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Abstract: Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea,
were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate
the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine
tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various
ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-
subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models.
The relationships between the detected ground-subsidence area and the factors were identified and quantified
by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships
were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The
three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make
better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that
were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms
of prediction accuracy than the individual model.
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1. |ntr0ducti0n topography caused by readjusting the overburden above
voids, such as those created by underground mining.
Subsidence can result in major financial losses and pose

risks to human life [1].

Ground subsidence is a geological hazard that has various The coal industry played a major role in the development

of the Korean economy from the 1960s to the late 1980s.
However, most of these coal mines were abandoned in the

causes, including changes in mining activity, excessive
groundwater extraction, earthquake and volcanic activity,
floods, and sudden or progressive ground collapse.

1990s when th fitability of the industry pl ted.
It is also time-dependent deformation of the surface > WIeh TI8 PIONTabiisy Of The rhety prinmete

Of the 173 coalmines operating in 1988 in Jeongseon,
Kangwon-do (the largest coal mining region in Korea),

*E-mail: leesaro@kigam.re.kr none are in operation today. In addition, the water flowing
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through these mines is contaminated with heavy metals,
and eventually pollutes rivers and soil.

The subsidence of underground mining cavities can
threaten human life, property, and infrastructure,
including railways, roads, houses, and other buildings.
Ground recovery following subsidence is difficult and
rehabilitation is expensive. Most countermeasures
for ground subsidence involve simple reinforcement
after the ground has already subsided [2-4]. As a
result, it is important to have a systematic prediction
and management plan for areas experiencing ground
subsidence.

Recent studies have analyzed ground subsidence hazards
using the results of geological and geotechnical
investigations and of probability, statistical, fuzzy algebra,
and artificial neural network models in tandem with GIS
applications [2, 4-15].  Some studies have assessed
and identified areas with a high subsidence risk. For
example, Ambrozi¢ and Turk [5] and Kim et al. [9]
applied ANN models to predict ground subsidence. As a
probabilistic model, Zahiri et al. [16] applied the weights-
of-evidence technique to derive the rock fall potential
associated with mining-induced subsidence. Kim et
al. [6] and Oh and Lee [14] assessed the spatial ground
subsidence hazard potential using GIS techniques with
frequency ratio and weights-of-evidence models. Oh et
al. [15] applied probabilistic-based sensitivity analysis to
determine the effect of input factors on ground subsidence
hazard maps. Esaki et al. [7] used a stochastic model to
predict subsidence in coal mining areas, while Mancini
et al. [13] applied a multi-criteria decision model to
analyze salt mining activities. Choi et al. [11] constructed
subsidence susceptibility maps based on fuzzy relations
for an AUCM area. Lee and Park [4] applied frequency
ratio and decision tree model to mapping GSH maps.
For the same study site, Lee et al. [12] applied a
logistic regression model, and Oh and Lee [15] integrated
GSH maps using various models such as frequency ratio
model, weight of evidence, logistic regression and artificial
neural network model. According to the geological
hazard, these models have been used to analyze landslide
susceptibility mapping in many recent studies [17-27]. In
this study, the fuzzy algebra model was used to integrate
ground subsidence hazard maps, withthis model being
used most frequently in analysis landslide susceptibility
mapping [28-32]. Ercanoglu and Gokceoglu [28, 29]
proposed an assessment of landslide susceptibility for
landslide prone areas using fuzzy relationships, Pradhan
et al. [30] and Sezer et al. [31] used neuro-fuzzy models to
analysese landslide susceptibility, and Akgun et al. [32]
applied Mamdant fuzzy algorithm for the assessment of
landslide susceptibility mapping.

This study focused on the former coal mining area
of Samcheok City, Korea. The study site covered
approximately 2.10 km?, as shown on a digital topographic
map at a scale of 1:5000 (Figure 1).  The site
lies between 37°14'26"N-37°15'24""N and 129°2'40"E-
129°3'30"E. Elevation in the area ranges from 194-454
m above sea level, with an average elevation of 266 m
(standard deviation = 53.55 m). The Youngdong railroad,
a local road (Route 38), and the Oship River cut through
the center of the study area. The Oship Fault also cuts
across the area. Coal was deposited during the upper
Paleozoic and lower Mesozoic eras in the Jangseong
Formation of the Pyeongan Supergroup and is almost
entirely (85%) anthracite [33]. In the study area, twenty-
one indications of ground subsidence were identified near
an AUCM in Samcheok City [34] (Figure 1).

Although various models have been applied to determining
ground subsidence hazard (GSH), including frequency
ratio (FR), logistic regression (LR), and artificial
neural network (ANN) approaches, no fuzzy-logic-based
ensemble involving a combination of hazard maps involving
FR, LR, and ANN models has been used to improve the
prediction accuracy of GSH mapping. This study is the
first attempt to ensemble individual GSH maps from FR,
LR and ANN models using fuzzy logic, which will result
in improved GSH maps in the Samcheok area, Korea.

A fuzzy relation is simple to understand and can be easily
incorporated into geographic information system (GIS)
software, regardless of the quantity of data. It can address
many of the problems relating to vagueness in spatial
information [35] and express the probability of an event
occurring as a normalized value between 0 and 1; it is
therefore effective for comparing the results with other
sites [11].

This paper applies an ensemble method using fuzzy
logic to better predict subsidence using a single model.
Individual GSH maps made using the FR, LR, and ANN
approaches were integrated in order to improve the GSH
maps for Samcheok, Korea. The study flow is shown in
Figure 2. In the fuzzy-logic-based ensemble analysis,
the GSH maps from the FR, LR, and ANN models were
evaluated to identify new input or relevant factors, and
ensemble GSH maps were recalculated quantitatively
using these models. The ensemble GSH maps were
validated using ground subsidence locations not used for
training.

2. Data

To create GSH maps, a spatial database was utilised to
relate factors influencing ground- subsidence, including
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Figure 1. Study area in Korea.

the mine excavation method, depth and height of the mined
cavities, degree of inclination of the excavation, structural
geology, scope of mining, and flow of groundwater [1,
12, 34 Field surveys revealed areas of ground
subsidence at the study site, from which maps relevant
to ground-subsidence occurrence were constructed in
a vector format spatial database using the ArcGIS
software package. Data sources included 1:5,000 scale
topographic maps, 1:1,200 scale mine-tunnel maps, a
1:50,000 scale geological map, and 1:5,000 scale land use
maps (Table 1) [15]. Contour (5 m intervals) and survey
base points with elevation values were extracted from the
topographic map, and a DEM was constructed from which
the slope gradients were calculated. As a major factor in
ground subsidence is the scope of the mine cavities [1, 36,
37], it was important to construct a database of the depths
and distribution of mined cavities. The groundwater levels
and permeability factors were extracted from 35 boreholes
at the study site and mapped using an inverse distance
weighting (IDW) interpolation method. Geological data
was extracted from a 1:50,000 scale geological map from
the Korea Institute of Geoscience and Mineral Resources
and fourteen classes of land use were extracted from the
land use map of the National Geographic Information

Institute.

The calculated and extracted factors, which included
slope, depth of drift, distance from drift, depth of
groundwater, permeability, geology, and land use were
mapped to 1 mx1 m grid cells for analysis of the
spatial ground subsidence hazard. Slope, depth to drift,
distance from drift, depth of groundwater and permeability
were representative oflinear and continuous data. In
contrast, geology and land use data were non-linear
and categorical. The independence of factors from each
other was verified by comparing Pearson Correlation
Coefficients. The study area was gridded into 1,742
rows by 1,207 columns (ie. total number of grid
cells = 2,102,594), in which there were 10,369 cells of
ground subsidence areas. The subsidence locations were
randomly divided into a training set (70%) to analyze
ground subsidence hazards using the neuro-fuzzy models,
and a validation set (30%) to validate the predicted hazard
maps. The training and validation data consisted of 7,259
cells and 3,110 cells, respectively [15].
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Figure 2. Study flow for ground subsidence hazard mapping.

Table 1. Data layer related to ground subsidence of study area [15].

Category Factors Data Type Scale Remark

Hazard map Subsidence Polygon 1: 5000 Area of subsidence

Geology Geology Polygon 1: 50000 Type of strata

Topography Slope GRID 1: 5000 Calculate from DEM

Mined tunnel map Depth of drift Polyline 1: 1200 DEM minus sea level of drift
Distance from drift Polygon 1: 1200 Buffering of drift

Borehole® Depth of ground water ~ Point 1 5000 IDW (Inverse Distance Weight)
Permeability Point interpolation

Land use Land use Polygon 1: 5000 Type of land use

*35 boreholes from investigation in 1999, some boreholes do not have value of relating factors.

3. Method

The main concept of ensemble modeling is to improve

the prediction accuracy based on multiple outputs from

a set of models using a fuzzy operator. Specifically, it

results in more accurate and reliable estimates for making
decisions than can be obtained using an FR, LR, or ANN
model alone. This study used FR, LR, and ANN models in
the initial analysis. The resulting GSH maps from each
model were used as new input factors for a subsequent
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analysis to generate ensemble-based GSH maps using a
fuzzy operator. In other words, the relationships between
ground subsidence locations and three new input factors
were identified and re-quantified using a fuzzy operator
to generate improved GSH maps.

3.1. Ground subsidence hazard mapping
using various models

Using the frequency ratio, the spatial relationship
between ground subsidence occurrence and subsidence-
related factor was derived. The data layers containing
scale factors were subdivided into a convenient number
of classes, and the class or type of each factor was
obtained as the subsidence occurrence ratio [12, 15]. The
GSH index (GSHIgR), equation (1), was calculated by a
summation of each factor ratio value [38], where FR, is
the frequency ratio of each subsidence-related factor type

or range:
GSHIrr = FR + FRy+ FRs+ ...+ FR, (1)

The relation analysis is the ratio of the area where
subsidence occurred to the total area. Therefore a
high probability indicated a greater hazard to ground
subsidence, while a lower value indicated a lower hazard.
Logistic regression, which is one of the multivariate
analysis models used, allows one to form a multivariate
regression relation between a dependent and several
independent variables.
dependent variable is binary, representing the presence
or absence of ground subsidence.

In the present situation, the

The quantitatively
relationship between the occurrence and its dependency
on several variables can be expressed as [6, 15]:

_ 1
T 14ex

p ()

where p is the probability of an event occurring that is the
estimated probability of ground subsidence occurrence in
these circumstances. The probability varies from 0 to 1 on
an S-shaped curve and z is a linear function. When there
are multiple explanatory variables z can be expressed
as [12, 15]:

Z=bo+b1X1+b2X2+...+ann (3)

where bg is the intercept of the model, the b; (i =
0,1,2,...,n) are the slope coefficients of the logistic
regression model, and the x; (i = 0,1,2,...,n) are the
independent variables. The linear model formed is then

a logistic regression of presence or absence of ground
subsidence on the independent variables.

Using this approach, logistic multiple regression
coefficients of the related factors were calculated. After
interpretation, equation (4) (which predicts the ground
subsidence-occurrence possibility) was created (Table 3
in [15)):

7 = (—0.126 x SLOPE) + (—0.001 x DEPTHDRIFT)
+(—0.071 x DISTDRIFT) + (0.532 x WATERLEVEL)
+ (—0.555 x PERMEABILITY) + GEOLOGY,,

+ LANDUSE, — 26.351,

(4)
where SLOPE is slope value; DEPTHDRIFT is depth
of drift, DISTDRIFT is the distance from the drift,
WATERLEVEL is the depth to the groundwater level,
PERMEABILITY is permeability value, GEOLOGY, and
LANDUSE, is the logistic regression coefficient value,
and Z is a prediction parameter.

The ANN model is a "computational mechanism able
to acquire, represent, and compute a mapping from one
multivariate space of information to another, given a set
of data representing that mapping” [39]. It provides
a network which can generalize and predict outputs
from inputs that it has not previously seen. The most
frequently used ANN model is the back propagation-
learning algorithm, which trains the network until some
target minimal error is achieved between the desired and
actual output values of the network [15]. Oh and Lee [15]
built up the network which consisted of three layers; input,
hidden and output layers for analysis ground subsidence
hazard.

The structure of 7x14x 2, input, hidden and output layers,
respectively, was selected for the networks with input data
normalized to the range 0.1 to 0.9. The learning rate
parameter was set to 0.01 and the momentum parameter
was set to 0.01. The subsidence-prone (occurrence)
locations and the locations that were not prone to
subsidence were selected as training sites. From each of
the two classes, 7,259 grid cells per class were selected
as training cells. Areas where the GSHI g was zero
were classified as 'areas not prone to subsidence’, and
areas where subsidence was known were assigned to an
‘areas prone to subsidence’ training set. To lessen the
error between the predicted output values and the actually
calculated output values, the back propagation algorithm
was used. The ground subsidence hazard index value was
acquired by calculating the weights determined from back
propagation and the spatial database [15].

Oh and Lee [15] applied and compared FR, WOE (weight
of evidence), LR, ANN and their integrated models to
mapping GSH maps for the same study area. The four
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GSH maps were developed and reflected as the new input
factors and integrated using FR, WOE, LR, and ANN
models to make a hazard map. As a result, integrated GSH
maps used four new subsidence-related input factors that
showed a greater accuracy than individual models. In this
study, three GSH maps were used using individual models
(FR, LR and ANN) of Oh and Lee [15] as input factors and
applied ensemble method to create GSH maps using fuzzy
operator.

3.2. Fuzzy logic and operator

The fuzzy set theory was used to integrate the calculated
subsidence hazard indices through each model in this
study. The fuzzy set theory introduced by Zadeh [40] is
one of the tools used to handle the complex problems,
and is utilized across many disciplines. The concept of
fuzzy logic is to consider the spatial objects on a map as
members of a set. In the classical set theory, an object is a
member of a set if it has a membership value of 1, or is not
a member if it has a membership value of 0. In the fuzzy
set theory, membership can take on any value between
0 and 1 reflecting the degree of certainty of membership.
The fuzzy set theory employs the idea of a membership
function that expresses the degree of membership with
respect to some attribute of interest.

Zimmerman [41] discussed a variety of combination rules.
Bonham-Carter [42] discussed five operators, namely
the fuzzy and, fuzzy or, fuzzy algebraic product, fuzzy
algebraic sum and fuzzy gamma operator. This study
uses the fuzzy gamma operator for combining the fuzzy
membership functions.

The Fuzzy Algebraic Product is defined as:

Hcombination = |—| Hi (5)
i=1

where p; is the fuzzy membership function for the i" map,
and i =1,2,...,n maps are to be combined.

The fuzzy algebraic sum is complementary to the fuzzy
algebraic product, being defined as:

n

Hcombination = 1- |_|(’I - U,'). (6)

i=1

The gamma operation is defined in terms of the fuzzy
algebraic product and the fuzzy algebraic sum by:

Hcombination =
(Fuzzy algebraic sum)* - (Fuzzy algebraic product)'=,

7)

where A is a parameter chosen in the range (0,1), and
the fuzzy algebraic sum and fuzzy algebraic product are
calculated using equations (5) and (6) respectively. In
the fuzzy gamma operation, when A is 1 the combination
is the same as the fuzzy algebraic sum, and when A is
0 the combination equals the fuzzy algebraic product.
Judicious choice of A produces output values that ensure a
flexible compromise between the 'increase’ tendencies of
the fuzzy algebraic sum and the 'decrease’ effects of the
fuzzy algebraic product.

Like the membership function, the frequency ratio was
calculated. The spatial relationships between the
subsidence location and each subsidence-related factor
were analyzed by using the probability model-frequency
ratio. The frequency ratio, a ratio between the occurrence
and absence of subsidence locations in each cell, was
calculated for each factor’s type or range that had been
identified as significant with respect to causing ground
subsidence. An area ratio for each factor’s type or range to
the total area was calculated. Finally, frequency ratios for
each factor’s type or range were calculated by dividing the
subsidence occurrence ratio by the area ratio. If the ratio
was greater than 1, the relationship between subsidence
locations and the factors was higher and, if the ratio was
less than 1, the relationship between subsidence location
and each factor’s type or range was lower. The frequency
ratio was then normalized between 0.00 and 1.00 to create
the fuzzy membership value.

4. Results

4.1. Ensemble-based ground subsidence
hazard mapping using fuzzy operator

The ensemble methodology integrates factors causing
ground subsidence to generate a GSH map. The input
factors used to produce three GSH maps using the FR,
LR and ANN models included slope, depth of the drift,
distance from the drift, depth of groundwater, permeability,
geology, and land. The index used for the hazard maps
was classified into seven classes, using the equal area
approach in the GIS environment for cases in which each
class did not have a similar number of cells for the total
area based on the distribution area of GSHILR. The first
class comprised 40% of the area, while the remaining six
classes (classes 2 to 7) each comprised 10% of the area.
The first class of GSHIFR and GSHIANN was set to 40%
of the study area because the GSHILR value of the 0.00
value (the first class) comprised 41.64% of the study area.
The other hazard map classes were each set to 10% of the
study area with a similar number of cells in the remaining
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Figure 3. Subsidence susceptibility map created using fuzzy gamma operator A = 0.1, 0.2 and 0.6) model. The index was classified into five
classes based on area for easy and visual interpretation: very high, high, medium, low, and very low index ranges in 10%, 10%, 20%,
20%, and 40% of the study area, respectively; (a) fuzzy gamma operator (A = 0.1), (b) fuzzy gamma operator (A = 0.2), (c) fuzzy gamma

operator (A = 0.1,0.2,0.6).

area.

The input factors were combined to assign membership
functions. Three factors (GSHIFR, GSHILR, and
GSHIANN) were combined to generate the final hazard
map using a fuzzy gamma operator. The value of A was set
to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 to determine
its effect on the GSH map.

Using the fuzzy membership function (Table 2) and the
fuzzy operator (from equations 5 to 7), the GSHI values
were computed for the 9 cases in which the gamma
operator was used. The computed GSHI values were
mapped to allow interpretation, as illustrated in Figure 3.
The values were classified into equal areas and grouped
into five classes for visual interpretation.

4.2. Validations

The quality of a GSH method can be validated by using
ground subsidence information. The success rate was
determined by comparing the locations of subsidence that
were not used for training the model and the hazard maps
created using the FR, LR, and ANN models and ensemble
method (Figure 4). The success rate illustrated how well
the estimators performed. To obtain the relative ranks
of each prediction pattern, the calculated index values
of all cells in the study area were sorted in descending
order and divided into 100 classes at 1% intervals. To
quantify the results, the area under the curve (AUC)
was recalculated for a case in which the total area was
represented by 1; L.e, a perfect prediction accuracy. The
area ratio under the curve is shown in the second column
of the Table 3.

In ensemble case using fuzzy gamma operator (A = 0.6 to
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Table 2. Spatial relationships between subsidence and subsidence hazard maps from FR, LR and ANN models.

No. of % of No. of % of Fuzzy
Factor Class subsidence®  subsidence pixels in pixels in membership
domain® domain value
FR 1.41-4.58 15 0.21 847,380 40.30 0.0006
4.59-5.43 88 1.21 209,917 9.98 0.0134
5.44-6.84 25 0.34 209,727 9.97 0.0038
6.85-8.71 164 2.26 209,212 9.95 0.0251
8.72-10.75 305 4.20 209,590 9.97 0.0465
10.76-13.50 159 219 208,771 9.93 0.0243
13.50-37.22 6,503 89.59 207,997 9.89 0.9996
LR 0 32 0.44 875552 41.64 0.0011
0-0.002363 22 0.30 225012 10.70 0.0030
0.002364-0.004726 18 0.25 221330 10.53 0.0025
0.004727-0.009451 130 1.79 197680 9.40 0.0198
0.009452-0.0212656 218 3.00 195280 9.29 0.0337
0.0212657-0.0708854 414 570 193962 9.22 0.0644
0.0708854-0.602526 6,425 88.51 193778 9.22 1.0004
ANN 0.0066-0.2834 101 1.39 841159 40.01 0.0039
0.2835-0.3603 118 1.63 210242 10.00 0.0182
0.3604-0.4295 54 0.74 210256 10.00 0.0083
0.4296-0.5025 130 1.79 210241 10.00 0.0200
0.5026-0.5794 201 277 210232 10.00 0.0309
0.5795-0.6986 163 225 210245 10.00 0.0251
0.6987-0.9868 6,492 89.43 210219 10.00 0.9995

0.9), the 90%-100% (10%) class with the highest possibility
of a subsidence contained 58% and the 80-100% class
(20%) contained 69% of the subsidence of study area. For
the fuzzy-based ensemble product, the area ratio was
0.9798; i.e. the prediction accuracy was 97.98%. For

Table 3. Prediction accuracies calculated by the area ratio under the
rate curve between a map of the reported subsidence areas
and the produced hazard maps for all 9 cases.

Tested fuzzy operators Area ratio under the curve

the gamma operator (A = 0.6 to 0.9), the area ratio Fuzzy gamma (A = 0.1) 09793
was 0.9789 and the prediction accuracy was 97.89%. In Fuzzy gamma (A = 0.2) 09789
comparison, the GSH maps using seven factors and the Fuzzy gamma (A = 0.3) 0.0789
FR, LR, and ANN models had 95.54%, 96.89%, and 94.45%
prediction accuracy, respectively, after applying the AUC Fuzzy gamma (4 =0.4) 0.9789
method.  Moreover the integration GHS maps using Fuzzy gamma (A = 0.5) 0.9789
FR, LR and ANN models showed 96.46%, 97.20%, and Fuzzy gamma (A = 0.6) 0.9798
96.70% prediction accuracy, respectively [15]. According Fuzzy gamma (A = 0.7) 0.9798
to ensemble cases, the accuracy of fuzzy-based ensemble Fuzzy gamma (A = 0.8) 09798
method for analysis subsidence hazard was the higher the

Fuzzy gamma (A = 0.9) 0.9798

other methods using FR, LR and ANN models. Therefore,
the predicted hazard using the ensemble method using a
fuzzy operator was relatively accurate in terms of locating
actual ground subsidence occurrences.
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Figure 4. Success rate curves showing the cumulative percentage
of subsidence (y-axis) for the descending ordered ground
subsidence hazard index (GSHI) rank (x-axis) in the case
of a fuzzy gamma operator (A = 0.1, 0.2, 0.6), logistic
regression and integrated logistic regression models.

5. Discussion and conclusion

Minimizing the damage due to coalmine subsidence
requires accurate estimations of locations vulnerable to
ground subsidence and efficient prevention work. This
study applied an ensemble method using fuzzy logic to
predict coalmine subsidence in terms of susceptibility at
an abandoned underground coal mine. The GSH maps
obtained using individual models using the frequency
ratio, logistic regression, and artificial neural network
methods were used as control factors. The relative
weights of these control factors were calculated and then
normalized using a fuzzy membership function. The fuzzy
gamma operator was used to evaluate ground subsidence
susceptibility and the results were validated through a
comparison with known subsidence locations and a field
survey.

This study had two main conclusions: Firstly, for the
ensemble model using fuzzy gamma operator, for most
values of A the resulting maps had the best accuracy of
97.98%. In the cases of individual models, the integrated
LR model had the greatest accuracy (97.20%), while the
artificial neural network model had the poorest accuracy
(94.45%) [15]. Comparing the individual and ensemble
ground subsidence hazard maps, the maps derived by
ensemble model showed the better result. These are

thought to be caused by ensemble the analysis models
those had been validated as subsidence hazard prediction
methods through previous studies. Consequently, it can be
concluded that the ensemble model using fuzzy operator
is better than the individual model.

Secondly, for the five classes of hazard rank (very high
10% of the study area, high 10%, medium 20%, low 20%,
and very low 40%), the occurrence subsidence ranged from
93-98% in the very high-, and high-rank area, and 2-7% in
the medium-, low-, and very-low-rank areas, respectively.
Therefore, the classification of hazard ranks provides a
quantitative spatial interpretation of subsidence and can
delineate the predicted hazardous portions of residential
and industrial areas.

For effective performance prediction, the ensemble method
using fuzzy operator should be tested in other geospatial
application areas. This method is not widely used, so
more case studies are required to check the ensemble
approach. Using the ground subsidence hazard map,
current or future ground subsidence hazard locations
where collapse has not previously occurred or been
suspected can be predicted. Therefore, based on the
map, ground subsidence hazards can be anticipated,
and subsequent planning for land use, development and
policiescan be undertaken efficiently. Furthermore, if the
same analyses are performed in other areas where the
factors relevant to ground subsidence are present, time
and cost can be saved by predicting ground subsidence
effectively.
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