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Abstract: Earthquakes are one of the most important natural hazards to be evaluated carefully in engineering projects,
due to the severely damaging effects on human-life and human-made structures. The hazard of an earthquake
is defined by several approaches and consequently earthquake parameters such as peak ground acceleration
occurring on the focused area can be determined. In an earthquake prone area, the identification of the seismicity
patterns is an important task to assess the seismic activities and evaluate the risk of damage and loss along with
an earthquake occurrence. As a powerful and flexible framework to characterize the temporal seismicity changes
and reveal unexpected patterns, Poisson hidden Markov model provides a better understanding of the nature of
earthquakes. In this paper, Poisson hidden Markov model is used to predict the earthquake hazard in Bilecik (NW
Turkey) as a result of its important geographic location. Bilecik is in close proximity to the North Anatolian Fault
Zone and situated between Ankara and Istanbul, the two biggest cites of Turkey. Consequently, there are major
highways, railroads and many engineering structures are being constructed in this area. The annual frequencies
of earthquakes occurred within a radius of 100 km area centered on Bilecik, from January 1900 to December
2012, with magnitudes (M) at least 4.0 are modeled by using Poisson-HMM. The hazards for the next 35 years
from 2013 to 2047 around the area are obtained from the model by forecasting the annual frequencies of M > 4
earthquakes.
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1. IntrOductlon The magnitude and the occurrence time of an earthquake
are affected by various uncontrolled natural factors. The
primitive approach for the detection of temporal variation

of earthquake occurrence is to count the number of

Earthquakes are one of the severe catastrophic natural
events. They are created by the active faults, and
therefore, the location of an earthquake can be estimated.
However, the occurrence time of an earthquake is
unpredictable and has no a known systematic pattern.

*E-mail: candan_gokceoglu@yahoo.co.uk

earthquakes in a given period of time and then to analyze
the time series by a rough calculation. Various statistical
methods have been used to predict earthquake hazards for
the last few decades. A traditional way for modeling the
occurrences within a certain time is to define a Poisson
process (PP). However, there are two major drawbacks
stand out during the modeling of earthquakes by Poisson
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process. The first drawback comes from the most widely
known property of Poisson distribution that is the equality
of the variance and the mean of the process. In some
cases, the variance can be greater than the mean and
the data indicates over-dispersion. There may be some
periods of time with a high rate of earthquake occurrences
and some with a relatively low rate[1]. Earthquake
occurrences in time display considerable over-dispersion.
Therefore, Poisson process is not a suitable stochastic
model for modeling the data when over-dispersion problem
is observed. To overcome the problem, independent
Poisson mixture model can be suggested as alternative
model.  The second drawback is sourced from the
memorylessness property of Poisson process. The data
collected from the same area in successive time intervals
tends to be dependent. The dependency structure of
the data violates the memorylessness property of Poisson
process and therefore the model becomes insufficient for
the serially dependent count data. To overcome the
problem, Markov chain is widely used as an effective tool
to represent the serial dependent structure in the data.

Although the deterministic functions of the Markov chains
have been extensively studied on earthquake hazard
analysis, hidden Markov model (HMM), which represents
a probabilistic functions of finite state Markov chains,
recently becomes a popular tool for the earthquake data.
HMM first introduced by Baum and Petrie [2] allows for
overdispersion together with the dependence between the
data [3, 4]. HMM assumes that the state of the underlying
system at any time t is unobservable. Therefore, the
system follows a hidden process having the Markov
property [1, 5, 6]. Observations are defined as the outputs
of another stochastic process under the influence of hidden
process. All statistical inferences are made by means of
through this observable process.

As the first application of HMM for Turkish earthquake
data except the presentation of Can et al [7] the
present paper aims to introduce Poisson hidden Markov
model (PHMM) as a candidate model for assessing the
earthquake hazard in Bilecik (NW Turkey). The model
assumes that the frequencies of earthquakes occurred
in specified successive time intervals are derived from
the family of Poisson distribution whose rate parameter
process is a homogeneous Markov Chain. Rate parameter
process makes PHMM allow the studied area to have
varying seismicity rate. In this paper, the observed annual
frequencies of earthquakes occurred within a radius of
100 km area centered on Bilecik, from January 1900 to
December 2012, with magnitudes M > 4.0 are used
in PHMM. Then, the earthquake hazard in the area
is predicted by determining the annual frequencies of
earthquakes for the next 35-year period (2013-2047).

Also, the forecast results of PHMM are compared to those
of homogeneous PP.

2. Earthquake Data

Turkey is located on one of the most active seismic
regions throughout the World. In Turkey, three important
earthquake sources such as the North Anatolian Fault
Zone, the East Anatolian Fault Zone and the Aegean
Horst-Graben System exist. For this reason, Turkey
has encountered large earthquakes frequently. Due
to these earthquakes, Bilecik has encountered serious
damages. For example, the February 20, 1956 Inonu
earthquake [8] affected a part of the study area of this
study. Additionally, the August 17, 1999 Izmit earthquake
caused serious damage in a large area including Bilecik
and its surrounding. Bilecik is located on the between
Ankara and Istanbul, two biggest cities of Turkey, and also
it is close to the North Anatolian Fault Zone (Figure 1).
Due to its geographic location, various transportation
structures such as bridges, viaducts and tunnels have been
constructed or will be constructed. For these reasons, the
correct earthquake prediction for Bilecik becomes more
important and hence this region is selected as the focused
area.

The data source is the catalogs of Bogazici University,
Kandilli Observatory and Earthquake Research
Institute [9]. The earthquakes occurred within a radius of
100 km area centered on Bilecik are used, because in the
majority of the strong ground motion relations suggested
for tectonically active regions (e.g. [10-12], the upper
bound for site- source distance is taken 100 km, which
is the range where ground motions have engineering
significance[13]. Observed annual frequencies of M > 4.0
earthquakes occurred in the area from 1900 to 2012 are
shown in Figure 2. Generally, few earthquakes occurred
per each year except for the years 1967, 1970 and 1999.

It is shown that the sample variance, (S? = 71.9823) is
larger than the sample mean, (X = 2.2301). It indicates
a strong over-dispersion relative to Poisson distribution.
It is also seen in Figure 2 that the minimum frequency is
0 and the maximum is 71. The median of the data is 1
and the mode is 0. As a result of the skewness coefficient,
(y1 = 6.5113), the distribution of the observed data is
skewed to the right. The over-dispersion and skewness
of the data show that HMM is a suitable tool for the
earthquake data.

The data is checked whether it follows a specific Poisson
distribution, a goodness of fit test is applied. It is seen that
there is insufficient evidence to conclude that the data fits
a single Poisson distribution. It is generated from several
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Figure 2. Histogram of annual frequencies of M > 4.0 earthquakes.

Poisson distributions and this result supports us to use
HMM instead of using a Poisson process.

3. Poisson Hidden Markov Model

Markov models deal with the problems of the systems
which are directly observable. In the real-world
applications, the underlying system can be unobservable;
but, can only be observed through another stochastic
process. The evaluation of these partially observed
systems is the major problem restricting the application
areas of Markov models. HMM has a powerful and flexible
mathematical structure to make statistical inferences on
partially observed stochastic processes. It has been
successfully applied to many diverse areas, particularly
speech recognition [14-16], finance/econometrics [6, 17—
19], software reliability [20, 21], traffic engineering [22],
Biology [23], language modeling [24, 25], metrology [26—
29], bioinformatics [30-33], biophysics/biochemistry [34-
36]. However, HMM has not as widely implemented as
it should be in earthquake modeling. There have been
few applications of HMM on earthquake problems [37-
39] Orfanogiannaki et al. [3, 4, 40-42])). Granat and
Donnellan [37] used HMM as an unsupervised learning
method for clustering of earthquakes and determining
the classes of similar earthquakes in southern California
region. Chambers et al [38] applied HMM to model
interevent times between earthquakes in New England.
Ebel et al [39] implemented HMM to extrapolate
the future behavior of the past earthquake activity in
California by using interevent earthquake times and
the locations in which they occur. Orfanogiannaki et
al. [3, 40, 41] employed HMM to explain the frequencies
of earthquakes occurred in specific time intervals for

predicting the earthquake hazard. Wu [42] proposed a
simple approach for HMM to decluster earthquakes in
central and western regions of Japan. Chambers et al. [4]
extended HMM to forecast the location of the earthquakes
as well as interevent earthquake times in southern
California and western Nevada. Let T = {0,1,2,..., T}
a discrete-time horizon. HMM is a discrete-time bivariate
stochastic process (X,Y) = (X, Yi)iet [1, 5, 43]

o X = (Xi)ier is a finite-state homogeneous Markov
chain, which cannot be observable and thus referred
as hidden process. X; is the state of the underlying
system at time t.

e Y = (Y}):et is an observable process which depends
on probabilistically Markov chain X. Y; is the
observation at time t. Observations can be discrete
or continuous. In our study, a discrete sequence of
observations is considered.

The probabilistic relationship between X and Y is given
in Figure 3 [5, 44].

It is seen that at each point of time t € T, the conditional
distribution of Y; given X; has a probability distribution
coming from a specific family. X is considered as the
parameter process having the Markov property. According
to unobservable parameter process, observations are
generated by the state-dependent parametric distribution.
In our study, HMM is used to forecast the frequencies
of earthquakes for the next 35-year period. Therefore,
the state-dependent parametric distribution is chosen as
Poisson distribution. PHMM is a discrete-time bivariate
stochastic process which consists of an unobserved finite
state Markov chain X having N states and an observed
sequence of a non-negative integer valued stochastic
process Y. On the condition that the states of the system
XT = (X1,...,X7) are known, YT = (Yq,...,Yr) are
independent of each other. PHMM is characterized by
the following five elements [14, 45, 46]

1. The Number of Hidden States (N): Each
observation is derived from one of N Poisson
distributions.  The rate parameters of Poisson
distributions are called hidden states of finite-
state homogeneous Markov chain X. For N—State
PHMM, the finite set of N states is defined as
=M, ..., AN.

2. The State Transition Probability Distribution:
Which state will derive the next observation
depends on which state derived the current
observation through the state transition probability
matrix A = [a;j]nxn. State transition probability to
move from the state A; at time t to the state A; at
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time t + 1 is given as a; = P(Xiy1 = A|Xi = A)
for VA, Aj€hand t €T.

3. The Domain of Observations per State: Each
observation is non-negative integer valued.

4. The State-Dependent Probability Distribution:
When the system is in state A; at time ¢, the
observation at that time is derived from Poisson
distribution whose rate parameter is A;.  The
conditional distribution of Y; given X; is as follows

(A:)Y
P(Y,=ylXi=A) =e Y', ify=01,2...
=0, otherwise

5. The Initial State Distribution: The starting state
of the system is specified by the initial state
probability vector m = [mlixy. Markov chain X
starts at the state A; with the probability m; =
P(Xi = A) for VA, € A

Given the above elements of PHMM, there are three
fundamental problems of interest to be solved for real-
world applications [14, 45, 46]

Problem 1.

The Evaluation Problem: Given the observation sequence
YT = (Yi...Ys) and model parameters, what is the
probability of the observation sequence? The solution
can be seen as the likelihood (L) of the model and thus
provides the opportunity to choose the model which best
explains the observations.

Problem 2.

The Decoding Problem: Given the observation sequence
YT = (Y;...Yr) and model parameters, what is the most
likely state sequence XT = (X; ... X7) which produces the
given observation sequence? The hidden part of the model
is uncovered by this problem.

Problem 3.

The Learning Problem: What are the optimal model
parameters which maximize the probability of the given
the observation sequence YT = (Y;...Y7)? Due to the
fact that the system is not directly observable, there is no
analytic solution for this problem. Iterative methods are
used for optimization. Here, EM algorithm is employed
in order to find maximum likelihood estimates (MLEs) of
PHMM parameters. EM algorithm does not guaranteed
to converge at the global maximum and initials affect the
MLEs of the parameters.

4. Application of Poisson Hidden
Markov Model and Results

The problems given in section 3 are solved in this section.
The frequencies of M > 4 earthquakes to occur in
studied area for the next 35-year period are forecasted.
The forecast results of PHMM are compared to those of
homogeneous PP.

4.1. Model Selection

The first step is here to determine the number of hidden
states for the selection procedure. Prior to the assessment
of the earthquake hazard, the MLEs of PHMM parameters
are estimated by EM algorithm. EM algorithm assumes
that the number of hidden states are known and fixed.
Therefore, first of all, the number of hidden states,
which are really needed for the best explanation of the
observations, must be determined. Clearly, the number
of hidden states (N) affects the quality of the statistical
inferences. When likelihood of the model is taken into
account, increasing N always improves the fit of HMM.
However, the improvement of the likelihood results in
quadratic increase in the number of parameters (p) and
this improvement has to be balanced with the number of
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Figure 4. AIC and BIC for PHMMs with a different number of hidden
states.

hidden states being fitted [1].

In order to compare HMMs with a fixed number of hidden
states, Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) can be used as statistics for
model selection. They are defined as follows [47, 48]

AIC ==-2InL+2p
BIC =-2InL+ pln(T)

where InL is the log-likelihood of the fitted HMM, p
is the number of freely estimated parameters and T is
the number of observations. The parameters of PHMM
with different number of hidden states are estimated by
EM algorithm. 1000 iterations are realized for each of
PHMMs in the study. Initial values which satisfy the
log likelihoods as maximum are chosen from many sets of
random starting values. In Figure 4, the calculated values
of AIC and BIC are given for PHMMs with the number of
hidden states numbered from one to six. Clearly, one-state
indicates a homogeneous PP.

According to AIC, 3-State PHMM is the best model.
Contrary to AIC, 2-State PHMM is proposed by BIC.
It is seen that there is no agreement between the
two information criterias. In order to decide the most
convenient number of the hidden states among the
alternatives, the likelihood ratio test is applied in the
study. The null and the alternative hypotheses are stated
as follows:

Hy : The number of hidden states is N
H; : The number of hidden states is (N + 1)

The likelihood ratio test statistic (LRT) is defined as
below:

XTest = —2(In Lo — In Ly) x4r = dfy — dfy

where the df is the number of freely estimated parameters
for the underlying PHMM [3]. The results for the possible
number of hidden states are reported in Table 1.
According to P-values in Table 1, 3-State PHMM is
decided as the best model at 1% level of significance.
In 3-State PHMM, it is assumed that, an observation is
generated from one of three different Poisson distribution
at each point of time t € T. Its working principle of 3-
State PHMM is defined schematically in Figure 5.

In each counting time interval, earthquake occurrences
depend on probabilistically Markov chain X. For instance,
at time t, the observation Y; is derived from Poisson
distribution whose rate parameter is A;.

The mean and variance of the frequencies of annual
earthquake occurrences for 113 years (1900-2012) are
calculated for six different models in the study and
these statistics are given in Table 2. It indicates that
the marginal distribution of 3-State PHMM meets over-
dispersed observations as well.

The observed numbers of years for each of the
earthquake frequencies are compared to the expected
numbers of frequencies obtained from 3-State PHMM and
homogeneous PP. It can be seen that the observed and
expected numbers of years are found to be similar for
3-State PHMM. A comparison of these two models for
different annual earthquake frequencies is presented in
Table 3. According to the table, there was no M > 4
earthquake occurrence observed for 56 years within 113
years and 3-State PHMM estimates that number as
56.5577. The observed and estimated numbers are very
close. It indicates that there is an agreement of 3-State
PHMM for the data and the model is suitable for further
statistical analysis. As a result of EM algorithm, MLEs
of 3-State PHMM parameters are given in Table 4.

4.2. Prediction of Earthquake Hazard

The pattern of the hidden states in the model for the next
35 years can be traced by calculating the state probability
distribution. The probabilities of the hidden states for
the coming 35 years are given in Figure 6. Here, the
system in 2013 is assumed to have three states with the
probabilities 0.86, 0.12 and 0.02 respectively. It can be
seen in Figure 6 that the first hidden state remains as the
most commonly seen state for the next 35 years. Therefore,
it can be concluded that M > 4 earthquakes in the region
will occur according to a Poisson distribution with the rate
parameter, 0.4956 for the next 35 years.
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Table 1. Model Selection.

Model p -InL df LRT P-Value
PP 1 557.4164 3 742.5178 <0.01
2-State PHMM 186.1575 5 27.7694 <0.01
3-State PHMM 1722728 7 9.2294 0.2366*
4-State PHMM 16 167.6581 9 2.667 0.9760
5-State PHMM 25 166.3246 1" 7.8124 0.7300
6-State PHMM 36 162.4184
.y t t+1 t+2 e T-2 T-1 T
h N | 4 4 4 y 4 o o
Parameter Process 4 A s Ay oo A, A A
. s s s s s s
Observations g, ~ P(4,)  Yesg ~P(A) Yesz~ P(Ag)*** Yra~P(R) Yra~P(dy)  Yr~P(k)

Figure 5. The working principle of 3-State PHMM.

Table 2. Comparison of Mean and Variances.

Mean Variance Variance-to-Mean Ratio

Observations
2.2301 71.9823 32.2776
PS 22301 2.2301 1.0000
2-State  2.2419 66.7821 29.7882
E 3- State 22460 67.6174 30.1057
§ 4- State 21210 62.0436 29.2521
5- State 21577 63.8925 29.6114
6- State  2.1577 69.0683 32.0101

The distribution of frequencies for M > 4 earthquakes
in the Zone is also forecasted for the next 35 years.
According to data, the observed annual frequencies are
ranged from zero to seventy-four earthquakes. The
forecast distribution of the frequencies shows that the
number of "0 to 5" earthquakes for the next 35 years
are expected annually with the probability of 0.96 to
0.97. It strongly indicates that only a few numbers of
earthquakes are expected to occur in the Zone between
2013 and 2047 and thus, the probability of having more
than 5 earthquakes is considerably low. This result shows
that earthquake hazard in the Zone is small, which is
a natural result of the system is expected to be in first

M 1. Hidden State W 2. Hidden State 3. Hidden State

Probabilities
o © 9 o o o b e o 8
P VW s 0o Vo b o

o
°

Figure 6. Hidden state prediction by 3-State PHMM for the Next 35
Years.

state (A; = 0.4956) for the next 35-year period. The
probabilities of earthquake frequencies ranging from 0 to
5 are shown in Figure 7. Due to the fact that Markov
chain X reaches its stationary distribution pis at 2022,
the next 10 years are reported only in Figure 7.

As a result of the fact that Markov chain X reaches
its stationary distribution within ten years, the expected
annual frequencies of M > 4 earthquakes for the next 10
years and 95% confidence intervals (Cls) are calculated by
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Table 3. Model Agreement Comparison for 3-State PHMM and PP.

Annual Earthquake Observed Numbers

Expected Numbers of Years

Frequency of Years 3-State PSMM PP
0 56 56.5577 12,1496
1 32 30.4497 27.0948
2 I 11.1066 30.2119
3 5 5.3278 22.4584
4 4 3.2296 12521
5 0 1.8323 5.5846
6 0 0.8929 2.0757
7 1 0.3749 0.6613
8 1 0.1379 0.1843
9 0 0.0451 0.0457
10 0 0.0133 0.0102
>11 3 3.0323 0.0025
TOTAL 113 113 113
Table 4. Parameter Estimations by EM Algorithm.
Parameters MLEs

Poisson Rate Parameters

State Transition Probability Distribution

Initial State Distribution
Stationary State Distribution

A=[M A A3]=[0.4956 2.9425 50.6667]
0.8591 0.1219 0.0190

A= 05743 0.3568 0.0689
0.6858 0.3142 0.000

7 =0 0 0

7, =[0.8072 0.1660 0.0268]

ENone HMOne ®WTwo MThree M Four W Five

1.00 096 096 096 096 0.96 096 0.96 0.96 0.96

0.90

0.80
«»0.70
o
£0.60
<0.50
©0.40
20.30

0.20

0.10

0.00

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Years

Figure 7. The probabilities of earthquake frequencies in the range 0
to 5 for 2013-2022.

forecast frequency distribution. They are given in Table 5.
It is seen that approximately two earthquakes per year are
expected to occur in the Zone within the next 35 years.

The expected frequencies in Table 1 show that 3-State
PHMM explains the earthquake data better than PP.
In the following part of the study, 3-State PHMM and
PP are compared in detailed by the predicting the
earthquake hazards. The distributions of earthquake
frequencies for the next seven years are examined for the
both models. Although the probabilities are calculated
for the frequencies ranging from zero to seventy-one,
Figure 8 includes the considerably high frequencies and
their related probabilities obtained from two models for
each year.

Figure 8A shows that 3-State PHMM and PP predict
that less than 6 earthquakes will occur in a year with the
probability of 97%. Even if the two models forecast the
same probability, they differ in the amount of probabilities
related to frequencies. Especially, the absence of an
earthquake is more likely to occur in 3-State PHMM
(52.8%) than PP (10.8%). It is seen in Figure 8B that
the probabilities of having less than 6 earthquakes are
91.4% for 3-State PHMM and 71% for PP respectively.
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Table 5. Expected Annual Frequencies of M > 4 Earthquakes for
the Next 10 Years.

Year Expected % 95 ClI
Annual Frequency

2013 1.785 [0.181 - 3.389]
2014 2121 [0.326 - 3.916]
2015 2.211 [0.369 - 4.054]
2016 2.235 [0.381 - 4.090]
2017 2242 [0.384 - 4.100]
2018 2244 [0.385 - 4.103]
2019 2244 [0.385 - 4.103]
2020 2244 [0.385 - 4.104]
2021 2.244 [0.385 - 4.104]
2022 2.244 [0.385 - 4.104]

Our model has the highest probabilities for the lower
frequencies, while PP has the lowest probabilities for
the lower frequencies (for example 1.2% and 5.2% are the
probabilities for "0" and "1" earthquakes within 2 years).
For 3-State PHMM, "0 to 5" earthquakes are expected
with the probability of 83% in three years time. However,
less than 6 earthquakes in three years are less likely to
occur for PP (34.2%).

The earthquake hazards over the 10 years rapidly increase
in PP. The traditional model tends to predict higher
frequencies than it should be in fact. For example, the
probability of less than eleven earthquakes decreases
from 71.5% to 9.2% within the four years starting from
2015 (Figure 9). However, there is no sudden decrease
observed in 3-State PHMM (Figure 9). Most likely,
less than eleven earthquakes will occur within the years
(89.1%, 84.9%, 79.8% and 73.8% respectively).

(B)2Years

(C) 3Years

Expected numbers of M > 4 earthquakes in the next 1 to
7 years and their related 95% Cls are calculated for the
two models and Table 6 shows the results. The expected
numbers found from the models are not significantly
different, but 95% Cls have quite different. Earthquake
data indicates strong over-dispersion. As a natural result
of over-dispersion, Cls are expected to be wider than they
should be. In Table 6, the ranges of Cls for PP are
found narrower than those for 3-State PHMM as they
are expected.

5. Conclusion

The use of HMM to predict earthquake hazard is
carried out by Granat and Donnellan [37], Chambers
et al. [38], Ebel et al [39] Orfanogiannaki et al [3,
40, 41], Wu [42] and Chambers et al. [4]. All previous
studies about earthquake data modeling by HMM except
Orfanogiannaki et al. [3, 40, 41] are based on the
continuous earthquake data and interevent earthquake
times.  The forecasting methodology followed in the
present study is similar to Orfanogiannaki et al. [3].
PHMM is applied to model the annual frequencies of
earthquakes occurred within a radius of 100 km area
centered on Bilecik, in the period between January
1900 and December 2012, with magnitudes (M) at
least 4.0 by using data provided from the catalogs of
Bogazigi University, Kandilli Observatory and Earthquake
Research Institute [9]. This study is the first application
of PHMM to the Turkish earthquake data except a short
version of this study presented by Can et al [7]. In
addition to Orfanogiannaki et al. [3], the forecast results
of PHMM are compared to those of homogeneous PP.

Predictions of hidden states for the next 35 years show
that earthquakes occurred in compliance with P(A; =
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Figure 9. Earthquake hazard within "4 to 7" Years.
Table 6. Expected Numbers of Earthquakes over the years.
3-State PHMM PP
Time Horizon Expected Expected
%95 CI %95 CI
(within ... years) Frequency Frequency
1 1782 (0.149-3.416] 2.230 [1.885-2.575]
2 3.846 [1.448-6.243] 4.460 [3.972-4.948]
3 5.921 [2.979-8.864] 6.690 (6.093-7.288]
4 7.936 [4.577-11.294] 8.920 (8.230-9.610]
5 9.866 [6.179-13.553] 11.150 [10.379-11.922]
6 11.702 [7.750-15.654] 13.381 [12.536-14.225]
7 13.435 [9.266-17.603] 15.611 [14.698-16.523]

0.50) are more likely to happen than those occurred
in compliance with P(A; = 2.94) and P(A; = 50.67).
Also, 0 to 5 numbers of M > 4.0 earthquakes are
expected to occur with the probability not less than 0.96
in the studied area for the next 35 years. As for the
modeling and forecasting performance of HMM and PP,it
is concluded that PHMM produces meaningful results
to predict the annual frequencies for earthquakes of a
particular magnitude.

One of the most important parameters used in the
design of large engineering constructions is the horizontal
acceleration resulted from earthquakes. The magnitude
of an earthquake is one of the main parameters used to

calculate the maximum horizontal acceleration. Therefore,

the use of the results obtained by PHMM provides crucial
information for the prediction of the momentum which may
come upon the engineering structures. For the future
studies, taking into consideration of HMM in earthquake
hazard problems makes serious contributions to design

more economical and safer engineering structures.

References

[1] Zucchint W. and MacDonald I. L., Hidden Markov
Models for Time Series: An Introduction Using R,
Chapman & Hall/CRC Monographs on Statistics &
Applied Probability, Boca Raton, USA, 2009



C. Edaetal.

[2] Baum L. E. and Petrie T. Statistical Inference
for Probabilistic Functions of Finite State Markov
Chains, The Annals of Mathematical Statistics, 37(1),
1966, 1554-1563

[3] Orfanogiannaki K., Karlis D. and Papadopoulos G.
A., ldentifying Seismicity Levels via Poisson Hidden
Markov Models, Pure and Applied Geophysics, 167,
2010, 919-931

[4] Chambers D. W,, Baglivo J. A, Ebel J. E. and Kafka
A. L., Earthquake Forecasting Using Hidden Markov
Models, Pure and Applied Geophysics, 169, 2012,
625-639

[5] Cappe O., Moulines E. and Ryden T., Inference in

Hidden Markov Models, Springer Science+Business

Media, New York, USA, 2005

MacDonald I. L. and Zucchini W., Hidden Markov

Models and Other Models for Discrete-Valued

Time Series, Chapman & Hall/CRC Monographs on

Statistics & Applied Probability, London, UK, 1997

[7] Can C. E., Ergun, G., Gokceoglu C., Bilecik
cevresinde deprem tehlikesinin saklt Markov modeli
ile tahmini. Proceedings of the Second Turkey

=

Earthquake Engineering and Seismology Conference,
25-27 Eylil 2013 - MKU - Hatay, Turkey (in
Turkish), 2013

Ocakoglu F., Acikalin S., Gokceoglu C., Nefeslioglu
H. A, Sonmez, H., Back-analysis of the source of

=

the 1956 Eskisehir Earthquake using attenuation
equation and damage data, Bull Eng Geol Environ,
66, 2007, 353-360

UIDM, Bogazigi University, Kandilli Observatory and
Earthquake Research Institute, Web Address: http:
[lwww.koeri.boun.edu.tr/, 2013

Boore D. M., Joyner W. B., Fumal T. E., Equations
for estimating horizontal response spectra and
peak acceleration from western North American
earthquakes: a summary of recent work, Seismol. Res.
Lett, 68 (1), 1997, 128-153

Campbell K. W., Empirical near source attenuation

<

[10

[11

relationships for horizontal and vertical components
of peak ground acceleration, peak ground velocity,
and pseudo-absolute acceleration response spectra,
Seismol. Res. Lett, 68(1), 1997, 154-179

[12] Sadigh K., Chang C.Y,, Egan J. A, Makdisi F., Youngs
R. R., Attenuation relationships for shallow crustal
earthquakes based on California strong motion data,
Seismol. Res. Lett, 1(68), 1997, 180-189

[13] Ulusay R. Tuncay E. Sonmez H. Gokceoglu C.,
An attenuation relationship based on Turkish strong
motion data and iso-acceleration map of Turkey,
Engineering Geology, 74, 2004, 265-291

[14] Rabiner L. R, A Tutorial on Hidden Markov Models

and Selected Applications in Speech Recognition,
Proceedings of the IEEE, 77(2), 1989, 257-285

[15] Rabiner L. R. and Juang B. -H.Fundamentals of
Speech Recognition, Prentice-Hall,
USA, 1993

[16] Jelinek F.,  Statistical Methods for
Recognition, MIT Pres, USA, 1997

[17] Hamilton J. D. Time Series Analysis. Princeton
University Press, New Jersey, USA, 1994

[18] Rydén T, Terasvirta and Asbrink S., Stylized facts of
daily returns series and the Hidden Markov Model,
Journal of Applied Econometrics, 13, 1998, 217-244

[19] Kim C. -J. and Nelson, C. R, State-Space Models
with Regime Switching: Classical and Gibbs-
Sampling Approaches with Applications, MIT Press,
USA, 1999

[20] A., Ruggeri F. and Soyer R, A Bayesian Hidden
Markov Model for Imperfect Debugging, Reability
Engineering and System Safety, 103, 2012, 11-21

[21] Landon J., Ozekici S. and Soyer R, A Markov

Modulated Poisson Model for Software Reability,

European Journal of Operational Research, 229,

2013, 404-410

Dainotti A., Pescapé A., Rossi P. S., Palmieri F., and

Ventre G., Internet Traffic Modelling by Means of

Hidden Markov Models, Computer Networks, 52(14),

2008, 2645-2662

Leroux B. G. and Puterman M. L,

Penalized-Likelihood Estimation for Independent

New Jersey,

Speech

[22

(23 Maximum-

and Markov-Dependent Mixture Models, Biometrics,

48(2), 1992, 545-558

Cave R. L. and Neuwirth L. P, Hidden Markov Models

for English, In Proceedings of the Symposium on

the Application of Hidden Markov Models to Text

and Speech (Ferguson J. D. Editor), Princeton, New

Jersey: IDA-CRD, 16-56, 1980

[25] Charniak E., Statistical Language Learning, MIT
Press, Massachusetts, 170, 1993

[26] Zucchini W. and Guttorp P., A Hidden Markov Model
for Space-Time Precipitation,
Research, 27(8), 1991, 1917-1923

[27] Sansom ., A Hidden Markov Model for Rainfall Using
Breakpoint Data, Journal of Climate, 11, 1998, 42-53

[28] Bellone E., Hughes J. P. and Guttorp P, A hidden
Markov model for downscaling synoptic atmospheric

24

Water Resources

patterns to precipitation amounts, Climate Research,
15, 2000, 1-12

[29] Robertson A. W, Kirshner S. and Smyth P,
Downscaling of Daily Rainfall Occurrence over
Northeast Brazil Using a Hidden Markov Model,
Journal of Climate, 17, 2004, 4407-4424

[30] Baldi P., Hunkapiller T., Chauvin Y. and McClure,



http://www.koeri.boun.edu.tr/
http://www.koeri.boun.edu.tr/

Prediction of Earthquake Hazard by Hidden Markov Model

414

M. A., Hidden Markov Models of Biological Primary
Sequence Infromation, In Proceedings of National
Academy of Science USA, Vol. 91, 1994, 1059-1063

[31] Krogh A., Brown M., Mian I. S., Sjolander K. and
Haussler D., Hidden Markov models in computational
biology: Applications to protein modeling, Journal of
Molecular Biology, 235, 1994, 1501-1531

[32] Durbin R, Eddy S., Krogh A. and Mitchison G.,
Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge, England, 1998

[33] Koski T., Hidden Markov Models for Bioinformatics.
Kluwer Academic Publishers, USA, 2001

[34] Fredkin D. R. and Rice J. A, Bayesian Restoration of

Single-channel Patch Clamp Recordings, Biometrics,

48(2), 1992, 427-448

Fredkin D. R. and Rice J. A, Maximum Likelihood

Estimation and Identification Directly from Single-

35

channel Recordings, Proceedings:
Science, 249, 1992, 125-132

[36] Ball F. G. Cai Y, Kadane J. B. and O'Hagan
A., Bayesian Inference for lon-Channel Gating

Biological

Mechanisms Directly  from Single-Channel
Recordings, Using Markov Chain Monte Carlo.
Proceedings Royal Society London A, 455, 1999,
2879-2932

Granat R. and Donnellan A., A Hidden Morkov Model
Based Tool for Geophysical Data Exploration, Pure
and Applied Geophysics, 159 (10), 2002, 2271-2283
Chambers D. W., Ebel J. E., Kafka A. L. and Baglivo .
A., Hidden Markov Approach to Modeling Interevent
Earthquake Times, Eos. Trans. AGU, 84(46), 2003,
Fall Meet. Suppl., Abstract S52F-0179

[39] Ebel J. E., Chambers D. W, Kafka A. L. and Baglivo

J. A, Non-Poissonian Earthquake Clustering and

37

38

the Hidden Markov Model as Bases for Earthquake

Forecasting in California, Seismological Research

Letters, 78 (1), 2007, 57-65

Orfanogiannaki K. Karlis D. and Papadopoulos

G. A.ldentification of Temporal Patterns in the

Seismicity of Sumatra Ruprue Zone Using Poisson

Hidden Markov Models, Geophysical Research

Abstracts, Volume 8, 2006

Orfanogiannaki K., Karlis D. and Papadopoulos G.

A., Application of Poisson Hidden Markov Models on

Foreshock Sequence: The case of Samos, October

2005 and Zakynthos, April 2006, Earthquakes, XlIth

Int. Conf. Appl. Stochastic Models and Data Analysis,

Chania, Crete, Greece, 2007

[42] Wu Z., A Hidden Markov Model for Earthquake
Declustering, Journal of Geophysical Research, 115,
2010

[43] Ephraim Y. and Merhav N. Hidden Markov
Processes, IEEE Transactions On Information Theory,
48:6, 2002, 1518-1569

[44] Ghahramani Z., An Introduction to Hidden Markov
Models and Bayesian Networks, International

(40

(41

Journal of Pattern Recognition and artificial
Intelligence, 15:1, 2001, 9-42

[45] Alpaydin E., Introduction to Machine Machine
Learning, The MIT Press, Cambridge, USA, 2010

[46] Ibe O. C., Markov Process for Stochasting Modelling,
Elsevier Aacademic Press, California, USA, 2010

[47] Akaike H., A New Look at the Statistical Model
Identification, [EEE Transactions on Automatic
Control, AC-19, 1974, 716-723

[48] Schwarz G., Estimating the Dimension of a Model,
Annals of Statistics, 6, 1978, 461-464



	Introduction
	Earthquake Data
	Poisson Hidden Markov Model
	Application of Poisson Hidden Markov Model and Results
	Conclusion
	References



