
0.29 

-1.10 
0.00 
0.29 

-1.10 
0.51 
0.00 
NaN

-0.04 
-0.08 
-0.04 
0.07 
0.00 

-0.04 
0.07 

-0.08 
0.00 
0.11 

0.32 
0.59 
0.33 

-1.17 
0.00 
0.33 

-1.17 
0.59 
0.00 
NaN

0.6
1.2

0.61
-1.15

0
0.61

-1.15
1.2

0
NaN

0.30635 0.040 

W
(ppb)

1.000-2.152
2.153-2.458
2.459-2.683
2.684-2.988
2.989-3.363
3.364-4.015
4.016-4.478
4.479-4.946
4.947-6.530

6.531-49.994

116858
116646
116776
116706
116762
116577
116788
116606
116366
116353

10.02 
10.00 
10.01 
10.01 
10.01 
9.99 

10.01 
10.00 
9.98 
9.98 

1
2
4
4
0
5
4
6
4
0

3.33 
6.67 

13.33 
13.33 
0.00 

16.67 
13.33 
20.00 
13.33 
0.00 

0.33 
0.67 
1.33 
1.33 
0.00 
1.67 
1.33 
2.00 
1.34 
0.00 

-1.10 
-0.41 
0.29 
0.29 
NaN
0.51 
0.29 
0.69 
0.29 
NaN

0.07 
0.04 

-0.04 
-0.04 
0.11 

-0.08 
-0.04 
-0.12 
-0.04 
0.11 

-1.17 
-0.44 
0.32 
0.32 
NaN
0.59 
0.32 
0.81 
0.33 
NaN

-1.15
-0.6
0.6
0.6

NaN
1.2
0.6

1.78
0.61
NaN

-0.08502 0.040 

Zn
(ppb)

1.00-3.28
3.29-4.34
4.35-5.21
5.22-6.13
6.14-7.22
7.23-8.81

8.82-11.02
11.03-13.62
13.63-21.96
21.97-49.99

117143
117519
117200
116683
116931
116420
116562
116052
115998
115930

10.04 
10.08 
10.05 
10.00 
10.02 
9.98 
9.99 
9.95 
9.94 
9.94 

4
3
1
2
3
3
2
2
4
6

13.33 
10.00 
3.33 
6.67 

10.00 
10.00 
6.67 
6.67 

13.33 
20.00 

1.33 
0.99 
0.33 
0.67 
1.00 
1.00 
0.67 
0.67 
1.34 
2.01 

0.28 
-0.01 
-1.10 
-0.41 
0.00 
0.00 

-0.40 
-0.40 
0.29 
0.70 

-0.04 
0.00 
0.07 
0.04 
0.00 
0.00 
0.04 
0.04 

-0.04 
-0.12 

0.32 
-0.01 
-1.18 
-0.44 
0.00 
0.00 

-0.44 
-0.44 
0.33 
0.82 

0.6
-0.01
-1.16
-0.6

0
0

-0.6
-0.6
0.62
1.79

0.06363 0.047 

Magnetic
anomaly

(nT)

-145--101
-100--92
-91--83
-82--76
-75--68
-67--59
-58--49
-48--32
-31--9
-8-153

128137
121586
118890
131697
118478
115975
115502
110107
105926
100140

10.99 
10.42 
10.19 
11.29 
10.16 
9.94 
9.90 
9.44 
9.08 
8.59 

3
4
6
3
3
4
0
4
1
2

10.00 
13.33 
20.00 
10.00 
10.00 
13.33 
0.00 

13.33 
3.33 
6.67 

0.91 
1.28 
1.96 
0.89 
0.98 
1.34 
0.00 
1.41 
0.37 
0.78 

-0.09 
0.25 
0.67 

-0.12 
-0.02 
0.29 
NaN
0.35 

-1.00 
-0.25 

0.01 
-0.03 
-0.12 
0.01 
0.00 

-0.04 
0.10 

-0.04 
0.06 
0.02 

-0.10 
0.28 
0.79 

-0.14 
-0.02 
0.33 
NaN
0.39 

-1.06 
-0.27 

-0.17
0.52
1.73

-0.22
-0.03
0.62
NaN
0.72

-1.05
-0.37

-0.00592 0.040 

Distance
from fault

(m)

0-120
123-256
258-408
416-577
579-771
774-993

994-1268
1271-1632
1633-2292
2294-6224

119087
118526
118732
117138
115748
115764
115499
115411
115313
115220

10.21 
10.16 
10.18 
10.04 
9.92 
9.92 
9.90 
9.89 
9.89 
9.88 

0
4
3
6
5
2
2
6
0
2

0.00 
13.33 
10.00 
20.00 
16.67 
6.67 
6.67 

20.00 
0.00 
6.67 

0.00 
1.31 
0.98 
1.99 
1.68 
0.67 
0.67 
2.02 
0.00 
0.67 

NaN
0.27 

-0.02 
0.69 
0.52 

-0.40 
-0.40 
0.70 
NaN
-0.39 

0.11 
-0.04 
0.00 

-0.12 
-0.08 
0.04 
0.04 

-0.12 
0.10 
0.04 

NaN
0.31 

-0.02 
0.81 
0.60 

-0.43 
-0.43 
0.82 
NaN
-0.43 

NaN
0.57

-0.03
1.77
1.22

-0.59
-0.59

1.8
NaN
-0.59

0.00004 0.040
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Factor
Likelihood ratio Weight of evidence Logistic ANN

Classa No. of 
pixels %Area Mineral 

occ. %occ. LS W+ W- C C/S(c) Coefficient Weight

Lithology

Ogl
lgr
Di

Hagr
Hb
Oyb
Qr
Qd
Kad
Kbd
Kfl
Kgp
Kh
Kj

Kqp
Ksgr
Jigr
Jgr
Jbs
Jbc
TRn
TRn1
TRn2
TRn3
TRg
Ps
Ch
Oj

Omg
Odu
Od

CEw
CEp
CEm
CEj

PCEt
Jugr

1064
4841

14
245

2281
1022

49757
533
136
881

3
359
262
792
520

9862
19233
3466
584

3969
20281
20837
12158
6944

53754
18150
69942
78322

215666
89243
6794

129104
112818
58514
17535

103955
52597

0.09
0.42
0.00
0.02
0.20
0.09
4.27
0.05
0.01
0.08
0.00
0.03
0.02
0.07
0.04
0.85
1.65
0.30
0.05
0.34
1.74
1.79
1.04
0.60
4.61
1.56
6.00
6.71

18.49
7.65
0.58

11.07
9.67
5.02
1.50
8.91
4.51

0
0
0
0
2
0
2
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
8
4
0
2
5
2
0
2
1

0.00
0.00
0.00
0.00
6.67
0.00
6.67
0.00
0.00
3.33
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
3.33

26.67
13.33
0.00
6.67

16.67
6.67
0.00
6.67
3.33

0.00
0.00
0.00
0.00

34.09
0.00
1.56
0.00
0.00

44.13
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.50
1.44
1.74
0.00
0.60
1.72
1.33
0.00
0.75
0.74

NaN
NaN
NaN
NaN
3.53
NaN
0.45
NaN
NaN
3.79
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.70
0.37
0.56
NaN
-0.51
0.54
0.28
NaN
-0.29
-0.30

0.00
0.00
0.00
0.00

-0.07
0.00

-0.03
0.00
0.00

-0.03
0.00
0.00
0.00
0.00
0.00
0.01
0.02
0.00
0.00
0.00
0.02
0.02
0.01
0.01
0.05
0.02
0.06
0.04

-0.11
-0.06
0.01
0.05

-0.08
-0.02
0.02
0.02
0.01

NaN
NaN
NaN
NaN
0.73
NaN
0.73
NaN
NaN
1.02
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
1.02
0.41
0.54
NaN
0.73
0.49
0.73
NaN
0.73
1.02

NaN
NaN
NaN
NaN
4.91
NaN
0.64
NaN
NaN
3.76
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN
-0.72
1.14
1.15
NaN
-0.76
1.28
0.41
NaN
-0.43
-0.31

-0.79271
-2.99730
-3.16070
-3.47459
10.07286
-0.51637
8.17128

-1.22621
-2.89905
12.63237
-3.09662
-1.04403

0.000
-1.76128
-2.28572
-2.77574
-3.95983
-1.67798
-1.98813
-1.88599
-0.62395
-1.69936
-1.51514
-1.19401
-1.57190
-2.17348
-2.64278
7.71043
9.53209
9.21845

-1.93977
7.93944
8.46568
7.29037

-3.67962
7.03664
6.39501

0.038 

aUsing the quantile classification method
b0: -18.75337 ; slope coefficients of the logistic regression

where W +
i and W −

i of the binary pattern of each factors’class.The magnitude of the contrast, C, is determined from thedifference, W + and W −. The Studentized C, calculatedas the ratio of C to its standard deviation, C/s(C), servesas a guide to the statistical significance of the spatialassociation, and becomes useful in determining cutoff valueto convert multiclass data into binary maps. The standarddeviation of C is calculated as:
S(C ) = √S2(W +) + S2(W −) (6)

In this study the cutoff value was chosen based on themaximum Stucentized C. The binary maps were assignedweights (Table 1), and combined according to Equation (7).The mineral potential map using MPIW was shown inFigure 5.
MPIW =∑W oe, (7)

where W oe = W + and W − of the binary map for eachfactor.
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Figure 4. Au-Ag mineral potential map based on likelihood ratio model.

5.3. Logistic regression
Logistic regression is a multivariate analysis method. Thisis used to form a multivariate regression relation betweenindependent variables (e.g., occurrence-related factors) anda dependent variable (e.g., a deposit occurrence). The ad-vantage of logistic regression is that, through the additionof an appropriate link function to a usual linear regressionmodel, the variables may be either continuous or discrete,or any combination of both types [26]. For this study, thedependent variable must be input as either 0 or 1 repre-senting presence or absence of the deposit occurrence, sothe method applies well to mineral potential analysis [1].Logistic regression coefficients can be used to estimateodds ratios for each of independent variables in the model.The relationship between the deposit occurrence and itsdependency on several variables can be expressed as:

p = exp(z)/(1 + exp(z)) (8)
where p is the probability of the deposit occurrence and
z is parameter. The probability varies from 0 to 1 on anS-shaped curve and z is the linear combination. It followsthat logistic regression involves fitting an equation of thefollowing form to the data:

z = b0 + b1x1 + b2x2 + · · ·+ bnxn (9)
where b0 is the y-axis intercept, bi(i = 0, 1, 2, · · · , n) arethe slope coefficients of the logistic regression model and
xi(i = 0, 1, 2, · · · , n) are the independent variables. Thelogistic regression coefficient values are listed in Table 1.The mineral potential map was made using MPILO (Equa-tions (8) and (9)), shown in Figure 6.
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Figure 5. Au-Ag mineral potential map based on weight of evidence model.

5.4. Artificial neural network
The purpose of an artificial neural network is to builda model of the data-generating process so that the net-work can generalize and predict outputs from inputs [28].Mineral potential was analyzed using an artificial neuralnetwork program that was partially modified and upgradedfrom the original version developed by Tsoukalas et al. [46]in the MATLAB package. For analysis of mineral potential,training sites were set to the locations of known depositoccurrence and non-occurrence. From each of the twoclasses, 30 grid cells per class were selected as trainingcells. The result of the likelihood ratio model was used toselect training areas for supervised classification. Withinthe lower 10% of the mineral potential index values thatwere calculated by likelihood ratio model, 30 cells wereselected randomly and the cells used as zero mineral poten-

tial areas. In addition, 30 cells of the known deposit usedas areas susceptible to mineral potential. A three-layeredfeed forward network was implemented in MATLAB usingthe artificial neural network program. In this study, the 26(input) × 52 (hidden) × 2 (output) structure was selectedfor the networks with input data normalized to the range0.0 to 1.0. The learning rate parameter was set to 0.01 andthe momentum parameter was set to 0.01. The selecteddeposit-prone training sites were assigned to values of(0.1, 0.9) and the non-deposit-prone training sites were as-signed (0.9, 0.1). To lessen the error between the predictedoutput values and the actually calculated output values,the back propagation algorithm was used. The algorithmpropagates the weights backwards and then controls theweights. The mineral potential index value was acquiredby calculating the weights determined from back propaga-
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Figure 6. Au-Ag mineral potential map based on the logistic regression model.

tion and the spatial database. Then the mineral potentialmap was created. The weight and index values are shownin Table 1 and Figure 7.
6. Combining of mineral potential
maps using likelihood ratio model

The mineral potential maps from likelihood ratio, weightof evidence, logistic regression and artificial neural net-work models were combined to make combined mineralpotential map. For this, first, the mineral potential mapsfrom each model were compared with mineral deposit us-ing the likelihood ratio. The spatial relationship betweenmineral potential maps and mineral deposits is presentedin Table 2. The ratio of each potential maps’ class area

for the total area was calculated and the likelihood ratioswere ultimately obtained by dividing the mineral deposit-occurrence ratio by the ratio of each class.The likelihood ratio value was set to the range of eachmineral potential map values, which are reclassified into10 classes to the equal area. The likelihood ratios for eachclass of mineral potential maps (Table 2) were summed tocalculate CMPIL (Combined Mineral Potential Index), asshown in Equation (10):
CMPIL =∑MPI (10)

where MPI = likelihood ratio for each class of four mineralpotential maps (e.g., MPIL, MPIW , MPILO , and MPIANN ).The combined mineral potential map that was made usingEquation (10. If the CMPIL values are high, there existsa greater potential for a mineral deposit than where the
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Figure 7. Au-Ag mineral potential map based on the artificial neural network model.

values are low. The index values for each mineral potentialmap were classified into four classes based on area forvisual and easy interpretation; highest 5%, second 10%,third 15% and reminding 70% (Figures 4, 5, 6, 7 and 8).
7. Verification

The verification can ascertain the quality of mineral poten-tial maps which created using the frequency ratio, weightof evidence, logistic regression and artificial neural net-work models. The verification method was performed bycomparison of verification-mineral deposit data and min-eral potential analysis results. For this, the success ratecurves were drawn and the areas under the curve weredetermined in each case. The success rate shows how

well the model and factors predict the mineral depositoccurrence; thus, the area under the curve qualitativelyassesses the prediction accuracy. To obtain the relativeranking for each prediction pattern, the calculated valuesof all the cells in mineral potential map were sorted inthe descending order. The ordered cell values were thendivided into 100 classes with accumulated 1% intervals.As a result, the 90–100% class (10%) in which the mineralpotential index had a high rank could explain 25%, 33%,33% and 31% of all the mineral deposit occurrences usingthe likelihood ratio, weight of evidence, logistic regressionand artificial neural networks models (Figure 9).
To compare the result quantitatively, the areas under thecurve (AUC) were re-calculated as if the total area wereone, which indicates perfect prediction accuracy [25]. Thearea beneath a curve can therefore be used to assess
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Table 2. Likelihood ratio for each class of mineral potential maps analyzed from four different models.

Mineral 
potential map

Likelihood ratio
Classa No. of pixels %Area Mineral occ. %occ. LS

MPIL

10.24-18.40
18.41-21.07
21.08-23.03
23.04-24.58
24.59-25.99
26.00-27.48
27.49-29.04
29.05-30.81
30.82-33.36
33.37-62.28

117111
117039
116964
116891
116920
116428
116344
116729
116099
115913

10.04
10.03
10.03
10.02
10.02
9.98
9.97

10.01
9.95
9.94

0
0
1
0
0
0
2
4
3

20

0.00
0.00
3.33
0.00
0.00
0.00
6.67

13.33
10.00
66.67

0.00
0.00
0.33
0.00
0.00
0.00
0.67
1.33
1.00
6.71

MPIW

-2.92-2.63
-2.62-2.14
-2.13-1.79
-1.78-1.37
-1.36-1.13
-1.12-0.63
-0.62-0.22
-0.21-0.47
0.48-1.59
1.60-8.14

152890
172099
105338
109198
104875
108054
104360
106455
101870
101299

13.11
14.75
9.03
9.36
8.99
9.26
8.95
9.13
8.73
8.68

2
3
1
0
1
1
0
5
4

13

6.67
10.00
3.33
0.00
3.33
3.33
0.00

16.67
13.33
43.33

0.51
0.68
0.37
0.00
0.37
0.36
0.00
1.83
1.53
4.99

MPILO

0
0.0000001-0.0000086
0.0000087-0.0000148
0.0000149-0.0000214
0.0000215-0.0000292
0.0000293-0.0000380
0.0000381-0.0000501
0.0000502-0.0000671
0.0000672-0.0000993
0.0000994-0.0042986

161883
112363
112165
112221
112001
111232
111880
111408
110854
110431

13.88
9.63
9.62
9.62
9.60
9.54
9.59
9.55
9.50
9.47

0
0
0
0
3
1
4
7
4

11

0.00
0.00
0.00
0.00

10.00
3.33

13.33
23.33
13.33
36.67

0.00
0.00
0.00
0.00
1.04
0.35
1.39
2.44
1.40
3.87

MPIANN

0.0824-0.3497
0.3498-0.4999
0.5000-0.5929
0.5930-0.6648
0.6649-0.7199
0.7200-0.7681
0.7682-0.8135
0.8136-0.8577
0.8578-0.9014
0.9015-0.9748

116730
116682
116771
116677
116680
116692
116601
116752
116582
116271

10.01
10.00
10.01
10.00
10.00
10.00
10.00
10.01
9.99
9.97

0
0
0
1
0
2
2
4
4

17

0.00
0.00
0.00
3.33
0.00
6.67
6.67

13.33
13.33
56.67

0.00
0.00
0.00
0.33
0.00
0.67
0.67
1.33
1.33
5.68

aUsing the quantile classification method

the prediction accuracy qualitatively. The area under thecurve is shown in Figure 9. The area ratios were 0.7224,0.6585, 0.7223 and 0.7102 and we could say the predic-tion accuracies are 72.24%, 65.85%, 72.23% and 71.02%,respectively.The combined mineral potential maps have verified usingthe same method. As a result, the 90–100% class (10%)and 80-100% class (20%) in whom the mineral potentialindex had a high rank could explain 50% and 56% of all

the mineral deposit occurrences, respectively. The arearatio was 0.8397 and we could say the prediction accuracyis 83.97%.
8. Discussion and conclusion
A Geographic Information System (GIS) in concert with sta-tistical software was used to compile, manipulate, analyze
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Figure 8. Combined Au-Ag mineral potential map based on likelihood ratio model.

and visualize a large geology, geochemical and geophys-ical dataset collected from the Taebaeksan mineralizedarea of Eastern Korea. The likelihood ratio, weight ofevidence, logistic regression and artificial neural networkmodels proved useful techniques for combining the geology,geochemical and geophysical maps produced in this study.Moreover, the combination of the models has applied toget the better accuracy than each model.To compare the result quantitatively, we determined thatthe prediction accuracy. In the likelihood ratio model used,prediction accuracy was 72.24%. In the weight of evidencemodel, prediction accuracy was 65.85%, in the logisticregression model, prediction accuracy was 72.23% and inthe artificial neural networks model, prediction accuracywas 71.02%. But the prediction accuracy for the combinedmineral potential map was 83.97%. Overall, the combined

mineral potential map gave higher accuracy than the eachmineral potential map. We conclude that the combinedmodels gave high prediction accuracy based on the mineralpotential mapping in the study area.The models are useful, not only for comparing the concen-tration of geochemical elements with the location of Au-Agprospects, but also for providing a quantitative measure ofthe association between the concentration of geochemicalelements and Au-Ag prospects. Furthermore, the mapsgenerated by the models not only predict known areas ofAu-Ag occurrence but also identify areas of potential min-eralization where no known deposit occurs. A number ofareas within the study area have been identified as havinghigh Au-Ag potential. Many of these areas coincide withareas of known deposits. Others, however, are enigmaticand await follow-up exploration.
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Figure 9. Illustration of cumulative frequency diagram showing mineral potential index rank (x-axis) occurring in cumulative percent
of mineral deposit occurrence (y-axis).
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