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Abstract: The Data Interpolating Empirical Orthogonal Functions method is a special technique based on Empirical
Orthogonal Functions and developed to reconstruct missing data from satellite images, which is especially
useful for filling in missing data from geophysical fields. Successful experiments in the Western Mediterranean
encouraged extension of the application eastwards using a similar experimental implementation. The present
study summarizes the experimental work done, the implementation of the method and its ability to reconstruct
the sea-surface temperature fields over the Eastern Mediterranean basin, and specifically in the Levantine Sea.
L3 type Satellite Sea-surface Temperature data has been used and reprocessed in order to recover missing
information from cloudy images. Data reconstruction with this method proved to be extremely effective, even when
using a relatively small number of time steps, and markedly accelerated the procedure. A detailed comparison
with the two oceanographic models proves the accuracy of the method and the validity of the reconstructed fields.
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1. Introduction

Let us consider a basin filled with water whose surfaceis oscillating. To describe this surface wave we shouldnote the position of every water particle at every moment,which rapidly generates a huge amount of data. Duringthe last few decades there has been considerable effortput into finding simple (usually referred to as ’empirical’)functions, which satisfactorily describes such a system.
∗E-mail: evangelos.akylas@cut.ac.cy

The most common approach is to use a spatial functionthat gives the form of the wave at a given moment anda temporal function which characterizes the variation ofthe wave over time. Determining these functions thenavoids excessive data accumulation. In geophysics, a well-known and widely used method (introduced by Lorentzin the 50’s) [1], is the geographically-weighted PrincipalComponent Analysis (PCA), which is normally referred toas empirical orthogonal functions (EOFs). Specifically,PCA is defined as an orthogonal linear transformationthat maps the data to a new coordinate system suchthat the greatest variance by any projection of thedata comes to lie on the first coordinate (called the
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first principal component), the second greatest varianceon the second coordinate, and so on. EOFs canpresent different physical meanings, like coherent spatialpatterns with maximum variance, modes of energy, or evenjust convenient mathematical abstractions, depending onthe nature of the problem. Backers and Rixen [2]demonstrated an innovative EOF method that does notneed any prior knowledge of the correlation function orcorrelation length from the data. Due to the iterativenature of the algorithm, any inhomogeneity or non-isotropic behavior is automatically taken into account,generating an interpolation effect, hence the name DataInterpolating Empirical Orthogonal Functions (DINEOF).An adaptation of handling large data sets (typical ofsatellite imagery) can be found in [3].Filling in the gaps generated by the existence of clouds,rain, or simply due to incomplete track coverage is oneof the most common problems faced while processingsatellite data. Many methods have been tested overthe years to solve this problem, with different resultsregarding the field of application and the expertise ofthe scientists involved. Notable examples are the Data-Interpolating Variational Analysis (DIVA) that allows thespatial interpolation of data (analysis) in an optimal way,and the optimal interpolation method. However, theDINEOF method is simply faster.Optimal Interpolation (OI) is the classic and most well-known method. The main problem is the length ofcalculation time. For a typical ensemble of data, DINEOFis an innovative method, and 30 times faster than OI.This increase in speed is a direct consequence of thedifferent statistical methodology used between the twodifferent approaches. In particular, DINEOF constitutesa procedure that fills gaps by iteratively decomposing thedata field via Singular Value Decomposition (SVD) until abest solution is found, as compared to a subset of referencevalues (non-gaps). This is done by progressively includingmore EOFs in the reconstruction of the missing locationsuntil the minimization of error converges.In this paper, we apply the DINEOF method in order toreconstruct a full satellite-derived sea surface temperature(SST) field, for the Eastern Mediterranean, Levantinesea and Cyprus coasts. SST is a physical parametercommonly used in most oceanographic and meteorologicalapplications [4] and among others is a principal factorfor relevant arithmetic model calibration, assimilation andinitialization [5–7]. DINEOF is applied for the first timeover the specific area of the Eastern Mediterranean Sea,a step which is crucial, both for the research as for theoperational implementation of the method. The structureof this work is as follows. In Section 2 a description ofthe DINEOF method and of the corresponding algorithm

is given. Section 3 describes the application of the methodused in the Eastern Mediterranean Sea. Finally, inSection 4 the results of the implementation are analyzedand discussed.
2. Description
By using the EOF method, one is able to identify a setof orthogonal spatial modes, such that, when ordered,each successive eigenvector explains the maximum amountpossible of the remaining variance in the data. Eacheigenvector pattern is associated with a series of timecoefficients that describe the time evolution of theparticular spatial mode. The eigenvector patterns thataccount for a large fraction of the variance are, in general,considered to be physically meaningful and connected toimportant ’centers of action’.The EOFs can be regarded as eigenvectors, which arealigned so that the leading EOFs describe the spatiallycoherent pattern that maximizes its variance [8]. EOFsare often used as a functional basis (a new set ofaxes or reference frame), providing a convenient methodfor studying the spatial and temporal variability oflong time series data, over large areas. The methodsplits the temporal variance of the data into orthogonalspatial patterns called empirical eigenvectors. The EOFanalysis may be thought of as being analogous to datareconstruction based on Fourier transforms (FT), in thesense that they both produce series (vectors) whichform an orthogonal basis. In the following, we brieflysummarize the mathematical principles of the algorithm.
2.1. 2.1 PCA-SVD-EOF

The Principal Component Analysis tries to explore thequestion ’can our data set be expressed better in one
other basis which is a linear combination of our current
basis?’ The answer to the above identifies the existenceof linearity, noise, and correlations in the data. In orderto explain the way this method works, one may assumetwo data sets A = {a1, a2, .., an} and B = {b1, b2, .., bn},
n ≥ 1. Their variances will be σ 2
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(ai − µA)(bi − µB). The covariance matrix is ameasure of the degree of linearity between two variables.In other words, it is a measure of the proportion of the
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variance of a set that can be explained through a linearrelation from the respective variance to that of the otherone. A large positive value indicates positively correlateddata. On the other hand a large negative value denotesnegatively correlated data. The absolute magnitude of thecovariance measures the degree of redundancy.If σAB is zero, then sets A and B are uncorrelated. Theequality σ 2
AB = σ 2

A = σ 2
B holds if and only if, A = B.All the methods applied here yield a finite number ofmodes that represent the covariance matrix of the data. Itsrows and columns indicate the covariance (or correlation)between the time-series at a given station or grid-pointof one field and the time-series at all stations or grid-points of the other field. Singular Value Decomposition(SVD) analysis offers the same types of normalizing andscaling options as EOF analysis (i.e. it can be basedon either the covariance matrix or the correlation matrix).Each mode in the analysis is identified by an eigenvalue (apositive distinct number which defines its rank and relativeimportance in the hierarchy of modes), an eigenvectoror EOF (a linear combination of the input variables inthe domain of the structure), and a principal component(PC) which documents the amplitude and polarity of thatstructure in the sampling domain. It should be notedthat a common measurement of the feasibility of the PCAapplication is the Signal-To-Noise (SNR) ratio. SNR isdefined as SNR = σ 2

signal/σ 2
noise which in practice is theratio of the variances. A high SNR (� 1) indicates ahigh precision measurement, while a low SNR indicatesvery noisy data [9]. If PCA is made by using SVD thenthe output consists of the eigenvalues plus two rectangularmatrices. The context of the analysis will determine whichone should be labeled the Empirical Orthogonal Function(EOF) matrix and which one the Principal Components(PC) matrix.

2.2. The algorithm
Recalling the description given by Alvera-Azcarate et
al. [10], we consider an M ×N matrix X , M and N beingthe spatial and temporal sizes, respectively. Anomaliesare computed and the missing data are normalized to themean (i.e. to a zero anomaly). Initially the most dominantEOF mode of this matrix is obtained, and the missing dataare calculated by means of

Xm,n = USV T (1)
where m = 1, . . . ,M and n = 1, . . . , N . U is an m × rmatrix representing the spatial EOF nodes, V T is an
n × r matrix containing the temporal modes, and S isan r × r matrix containing singular values. The value

r ≤ min(m,n) is the rank of the X matrix. For thereconstruction of X , only the most significant spatial andtemporal EOF is used. The new estimation of X for themissing data is reintroduced into the data matrix, andthe EOF mode calculation is repeated. This process iscontinued in a successive fashion until the convergenceof the missing values, and consequently the EOF modescalculated, are increased to two, then to three, etc. TheEOF mode calculation is succeeded using a Lanczossolver provided by the ARPACK free software. A majorimprovement on the latest DINEOF version, is the abilityof outlier detection, provided by the ratio between theanalysis residuals and their expected standard deviation,
Oi = Xa

i − X o
i∆i

(2)
For non-missing, original values X o

i are given, where
i = 1, . . . , m is the spatial index, Xa

i is the new value,as created by DINEOF, and ∆i is the expected misfit,calculated by
∆i = √

µ2
eff −

∑
E2
i,k (3)

In the above, i = 1, . . . , N is the number of EOFsused from the algorithm for the reconstruction, while
k = 1, . . . , N are all used modes. Parameter u2

eff is anestimation of the average noise of the initial field, obtainedas a cross-validation error. The expected error Ei,k of each
i−position is calculated by

E = LpSc with correlation matrix C = ScSTc (4)
where Lp is constructed by m×N columns of the spatialEOFs multiplied by the corresponding singular values,and Sc is the N × N Cholesky factorization of the Ccorrelation matrix. More details on the mathematicalprocedure can be found in [11]. In Figure 1, theoutline of the implementation of the DINEOF algorithmis presented.The optimal number of EOFs needed to calculate themissing data is determined by cross-validation: a smallpercentage of valid data (typically 1% of the total data)is initially set apart and flagged as missing. Onceconvergence is reached for a given number of EOF modes,a root mean square error is calculated between thenewly obtained estimate and the initial dataset. Thenumber of modes that minimizes this error is consideredas optimal. It is notable that not all modes need tobe calculated, as one can observe that when the errorincreases steadily for 3 consecutive modes, a minimum
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Figure 1. DINEOF algorithm iterative scheme (based on [11].

has been reached [11]. The optimal number of EOF modesretained is calculated by cross-validation (i.e., a few validdata are set aside and the error of the reconstruction isassessed by comparing the reconstructed data to thesecross-validation data). For an extended description ofDINEOF, and recent developments, the reader is referredto Beckers and Rixen [2], Alvera-Azcárate et al. [3, 12] andBeckers et al. [13].
3. Application
The DINEOF algorithm has been successfullyimplemented over the Western Mediterranean in acontinuous basis by GeoHydrodynamics and EnvironmentResearch, a research group at the University of Liêge,where they produce daily, cloud-free SST images for that

area [11]. The scope of the present work is the extensionof the DINEOF algorithm application over the EasternMediterranean Sea. Until now, there has been no knownprocedure that systematically recovers missing data fromsatellite images for the full area covering the LevantineSea and Cyprus coasts. However, cloud-generatednoise is frequent, especially during winter and spring,resulting in incomplete information which is importantfor lots of applications. The present application aimsat recovering missing SST data from sparsely coveredsatellite images. The data refer to SSTs measured twicea day at 10:00 am and 20:00 pm GMT and cover thearea from southern Italy to the Middle East (Figure 2)with atmospheric corrections. The data are collectedcollaboratively by Meteo-France and the NorwegianMeteorological service (DNMI) just 2 hours after the lastsatellite data acquisition. The same type of data, L3 from
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MERIS satellite products, is used for the aforementionedWestern Mediterranean project. In this case study, theradiometry satellite data covers a total of 400×500cells on a geographical grid with a spatial resolution of2220 m.
A typical example of initially incomplete data is shownin Figure 2 (left), for the 11th of January 2013. Inorder to recover the missing information, DINEOF codeversion 3.0, provided by GHER website, has been used.Although, in the case of the Western Mediterranean, theapplication is based on a long-term sample collection, inthis work we have chosen to perform the experiment onlyin a 4 day period from the 9th to the 12th January 2013(Figure 3). It is suggested that the reduction of the samplesize markedly accelerates the procedure without seriouslyaffecting the accuracy. The effectiveness of the applicationcan be more clearly shown if one separates a rather”empty” input image, and provides the correspondingresult in Figure 2 (right). It is suggested that the longerthe available time-series, the better the results will bein relation to the area covered [10]. However, a questionregarding the quality and the validity of the generatedresults and their dependence on the sampling size stillremains. In our opinion, a reduction in the sampling size interms of its dependence on the historic data offers a less-biased reproduction of local rapid changes. Nevertheless,”first-guess” information exists, where no information wasavailable. Or at least, there is strong evidence of thedominant factors around the area of interest. EOFswere performed on the ’cloudy’ data received from thesatellite dataset. Results from the current applicationon a 12-hour basis from the 9th to the 12th January2013 are given in Figure 3. It should be noted thatheavy clouds between the 11th and 12th of January couldhave easily led to extreme values and corruptions in theSST field. The accuracy obtained with the DINEOFapplication, as it will be shown, is mainly due to tworeasons: the filtering of spikes in the temporal EOFs, andthe standard number of EOFs that were retained in theEastern Mediterranean Sea. For the current application,the same model set-up parameters have been used forall cases. After several different runs and continuoustesting, it has been concluded that calculations with five(5) EOF modes, using the application’s default threshold(10−8), without modifying the existing data (the originalsatellite images) and without normalization of the results,rendered the most satisfactory results. Keeping the firstfive EOFs in the area under consideration, proved thebest choice, allowing for reconstruction and capturing ofeven small scale variability. It is known that the higherorder EOFs do not only contain small-scale information,but also noise.Forcing DINEOF to retain a higher number

of EOFs than was calculated with the cross-validationmethod should be done with caution, as this might degradethe overall quality of the reconstruction.
4. Validation of the results and
discussion
In order to estimate and test the successful implementationof the application presented here, a comparison of therecovered results against the outputs of oceanographicmodels that provide regional now-casting real timeinformation is performed. Two of the most important andrelevant models, are:

1. the CYCOFOS [14], the Cyprus OperationalOceanographic System, providing high-resolution,detailed and accurate data from around Cyprus andin the Levantine sea, and
2. the U.S. Navy Coastal Oceanographic Model [15],which covers a wider area, at a lower resolution.

Both models are used in an operational basis bythe Cyprus Government, the US Navy and ResearchInstitutes around the world (including MyOcean [16],SeaDataNet [17] and numerous scientific organizationsin the European Union, and others, including GOOS,IOC/UNESCO).They have been deeply studied and tested.In Figure 4, we outline the testing procedure; (a) theinitially cloudy image is regenerated with DINEOF; (b)as explained, the respective model’s output for the sametime is selected; (c) the differences between (b) and (c)at all points are computed; and (d) the same procedure isfollowed for each time-step for both models.Firstly, comparison is made with the less detailed modelUS NCOM, as shown in Figure 5. The deviation of themodel from the recovered SST values is illustrated. Forall the time-steps, it is evident that the recovered datapartially overestimate the SSTs compared to the model.Although, over most of the studied area, the differencesremained relatively small (less than 1◦C); near the EasternMediterranean coastal area the difference peaks at around4◦C. This difference could be intuitively attributed to thefact that the specific area lacks original SST informationas shown in Figure 3. In other words, this differencecould be due to DINEOF’s inaccuracies. However, thisis not true. The US NCOM model covers the area ina lower resolution resulting in less accurate results. Infact, Figure 6, which focuses on the vicinity of Cyprusthrough the CYCOFOS operational model, shows a highlevel of agreement between the model results and theDINEOF predictions. As mentioned, CYCOFOS is a
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Figure 2. A typical example of a cloud-covered area during the data collection (left), and its recovered information (right) over the area of application.

source of very accurate data, providing high-resolutiondata for the Cyprus coasts and Levantine Sea. Theobserved agreement, with absolute differences of less than1◦C, is further verified by respective in-situ measurementsfrom the Paphos tide-gauge station (data available fromCYCOFOS web site), revealing the same behavior.In Figure 7, the detailed SST fields from the CYCOFOSmodel and the respective ones from the application of theDINEOF procedure are illustrated. This illustration iscrucial in order to test the basic pattern and the mainphysical characteristics of the recovered SST fields. Asnoted, a general clear difference of the order of onedegree Celsius for all the period is observed betweenthe two cases, with the DINEOF estimating lowerSST values. This difference is considered acceptable,especially since the comparison is done against modelleddata. Furthermore, it is evident that the models almostcertainly use a thicker upper layer than the one thesatellite sees, depending on the sigma layer constructionused. In particular, in the case of the two modelspresented, this layer is almost 2 m thick. As a result, atthe specific satellite observation times, the temperatureat the sea surface is expected to be slightly higher thanthe average temperature of the above layer. This couldpossibly explain the systematic divergence of the orderof −1◦C between the recovered SST and the modelledpattern.In fact, observing the DINEOF results in detail, one mayidentify some remarkable features. The high temperaturesthat appear near the Asia Minor coast are a good indicatorof the consistency of the reconstructed values real data,

with respect to historical climatologic SST values from thespecific area. Furthermore, the profound concentrationsof colder water that appear in the North West area, inagreement with the known cold water formations nearthe Ierapetra gyro, are a further indication of success.Finally, the existence of remarkably lower temperaturepatterns near the Palestinian coasts could have beenthe natural result of the impact of the Cyprus gygo [18].The above comments show that all the informationobtained by the reprocessed satellite data concerningSST constitutes a good, acceptable representation ofthe known conditions and of the impact of the mainphysical mechanisms that influence the studied area.The resulting DINEOF representation could even provemore detailed and accurate results compared to theCYCOFOS model. For instance the DINEOF applicationshows lower SST values (around 16◦C) along the westernCyprus coast compared to the 17-18◦C estimation ofthe model. The in situ measurements from Paphostide-gauge station for the same period vary between15◦C and 16◦C, showing a better agreement with theDINEOF results. The overall success suggests theexistence of a strong basis available for further testingand application, including more sophisticated procedures,in the direction of successfully implementing a continuousrecovery of SST data from satellite images over theEastern Mediterranean. It is expected that in the futuresuch results could serve as input for assimilation processesand model calibrations.
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Figure 3. Original and reconstructed SST data for the Eastern Mediterranean for the period 9 - 12 /1/2013.
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Figure 4. Outline of the validation procedure for an arbitrary time-step for Eastern Mediterranean SST data.

5. Conclusions

The Data Interpolating Empirical Orthogonal Functionsmethod is a special technique used for the reconstructionof missing data from satellite images. It is an innovativemethod, especially useful for filling in missing datafrom geophysical fields. SST is a physical parametercommonly used in most oceanographic and meteorologicalapplications and among others is a principal factorfor relevant arithmetic model calibration, assimilationand initialization. Previous work reported successfulimplementation of DINEOF in recovering missing SSTdata over the Western Mediterranean area. The DINEOFmethod has been applied in order to recover a full

satellite-derived sea surface temperature field, for thefirst time over the Eastern Mediterranean, Levantinesea and Cyprus coasts. This is a crucial step for theoperational implementation of the method. The results arereally impressive, recovering data from very cloudy imageswith remarkable efficiency. The comparison againstwidely used highly accurate simulations revealed closeagreement with differences not exceeding 1◦C. The samequantitative agreement also holds true against in-situmeasurements from the Paphos tide-gauge station. Itshould be stressed that this agreement is in favor of theDINEOF reconstructed results compared to the resultsproduced by the detailed CYCOFOS model. The overallsuccess suggests the existence of a strong basis available
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Figure 5. Computed SST differences between the present DINEOF application and the US NCOM model data.
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Figure 6. Computed SST differences between the present DINEOF application and the CYCOFOS model data.
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Figure 7. Comparison of SST estimates by DINEOF processed satellite data and the CYCOFOS model results.
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for further testing and application. The method, providesreliable information, even better than that estimated byphysical models, and may serve as a continuously updatedbasis for improved data for physical model assimilation(oceanography and meteorological-atmospheric models)and for better model tuning during operation.Besides the impressive outcome of the DINEOF algorithmrecovering SST data, the application of the method is notrestricted to satellite processing. Using DINEOF, [19]studied the relationships between surface winds, theSSTs and Chl-a variations in the South Atlantic during2003. Sirjacobs et al. [20] effectively applied the DINEOFmethod to study the case of suspended matter in the NorthSea. In addition, similarly to the present application, dailyDINEOF cloud-free SSTs for the Western MediterraneanSea and for the Canary-Madeira region are produced onan operational basis [21]. There also exists a simplifiedR-project package, specially designed for adoption intothis statistical environment. Due to the simplicity ofthe method, and the high-quality results, it is easy toleading to better quality reconstructed results from sparsedatasets. This could be achieved by using a specialdedicated geo-statistical tool, like those included in aGIS, for further optimization of results. This is a maintopic for future research.
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