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Abstract: Earthquakes are one of the most important natural hazards to be evaluated carefully in engineering projects,
due to the severely damaging effects on human-life and human-made structures. The hazard of an earthquake
is defined by several approaches and consequently earthquake parameters such as peak ground acceleration
occurring on the focused area can be determined. In an earthquake prone area, the identification of the seismicity
patterns is an important task to assess the seismic activities and evaluate the risk of damage and loss along with
an earthquake occurrence. As a powerful and flexible framework to characterize the temporal seismicity changes
and reveal unexpected patterns, Poisson hidden Markov model provides a better understanding of the nature of
earthquakes. In this paper, Poisson hidden Markov model is used to predict the earthquake hazard in Bilecik (NW
Turkey) as a result of its important geographic location. Bilecik is in close proximity to the North Anatolian Fault
Zone and situated between Ankara and Istanbul, the two biggest cites of Turkey. Consequently, there are major
highways, railroads and many engineering structures are being constructed in this area. The annual frequencies
of earthquakes occurred within a radius of 100 km area centered on Bilecik, from January 1900 to December
2012, with magnitudes (M) at least 4.0 are modeled by using Poisson-HMM. The hazards for the next 35 years
from 2013 to 2047 around the area are obtained from the model by forecasting the annual frequencies of M ≥ 4
earthquakes.
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1. Introduction

Earthquakes are one of the severe catastrophic naturalevents. They are created by the active faults, andtherefore, the location of an earthquake can be estimated.However, the occurrence time of an earthquake isunpredictable and has no a known systematic pattern.
∗E-mail: candan_gokceoglu@yahoo.co.uk

The magnitude and the occurrence time of an earthquakeare affected by various uncontrolled natural factors. Theprimitive approach for the detection of temporal variationof earthquake occurrence is to count the number ofearthquakes in a given period of time and then to analyzethe time series by a rough calculation. Various statisticalmethods have been used to predict earthquake hazards forthe last few decades. A traditional way for modeling theoccurrences within a certain time is to define a Poissonprocess (PP). However, there are two major drawbacksstand out during the modeling of earthquakes by Poisson
403



Prediction of Earthquake Hazard by Hidden Markov Model

process. The first drawback comes from the most widelyknown property of Poisson distribution that is the equalityof the variance and the mean of the process. In somecases, the variance can be greater than the mean andthe data indicates over-dispersion. There may be someperiods of time with a high rate of earthquake occurrencesand some with a relatively low rate[1]. Earthquakeoccurrences in time display considerable over-dispersion.Therefore, Poisson process is not a suitable stochasticmodel for modeling the data when over-dispersion problemis observed. To overcome the problem, independentPoisson mixture model can be suggested as alternativemodel. The second drawback is sourced from thememorylessness property of Poisson process. The datacollected from the same area in successive time intervalstends to be dependent. The dependency structure ofthe data violates the memorylessness property of Poissonprocess and therefore the model becomes insufficient forthe serially dependent count data. To overcome theproblem, Markov chain is widely used as an effective toolto represent the serial dependent structure in the data.Although the deterministic functions of the Markov chainshave been extensively studied on earthquake hazardanalysis, hidden Markov model (HMM), which representsa probabilistic functions of finite state Markov chains,recently becomes a popular tool for the earthquake data.HMM first introduced by Baum and Petrie [2] allows foroverdispersion together with the dependence between thedata [3, 4]. HMM assumes that the state of the underlyingsystem at any time t is unobservable. Therefore, thesystem follows a hidden process having the Markovproperty [1, 5, 6]. Observations are defined as the outputsof another stochastic process under the influence of hiddenprocess. All statistical inferences are made by means ofthrough this observable process.As the first application of HMM for Turkish earthquakedata except the presentation of Can et al. [7], thepresent paper aims to introduce Poisson hidden Markovmodel (PHMM) as a candidate model for assessing theearthquake hazard in Bilecik (NW Turkey). The modelassumes that the frequencies of earthquakes occurredin specified successive time intervals are derived fromthe family of Poisson distribution whose rate parameterprocess is a homogeneous Markov Chain. Rate parameterprocess makes PHMM allow the studied area to havevarying seismicity rate. In this paper, the observed annualfrequencies of earthquakes occurred within a radius of100 km area centered on Bilecik, from January 1900 toDecember 2012, with magnitudes M ≥ 4.0 are usedin PHMM. Then, the earthquake hazard in the areais predicted by determining the annual frequencies ofearthquakes for the next 35-year period (2013-2047).

Also, the forecast results of PHMM are compared to thoseof homogeneous PP.
2. Earthquake Data
Turkey is located on one of the most active seismicregions throughout the World. In Turkey, three importantearthquake sources such as the North Anatolian FaultZone, the East Anatolian Fault Zone and the AegeanHorst-Graben System exist. For this reason, Turkeyhas encountered large earthquakes frequently. Dueto these earthquakes, Bilecik has encountered seriousdamages. For example, the February 20, 1956 Inonuearthquake [8] affected a part of the study area of thisstudy. Additionally, the August 17, 1999 Izmit earthquakecaused serious damage in a large area including Bilecikand its surrounding. Bilecik is located on the betweenAnkara and Istanbul, two biggest cities of Turkey, and alsoit is close to the North Anatolian Fault Zone (Figure 1).Due to its geographic location, various transportationstructures such as bridges, viaducts and tunnels have beenconstructed or will be constructed. For these reasons, thecorrect earthquake prediction for Bilecik becomes moreimportant and hence this region is selected as the focusedarea.The data source is the catalogs of Boǧaziçi University,Kandilli Observatory and Earthquake ResearchInstitute [9]. The earthquakes occurred within a radius of100 km area centered on Bilecik are used, because in themajority of the strong ground motion relations suggestedfor tectonically active regions (e.g. [10–12], the upperbound for site- source distance is taken 100 km, whichis the range where ground motions have engineeringsignificance[13]. Observed annual frequencies of M ≥ 4.0earthquakes occurred in the area from 1900 to 2012 areshown in Figure 2. Generally, few earthquakes occurredper each year except for the years 1967, 1970 and 1999.It is shown that the sample variance, (S2 = 71.9823) islarger than the sample mean, (X = 2.2301). It indicatesa strong over-dispersion relative to Poisson distribution.It is also seen in Figure 2 that the minimum frequency is0 and the maximum is 71. The median of the data is 1and the mode is 0. As a result of the skewness coefficient,(γ1 = 6.5113), the distribution of the observed data isskewed to the right. The over-dispersion and skewnessof the data show that HMM is a suitable tool for theearthquake data.The data is checked whether it follows a specific Poissondistribution, a goodness of fit test is applied. It is seen thatthere is insufficient evidence to conclude that the data fitsa single Poisson distribution. It is generated from several
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Figure 1. Geographic distributions of the earthquake data used in the study.
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Figure 2. Histogram of annual frequencies of M ≥ 4.0 earthquakes.

Poisson distributions and this result supports us to useHMM instead of using a Poisson process.
3. Poisson Hidden Markov Model
Markov models deal with the problems of the systemswhich are directly observable. In the real-worldapplications, the underlying system can be unobservable;but, can only be observed through another stochasticprocess. The evaluation of these partially observedsystems is the major problem restricting the applicationareas of Markov models. HMM has a powerful and flexiblemathematical structure to make statistical inferences onpartially observed stochastic processes. It has beensuccessfully applied to many diverse areas, particularlyspeech recognition [14–16], finance/econometrics [6, 17–19], software reliability [20, 21], traffic engineering [22],Biology [23], language modeling [24, 25], metrology [26–29], bioinformatics [30–33], biophysics/biochemistry [34–36]. However, HMM has not as widely implemented asit should be in earthquake modeling. There have beenfew applications of HMM on earthquake problems [37–39] Orfanogiannaki et al. [3, 4, 40–42]). Granat andDonnellan [37] used HMM as an unsupervised learningmethod for clustering of earthquakes and determiningthe classes of similar earthquakes in southern Californiaregion. Chambers et al. [38] applied HMM to modelinterevent times between earthquakes in New England.Ebel et al. [39] implemented HMM to extrapolatethe future behavior of the past earthquake activity inCalifornia by using interevent earthquake times andthe locations in which they occur. Orfanogiannaki et
al. [3, 40, 41] employed HMM to explain the frequenciesof earthquakes occurred in specific time intervals for

predicting the earthquake hazard. Wu [42] proposed asimple approach for HMM to decluster earthquakes incentral and western regions of Japan. Chambers et al. [4]extended HMM to forecast the location of the earthquakesas well as interevent earthquake times in southernCalifornia and western Nevada. Let T = {0, 1, 2, . . . , T }a discrete-time horizon. HMM is a discrete-time bivariatestochastic process (X,Y) = (Xt , Yt)t∈T [1, 5, 43]
• X = (Xt)t∈T is a finite-state homogeneous Markovchain, which cannot be observable and thus referredas hidden process. Xt is the state of the underlyingsystem at time t.
• Y = (Yt)t∈T is an observable process which dependson probabilistically Markov chain X . Yt is theobservation at time t. Observations can be discreteor continuous. In our study, a discrete sequence ofobservations is considered.

The probabilistic relationship between X and Y is givenin Figure 3 [5, 44].It is seen that at each point of time t ∈ T, the conditionaldistribution of Yt given Xt has a probability distributioncoming from a specific family. X is considered as theparameter process having the Markov property. Accordingto unobservable parameter process, observations aregenerated by the state-dependent parametric distribution.In our study, HMM is used to forecast the frequenciesof earthquakes for the next 35-year period. Therefore,the state-dependent parametric distribution is chosen asPoisson distribution. PHMM is a discrete-time bivariatestochastic process which consists of an unobserved finitestate Markov chain X having N states and an observedsequence of a non-negative integer valued stochasticprocess Y. On the condition that the states of the system
XT = (X1, . . . , XT ) are known, YT = (Y1, . . . , YT ) areindependent of each other. PHMM is characterized bythe following five elements [14, 45, 46]

1. The Number of Hidden States (N): Eachobservation is derived from one of N Poissondistributions. The rate parameters of Poissondistributions are called hidden states of finite-state homogeneous Markov chain X. For N−StatePHMM, the finite set of N states is defined as= λ1, . . . , λN .
2. The State Transition Probability Distribution:Which state will derive the next observationdepends on which state derived the currentobservation through the state transition probabilitymatrix A = [aij ]N×N . State transition probability tomove from the state λi at time t to the state λj at
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Figure 3. The dependence structure of a HMM [7].

time t + 1 is given as aij = P(Xt+1 = λj |Xt = λi)for ∀λi, λj ∈ λ and t ∈ T.
3. The Domain of Observations per State: Eachobservation is non-negative integer valued.
4. The State-Dependent Probability Distribution:When the system is in state λi at time t, theobservation at that time is derived from Poissondistribution whose rate parameter is λi. Theconditional distribution of Yt given Xt is as follows
P(Yt = y|Xt = λi) = e

−λi
(λi)y
y! , ify = 0, 1, 2 . . .= 0, otherwise

5. The Initial State Distribution: The starting stateof the system is specified by the initial stateprobability vector π = [πi]1×N . Markov chain Xstarts at the state λi with the probability πi =
P(X1 = λi) for ∀λi ∈ λ.Given the above elements of PHMM, there are threefundamental problems of interest to be solved for real-world applications [14, 45, 46]

Problem 1.The Evaluation Problem: Given the observation sequence
YT = (Y1 . . . YT ) and model parameters, what is theprobability of the observation sequence? The solutioncan be seen as the likelihood (L) of the model and thusprovides the opportunity to choose the model which bestexplains the observations.
Problem 2.The Decoding Problem: Given the observation sequence
YT = (Y1 . . . YT ) and model parameters, what is the mostlikely state sequence XT = (X1 . . . XT ) which produces thegiven observation sequence? The hidden part of the modelis uncovered by this problem.

Problem 3.The Learning Problem: What are the optimal modelparameters which maximize the probability of the giventhe observation sequence YT = (Y1 . . . YT )? Due to thefact that the system is not directly observable, there is noanalytic solution for this problem. Iterative methods areused for optimization. Here, EM algorithm is employedin order to find maximum likelihood estimates (MLEs) ofPHMM parameters. EM algorithm does not guaranteedto converge at the global maximum and initials affect theMLEs of the parameters.
4. Application of Poisson Hidden
Markov Model and Results
The problems given in section 3 are solved in this section.The frequencies of M ≥ 4 earthquakes to occur instudied area for the next 35-year period are forecasted.The forecast results of PHMM are compared to those ofhomogeneous PP.
4.1. Model Selection
The first step is here to determine the number of hiddenstates for the selection procedure. Prior to the assessmentof the earthquake hazard, the MLEs of PHMM parametersare estimated by EM algorithm. EM algorithm assumesthat the number of hidden states are known and fixed.Therefore, first of all, the number of hidden states,which are really needed for the best explanation of theobservations, must be determined. Clearly, the numberof hidden states (N) affects the quality of the statisticalinferences. When likelihood of the model is taken intoaccount, increasing N always improves the fit of HMM.However, the improvement of the likelihood results inquadratic increase in the number of parameters (p) andthis improvement has to be balanced with the number of
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Figure 4. AIC and BIC for PHMMs with a different number of hidden
states.

hidden states being fitted [1].In order to compare HMMs with a fixed number of hiddenstates, Akaike’s Information Criterion (AIC) and BayesianInformation Criterion (BIC) can be used as statistics formodel selection. They are defined as follows [47, 48]
AIC = −2 ln L+ 2p
BIC = −2 ln L+ p ln(T )

where ln L is the log-likelihood of the fitted HMM, pis the number of freely estimated parameters and T isthe number of observations. The parameters of PHMMwith different number of hidden states are estimated byEM algorithm. 1000 iterations are realized for each ofPHMMs in the study. Initial values which satisfy thelog likelihoods as maximum are chosen from many sets ofrandom starting values. In Figure 4, the calculated valuesof AIC and BIC are given for PHMMs with the number ofhidden states numbered from one to six. Clearly, one-stateindicates a homogeneous PP.According to AIC, 3-State PHMM is the best model.Contrary to AIC, 2-State PHMM is proposed by BIC.It is seen that there is no agreement between thetwo information criterias. In order to decide the mostconvenient number of the hidden states among thealternatives, the likelihood ratio test is applied in thestudy. The null and the alternative hypotheses are statedas follows:
H0 : The number of hidden states isN
H1 : The number of hidden states is (N + 1)

The likelihood ratio test statistic (LRT) is defined asbelow:
χTest = −2(ln L0 − ln L1)χ̃df = df1 − df0

where the df is the number of freely estimated parametersfor the underlying PHMM [3]. The results for the possiblenumber of hidden states are reported in Table 1.According to P-values in Table 1, 3-State PHMM isdecided as the best model at 1% level of significance.In 3-State PHMM, it is assumed that, an observation isgenerated from one of three different Poisson distributionat each point of time t ∈ T. Its working principle of 3-State PHMM is defined schematically in Figure 5.In each counting time interval, earthquake occurrencesdepend on probabilistically Markov chain X. For instance,at time t, the observation Yt is derived from Poissondistribution whose rate parameter is λ1.The mean and variance of the frequencies of annualearthquake occurrences for 113 years (1900-2012) arecalculated for six different models in the study andthese statistics are given in Table 2. It indicates thatthe marginal distribution of 3-State PHMM meets over-dispersed observations as well.The observed numbers of years for each of theearthquake frequencies are compared to the expectednumbers of frequencies obtained from 3-State PHMM andhomogeneous PP. It can be seen that the observed andexpected numbers of years are found to be similar for3-State PHMM. A comparison of these two models fordifferent annual earthquake frequencies is presented inTable 3. According to the table, there was no M ≥ 4earthquake occurrence observed for 56 years within 113years and 3-State PHMM estimates that number as56.5577. The observed and estimated numbers are veryclose. It indicates that there is an agreement of 3-StatePHMM for the data and the model is suitable for furtherstatistical analysis. As a result of EM algorithm, MLEsof 3-State PHMM parameters are given in Table 4.
4.2. Prediction of Earthquake Hazard
The pattern of the hidden states in the model for the next35 years can be traced by calculating the state probabilitydistribution. The probabilities of the hidden states forthe coming 35 years are given in Figure 6. Here, thesystem in 2013 is assumed to have three states with theprobabilities 0.86, 0.12 and 0.02 respectively. It can beseen in Figure 6 that the first hidden state remains as themost commonly seen state for the next 35 years. Therefore,it can be concluded that M ≥ 4 earthquakes in the regionwill occur according to a Poisson distribution with the rateparameter, 0.4956 for the next 35 years.
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Table 1. Model Selection.

Model p -lnL df LRT P-ValuePP 1 557.4164 3 742.5178 <0.012-State PHMM 4 186.1575 5 27.7694 <0.013-State PHMM 9 172.2728 7 9.2294 0.2366*4-State PHMM 16 167.6581 9 2.667 0.97605-State PHMM 25 166.3246 11 7.8124 0.73006-State PHMM 36 162.4184

Figure 5. The working principle of 3-State PHMM.

Table 2. Comparison of Mean and Variances.

Observations
Mean Variance Variance-to-Mean Ratio2.2301 71.9823 32.2776

Mode
l

PS 2.2301 2.2301 1.00002-State 2.2419 66.7821 29.78823- State 2.2460 67.6174 30.10574- State 2.1210 62.0436 29.25215- State 2.1577 63.8925 29.61146- State 2.1577 69.0683 32.0101
The distribution of frequencies for M ≥ 4 earthquakesin the Zone is also forecasted for the next 35 years.According to data, the observed annual frequencies areranged from zero to seventy-four earthquakes. Theforecast distribution of the frequencies shows that thenumber of "0 to 5" earthquakes for the next 35 yearsare expected annually with the probability of 0.96 to0.97. It strongly indicates that only a few numbers ofearthquakes are expected to occur in the Zone between2013 and 2047 and thus, the probability of having morethan 5 earthquakes is considerably low. This result showsthat earthquake hazard in the Zone is small, which isa natural result of the system is expected to be in first

Figure 6. Hidden state prediction by 3-State PHMM for the Next 35
Years.

state (λ1 = 0.4956) for the next 35-year period. Theprobabilities of earthquake frequencies ranging from 0 to5 are shown in Figure 7. Due to the fact that Markovchain X reaches its stationary distribution piS at 2022,the next 10 years are reported only in Figure 7.As a result of the fact that Markov chain X reachesits stationary distribution within ten years, the expectedannual frequencies of M ≥ 4 earthquakes for the next 10years and 95% confidence intervals (CIs) are calculated by
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Table 3. Model Agreement Comparison for 3-State PHMM and PP.

Annual Earthquake Observed Numbers Expected Numbers of Years
Frequency of Years 3-State PSMM PP0 56 56.5577 12.14961 32 30.4497 27.09482 11 11.1066 30.21193 5 5.3278 22.45844 4 3.2296 12.5215 0 1.8323 5.58466 0 0.8929 2.07577 1 0.3749 0.66138 1 0.1379 0.18439 0 0.0451 0.045710 0 0.0133 0.0102
≥11 3 3.0323 0.0025TOTAL 113 113 113

Table 4. Parameter Estimations by EM Algorithm.

Parameters MLEsPoisson Rate Parameters λ = [λ1 λ2 λ3] = [0.4956 2.9425 50.6667]
State Transition Probability Distribution A =


0.8591 0.1219 0.01900.5743 0.3568 0.06890.6858 0.3142 0.000


Initial State Distribution π0 = [0 0 0]Stationary State Distribution πs = [0.8072 0.1660 0.0268]

Figure 7. The probabilities of earthquake frequencies in the range 0
to 5 for 2013-2022.

forecast frequency distribution. They are given in Table 5.It is seen that approximately two earthquakes per year areexpected to occur in the Zone within the next 35 years.

The expected frequencies in Table 1 show that 3-StatePHMM explains the earthquake data better than PP.In the following part of the study, 3-State PHMM andPP are compared in detailed by the predicting theearthquake hazards. The distributions of earthquakefrequencies for the next seven years are examined for theboth models. Although the probabilities are calculatedfor the frequencies ranging from zero to seventy-one,Figure 8 includes the considerably high frequencies andtheir related probabilities obtained from two models foreach year.Figure 8A shows that 3-State PHMM and PP predictthat less than 6 earthquakes will occur in a year with theprobability of 97%. Even if the two models forecast thesame probability, they differ in the amount of probabilitiesrelated to frequencies. Especially, the absence of anearthquake is more likely to occur in 3-State PHMM(52.8%) than PP (10.8%). It is seen in Figure 8B thatthe probabilities of having less than 6 earthquakes are91.4% for 3-State PHMM and 71% for PP respectively.
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Figure 8. Earthquake hazard within ”1 to 3” Years.

Table 5. Expected Annual Frequencies of M ≥ 4 Earthquakes for
the Next 10 Years.

Year
Expected

% 95 CI
Annual Frequency2013 1.785 [0.181 - 3.389]2014 2.121 [0.326 - 3.916]2015 2.211 [0.369 - 4.054]2016 2.235 [0.381 - 4.090]2017 2.242 [0.384 - 4.100]2018 2.244 [0.385 - 4.103]2019 2.244 [0.385 - 4.103]2020 2.244 [0.385 - 4.104]2021 2.244 [0.385 - 4.104]2022 2.244 [0.385 - 4.104]

Our model has the highest probabilities for the lowerfrequencies, while PP has the lowest probabilities forthe lower frequencies (for example 1.2% and 5.2% are theprobabilities for "0" and "1" earthquakes within 2 years).For 3-State PHMM, "0 to 5" earthquakes are expectedwith the probability of 83% in three years time. However,less than 6 earthquakes in three years are less likely tooccur for PP (34.2%).The earthquake hazards over the 10 years rapidly increasein PP. The traditional model tends to predict higherfrequencies than it should be in fact. For example, theprobability of less than eleven earthquakes decreasesfrom 71.5% to 9.2% within the four years starting from2015 (Figure 9). However, there is no sudden decreaseobserved in 3-State PHMM (Figure 9). Most likely,less than eleven earthquakes will occur within the years(89.1%, 84.9%, 79.8% and 73.8% respectively).

Expected numbers of M ≥ 4 earthquakes in the next 1 to7 years and their related 95% CIs are calculated for thetwo models and Table 6 shows the results. The expectednumbers found from the models are not significantlydifferent, but 95% CIs have quite different. Earthquakedata indicates strong over-dispersion. As a natural resultof over-dispersion, CIs are expected to be wider than theyshould be. In Table 6, the ranges of CIs for PP arefound narrower than those for 3-State PHMM as theyare expected.
5. Conclusion
The use of HMM to predict earthquake hazard iscarried out by Granat and Donnellan [37], Chambers
et al. [38], Ebel et al. [39], Orfanogiannaki et al. [3,40, 41], Wu [42] and Chambers et al. [4]. All previousstudies about earthquake data modeling by HMM exceptOrfanogiannaki et al. [3, 40, 41] are based on thecontinuous earthquake data and interevent earthquaketimes. The forecasting methodology followed in thepresent study is similar to Orfanogiannaki et al. [3].PHMM is applied to model the annual frequencies ofearthquakes occurred within a radius of 100 km areacentered on Bilecik, in the period between January1900 and December 2012, with magnitudes (M) atleast 4.0 by using data provided from the catalogs ofBoǧaziçi University, Kandilli Observatory and EarthquakeResearch Institute [9]. This study is the first applicationof PHMM to the Turkish earthquake data except a shortversion of this study presented by Can et al. [7]. Inaddition to Orfanogiannaki et al. [3], the forecast resultsof PHMM are compared to those of homogeneous PP.Predictions of hidden states for the next 35 years showthat earthquakes occurred in compliance with P(λ1 =
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Figure 9. Earthquake hazard within ”4 to 7” Years.

Table 6. Expected Numbers of Earthquakes over the years.

3-State PHMM PP
Time Horizon Expected

%95 CI
Expected

%95 CI
(within . . . years) Frequency Frequency1 1.782 [0.149-3.416] 2.230 [1.885-2.575]2 3.846 [1.448-6.243] 4.460 [3.972-4.948]3 5.921 [2.979-8.864] 6.690 [6.093-7.288]4 7.936 [4.577-11.294] 8.920 [8.230-9.610]5 9.866 [6.179-13.553] 11.150 [10.379-11.922]6 11.702 [7.750-15.654] 13.381 [12.536-14.225]7 13.435 [9.266-17.603] 15.611 [14.698-16.523]

0.50) are more likely to happen than those occurredin compliance with P(λ2 = 2.94) and P(λ3 = 50.67).Also, 0 to 5 numbers of M ≥ 4.0 earthquakes areexpected to occur with the probability not less than 0.96in the studied area for the next 35 years. As for themodeling and forecasting performance of HMM and PP,itis concluded that PHMM produces meaningful resultsto predict the annual frequencies for earthquakes of aparticular magnitude.One of the most important parameters used in thedesign of large engineering constructions is the horizontalacceleration resulted from earthquakes. The magnitudeof an earthquake is one of the main parameters used tocalculate the maximum horizontal acceleration. Therefore,

the use of the results obtained by PHMM provides crucialinformation for the prediction of the momentum which maycome upon the engineering structures. For the futurestudies, taking into consideration of HMM in earthquakehazard problems makes serious contributions to designmore economical and safer engineering structures.
References

[1] Zucchini W. and MacDonald I. L., Hidden MarkovModels for Time Series: An Introduction Using R,Chapman & Hall/CRC Monographs on Statistics &Applied Probability, Boca Raton, USA, 2009
412



C. Eda et al.

[2] Baum L. E. and Petrie T., Statistical Inferencefor Probabilistic Functions of Finite State MarkovChains, The Annals of Mathematical Statistics, 37(1),1966, 1554-1563[3] Orfanogiannaki K., Karlis D. and Papadopoulos G.A., Identifying Seismicity Levels via Poisson HiddenMarkov Models, Pure and Applied Geophysics, 167,2010, 919-931[4] Chambers D. W., Baglivo J. A., Ebel J. E. and KafkaA. L., Earthquake Forecasting Using Hidden MarkovModels, Pure and Applied Geophysics, 169, 2012,625-639[5] Cappe O., Moulines E. and Ryden T., Inference inHidden Markov Models, Springer Science+BusinessMedia, New York, USA, 2005[6] MacDonald I. L. and Zucchini W., Hidden MarkovModels and Other Models for Discrete-ValuedTime Series, Chapman & Hall/CRC Monographs onStatistics & Applied Probability, London, UK, 1997[7] Can C. E., Ergun, G., Gokceoglu C., Bilecikçevresinde deprem tehlikesinin saklı Markov modeliile tahmini. Proceedings of the Second TurkeyEarthquake Engineering and Seismology Conference,25-27 Eylül 2013 - MKÜ - Hatay, Turkey (inTurkish), 2013[8] Ocakoglu F., Acikalin S., Gokceoglu C., NefesliogluH. A., Sonmez, H., Back-analysis of the source ofthe 1956 Eskisehir Earthquake using attenuationequation and damage data, Bull Eng Geol Environ,66, 2007, 353-360[9] UIDM, Boǧaziçi University, Kandilli Observatory andEarthquake Research Institute, Web Address: http://www.koeri.boun.edu.tr/, 2013[10] Boore D. M., Joyner W. B., Fumal T. E., Equationsfor estimating horizontal response spectra andpeak acceleration from western North Americanearthquakes: a summary of recent work, Seismol. Res.
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