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Abstract: This study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution
over a period of 5 years (2008-2012), and investigates the applicability of satellite AOD data for ground PM10
mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-
based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are
unknowns that cause uncertainties in this relationship.
The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data
set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are
correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coinci-
dent MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables
(predictors, estimators) included season, cloud fraction, and meteorological parameters - including temperature,
air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height - using
meteorological data from WRF (Weather Research and Forecast) model.
It has been found that 1) a univariate linear regression model fails at explaining the data variability well which
suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with
multivariate linear modeling and a neural network approach, using additional independent variables.
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1. Introduction

Particulate matter (PM) is nowadays one of the majorair quality issues in Europe [1], as well as in Croatia [2].Exposure to small particles with diameter size less than10 µm can lead to respiratory problems and cause prema-ture death [3]. An estimated 5 million years of life are lostper year due to fine particles (PM2.5) alone in the geo-graphic area covering 32 member countries of EuropeanEnvironment Agency (EEA-32) [1]. Therefore, the EU hasset limit values for PM10 for daily and annual averages(50 µgm−3 and 40 µgm−3, respectively). Daily averagesmay not be exceeded more than 35 times per year. ForPM2.5 an annual average limit of 25 µgm−3 has to bereached in 2015 with further reduction to 20 µgm−3 to bereached in 2020.Air quality assessment of PM is usually based on mea-surement data from established ground monitoring sta-tions. However, these are point measurements and do notprovide an adequate spatial coverage to fulfill the needsof mapping regional air quality and human exposure as-sessments [4]. Another tool for assessing air quality andunderstanding PM spatial distribution is air quality mod-eling, which apart from gaps in our knowledge in chemicaland physical processes in the atmosphere, suffers mostlyfrom incomplete emission inventory data needed as an in-put [5]. Although satellite measurements are less precisethan ground-based measurements, aerosol optical depth(AOD) retrieved from satellite sensors is considered as agood proxy for ground observed PM mass concentrationsand a valuable tool for monitoring aerosol pollution [5–8]. The Moderate Resolution Imaging Spectroradiometer(MODIS) provides distribution of AOD near-globally ona daily basis at spatial resolution of 10 kmx10 km overboth ocean and land.Ground based measurements represent dry mass concen-tration of PM at the surface, whereas AOD represents thecolumnar aerosol loading from the surface to the top of theatmosphere [7]. The relationship between these two vari-ables depends on various factors, including aerosol verti-cal distribution, aerosol type and its chemical composition,as well as its spatial and temporal variability, which aregoverned by spatio-temporal distribution of emissions andmeteorological conditions [8].During the last decade, various studies have analyzedthe relationship between PM and AOD [5, 7–12]. Earlierstudies [7, 9, 10] reported a wide range of correlation co-efficients (R) for univariate linear regression models (UV)for different areas around the globe. For example, a studyof PM2.5-AOD relationship over the entire United Statesof America (USA), which included 1300 ground monitor-ing stations, found non-uniform correlations across USA,

being strongest in the northeast part of USA (R >0.8) andweakest in the northwestern part of USA (R <0.2), withan average of 0.43 over the entire area [7]. For 26 citiesaround the globe (in India, Australia, Hong Kong, UnitedStates of America and Switzerland), R ranged from 0.11 to0.85 [10]. Although AOD and PM correlate well for someregions and in specific situations with stable meteorologi-cal conditions and fixed pollution sources [8], most of thesestudies have concluded that AOD alone do not explainsurface PM concentrations well, since other factors affectthe PM-AOD relationship (such as the vertical distribu-tion of aerosols, aerosol type and chemical composition,its temporal variability, and meteorological parameters).In situations with aerosols transported aloft - whichground monitors may not capture - columnar AOD andsurface PM mass concentration may not correlate well.Additionally, satellites can measure almost the samecolumnar AOD during two different conditions: one withlow planetary boundary layer height (PBLH) when sur-face PM concentrations can be high (if aerosol is con-fined within planetary boundary layer); and second withhigh PBLH when surface concentrations are low (when di-luted in vertical column) [12]. Ground and space borne li-dars, such as Cloud Aerosol and Infrared Pathfinder Satel-lite Observation (CALIPSO) provide information on verti-cal distribution of aerosols that can help assess whetherthe aerosol is confined to the surface planetary boundarylayer (PBL) or aloft [13]. Moreover, lidar apportionmentof the fraction of aerosol optical depth that is within thePBL can be scaled to give better agreement with surfacePM than does the total column amount [13].However, there are limitations with these data. CALIPSOprovides observations in a very narrow swath and globalcoverage is reached only after several weeks. On the otherside, ground-based lidars are spatially very sparse and donot operate continuously. Although these data cannot beused for spatial mapping of daily averaged PM concen-tration, it can be useful for interpretation and improve-ment of the PM-AOD relationship by finding the mostsignificant upper-level transport events. As some stud-ies (using limited observations of vertical distribution ofaerosols from lidars) have demonstrated that aerosols arewell mixed and mostly confined within the PBL, a PBLHcan be used as a surrogate to estimate the height of theaerosol layer [12]. Other meteorological parameters in-fluencing PM-AOD relationship are humidity (due to hy-groscopic growth of particles and production of secondaryparticles), temperature (T) (due to effect on photochemi-cal reactions in which PM particles are produced), windspeed (WS) (affecting horizontal and vertical dispersion),and temperature vertical gradients (affecting vertical mix-ing). A detailed discussion on meteorological parameters
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affecting PM concentration is given in Gupta and Christo-pher, 2009 [12].Inclusion of meteorological parameters, such as PBLH,WS and relative humidity (RH) into PM-AOD relation-ship, improved estimation of PM2.5/PM10 concentrationsusing multivariate linear (MV) and non-linear regressionmodels compared to UV model [5, 10, 12, 14]. For example,average R over the entire Europe (not including Croatia)improved from 0.3 to 0.5 (0.6) for PM10 (PM2.5) with in-clusion of PBLH and RH into the PM-AOD relationship,where R varied in respect to location and season [5]. Inrecent studies, an artificial neural network (ANN) was ap-plied to estimate PM2.5, taking into account T, RH, WSand PBLH [15, 16]. The estimates of PM2.5 with ANNfor 85 monitoring stations across the USA improved (R= 0.83) compared to UV (R = 0.67) and MV (R = 0.77)models, indicating that a neural network approach is bet-ter suited for deriving PM-AOD relationship [15]. Thestudy with application of ANN in China [16] obtained Rthat varied both with location and season (the highest Rbeing 0.74). Those studies concluded that PBLH is one ofthe dominant factors determining the performance of ANN.The objective of this study was to explore the possibility ofspatial mapping of surface PM10 concentrations with spa-tially generalized model for Croatia using satellite data inorder to obtain estimates for areas where measurementsdo not exist, that currently covers almost half of 20 coun-ties in Croatia. The PM10-AOD relationship has beenassessed using four different empirical models in order tofind the model with best estimates: univariate linear re-gression model (UV); multivariate linear regression modelwith first order effects (MV1), multivariate linear regres-sion model with first and second order effects (MV2) andartificial neural network (ANN) model, using meteorolog-ical parameters as independent predictors.
2. Data and methodology
2.1. Data
Assessment of the PM10-AOD relationship has been per-formed using three different datasets over a period of 5years (2008-2012): 1) hourly surface PM10 mass con-centrations measured at 12 ground-based stations (seeFigures 1 and 2); 2) Terra and Aqua MODIS AOD at0.55 µm and Cloud Fraction (CF); and 3) meteorologicalparameters from WRF meteorological model over abovementioned 12 stations in Croatia.
2.1.1. Surface PM10 mass concentrationSurface PM10 mass concentration data were obtainedfrom Air Quality Database of Croatian Environment

Agency Information System. The Croatian air qualitymonitoring network consists of national and several localnetworks of ground measurement stations and it is stillunder development. Currently, PM10 is monitored by 28ground stations. Measurement methods are not unifiedacross stations, including mostly beta-absorption mea-surement method and referent gravimetric method. Thisstudy uses hourly PM10 mass concentration data from12 ground monitoring stations, which met criteria of 70%data capture through the period of 5 years. These stationsare equipped with automatic analyzers that utilize beta-absorption method. The data were taken as measured,without application of correction factors that should re-sult from a test of equivalency with referent gravimetricmethod, due to lack of such tests for all stations. Amongthe 12 chosen stations (Figure 1 and 2), 11 are urban,dominated by emission sources from industry and traf-fic, and only 1 station is rural, dominated by industrialemission sources (rural background stations are still un-der development). Five of these stations are located in thecoastal area, and seven in the continental part of Croatia.
2.1.2. Satellite aerosol data

The MODIS instruments onboard the Terra (crossingEurope ~10:30 local time) and Aqua (crossing Europe~13:30 local time) satellites provide routine retrievals ofcloud and aerosol properties in seven different spectralbands over the ocean and in three bands over land [18].This study uses AOD and CF data from the new MODISalgorithm (collection C051, based on the operational algo-rithm V5.2) that incorporates improved estimation of sur-face reflectance (for land) and applies stringent criteriato select appropriate pixels in the retrieval process, com-pared to collection C004 (V5.1) [17].The AOD algorithms for land and ocean are independentand different, due to different radiative properties of landand water. The retrieval of AOD is based on analyz-ing 20 × 20 pixels at 500 m resolution and reported at10 × 10 km2 resolution. The ocean algorithm is appliedonly if all 400 pixels are identified as ocean pixels. Ifany land is contained within the 10 km × 10 km cell,the land algorithm is applied [18]. The retrieval is con-sidered more accurate over ocean than over land, vali-dated against ground-based AErosol RObotic NETwork(AERONET), where one standard deviation of AOD fellwithin the expected uncertainty level of ±0.03±0.05 AODover ocean and of ±0.05±0.15 AOD over land [17, 18].This is because the reflection by water is homogenous,relatively low and well known [18]. The operationalproduct Optical Depth Land and Ocean (AOD at 0.55 µmband for ocean (best) and land (corrected) with best qual-ity data (Quality Flag = 3) has been used in our study.
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Figure 1. Number of days with available AOD data in the period
2008-2012. Labels represent locations of ground-based
PM10 measurement stations.

The sources of uncertainties in MODIS AOD include in-strument calibration errors, cloud-masking errors, incor-rect assumptions on surface reflectance, and aerosol model(fine or coarse mode) selection [18].The smallest number of AOD values in the 5 year periodwas retrieved for marine coastal area, with numerous is-lands (approx. 1000) (Figure 1). Within that area, it islikely that application of the land algorithm to fragments ofsea resulted in high AOD values [19] (Figure 2), as thereare no known sources or reasons for increased aerosolpollution at that area. However, there were no availableground-based AOD measurements for that area to checkthose AOD values. Spatial distribution of averaged AODvalues for the period of 5 years for the inland part of Croa-tia shows increased values in the most populated, centralpart of Croatia and in the eastern, agricultural area (Fig-ure 2).
2.1.3. Meteorological variables from WRF modelThis study uses hourly analysis data of planetary bound-ary layer height (PBLH), air temperature at 2 m height(T), surface relative humidity (RH), wind speed (WS),wind direction (WD) and surface pressure (P). Thesemeteorological variables were obtained with WeatherResearch and Forecasting (WRF) mesoscale numericalmodel V.3.3.1 [20]. The configuration of WRF modelconsists of parent domain with horizontal resolution of18 km × 18 km, encompassing countries surroundingCroatia, and one nested domain with horizontal resolutionof 6 km × 6 km covering the entire of Croatia. Initial andboundary conditions stemmed from NCEP FNL (NationalCenters for Environmental Prediction Final Analyses) that

Figure 2. Five-year (2008-2012) average of daily MODIS AOD val-
ues. Labels represent locations of ground-based PM10
measurement stations.

is provided globally on 1° × 1° grid every 6 h (FNLds083.2). FNL analysis is a quality-assured/quality-controlled product from Global Data Assimilation System(GDAS) which continuously produce multiple analyses oncollected observational data from Global Telecommunica-tions System (GTS) and various other sources (e.g., syn-optic stations, radiosondes, aircrafts, satellites) providedby different countries and organizations and assimilatedby a modern analysis/forecast system to obtain a phys-ically and thermodynamically consistent global reanaly-sis of atmospheric fields. The output frequency of WRFmodel was set to 1 hour. The integration time step was setto 108 seconds. Vertically, the model had 35 unequallyspaced sigma levels that are more densely distributednear the ground. For parameterization of the boundarylayer we used the YSU (YonSei University) scheme withUNLSM model (Unified Noah Land-Surface model) forsurface [21, 22] and WSM (WRF Single-Monent) 6-classMicrophysics scheme [23]. For radiation parameterization,a Rapid Radiative Transfer Model (RRTM) [24] schemewas used for longwave, and Goddard short wave for short-wave radiation [25]. For cumulus parameterisation a Kain-Fritsch (new Eta) scheme was used [26].
2.1.4. Data integration and averaging schemes

Ground-based measurements are point values, whereasMODIS AOD represents average values in 10 km × 10 kmpixels, and meteorological fields from WRF represent pointvalues in 6 km × 6 km grid. In order to integrate thosevalues into the process of estimating surface PM10 massconcentrations, 5 years (2008-2012) of coincident datafrom three different sources were collocated at the same
5
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temporal and spatial scales. As for the temporal scale,hourly ground-based PM10 mass concentrations were av-eraged over the period between 10:00 and 14:00 localtime, that corresponds with the period of Terra and Aquasatellite passes. The same temporal averaging schemewas applied to hourly meteorological fields from WRF. Asour PM10 measurement stations are mainly urban andlocated in areas with complex topography, as an appro-priate spatial averaging scheme we have chosen aver-aging of MODIS Terra and Aqua AOD data over pixelswhose centers fall into a 10 km radius circle centeredover surface measurement stations, for each day. Meteo-rological parameters from WRF model were interpolatedfrom a 6 km × 6 km grid to locations of ground-basedPM10 measurement stations using bilinear interpolation.The matched data set contains spatio-temporally collo-cated “daylight” daily average of satellite-derived AODand CF, surface PM10 measured mass concentration andWRF derived meteorological parameters. The final dataset contains 7114 collocated samples, used for develop-ment, testing and validation of statistical models.
2.2. Overview of the spatial and temporal vari-
ability of independent variables

The mean (±standard deviation) AOD value of the wholedata set is 0.16±0.13 and the mean (±standard devia-tion) PM10 mass concentration is 26.65±17.18 (see Ta-ble 1). Both AOD and PM10 show an overall decreas-ing trend of aerosol pollution in Croatia in the periodfrom 2008 to 2012 (Figure 3). The highest decrease ofPM10 annual means was from 36.10 µgm−3 in 2008 to23.45 µgm−3 in 2010. From 2010 to 2012 it increasedmildly to 24.67 µgm−3 in 2011 and then decreased againto 22.85 µgm−3 in 2012. The mean AOD decreased from0.18 in 2008 to 0.14 in 2012 with an exception of slightincrease of 0.003 in 2009. All the variables show signifi-cant seasonal variability. AOD values are the highest inspring (0.20±0.14) and the lowest in winter (0.11±0.09).On the other hand, PM10 values are the highest in winter(30.09±24.18 µgm−3) and autumn (29.27±19.96 µgm−3)and the lowest in spring (25.28±13.30 µgm−3) and sum-mer (25.09±15.14 µgm−3). Such seasonal PM10 vari-ability is present only at continental stations, probablydue to combination of emissions from household heat-ing and unfavorable meteorological conditions (e.g., tem-perature inversions) that prevent dispersion of pollutionduring colder parts of the year. A planetary bound-ary layer is the highest in summer (1.48±0.63 km),followed by spring (1.43±0.64 km) and the lowest inwinter with mean values of 0.71±0.41 km. It is onaverage higher at continental stations (1.51±0.58 km)

Figure 3. Five-year (2008-2012) trend in annual mean of AOD (left)
and PM10 mass concentration (right).

than at coastal stations (0.89±0.51 km). The coastalstations have on average lower AOD (0.14±0.12) andPM10 (20.40±13.83 µgm−3) than continental stations(AOD 0.17±0.14; PM10 30.69±17.76 µgm−3). Rel-ative humidity mean values vary between 46% (sum-mer) and 53% (winter). Wind speed is the highest inthe winter (4.14±3.37 m/s) and the lowest in the sum-mer (2.46±1.50 m/s) and it is on average higher atcoastal stations (3.6±2.92 m/s) than at continental sta-tions (2.4±1.29 m/s).
2.3. Development of empirical models (uni-
variate model, multivariate linear models, ANN)

Previous studies have demonstrated that the variability ofsurface PM mass concentration can be better explainedwith multivariate regression models (both linear and non-linear) as well as with artificial neural networks (usingmeteorological parameters as additional independent pre-dictors) than with univariate linear regression model (withAOD as predictor) [14–16]. Additionally, the neural net-work approach has been widely used in atmospheric andair quality modeling studies [27, 28] and demonstrated tobe effective for air pollution estimation and prediction.In this study we analyzed and compared the PM10-AODrelationship using four models: 1) univariate linear re-gression model (UV); 2) multivariate linear regressionmodel with first-order effects (MV1); 3) multivariate linearregression model with first and second-order effects of theindependent variables (MV2) and 4) artificial neural net-work (ANN). The MV1 and MV2 models were built with“best-subset” building method, using Mallows’ CP [29] asthe criterion for choosing the best subset of predictor ef-fects. This measure of the quality of fit for a model tendsto be less dependent (than the R-square) on the numberof effects in the model, and hence, it tends to find the bestsubset that includes only the important predictors of therespective dependent variable.The independent continuous variable used as predictorof surface PM10 mass concentrations for UV model was
6
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AOD. For multivariate and ANN models tested continu-ous variables were AOD, PBLH, RH, WS and WD, T, Pand CF. All the variables have been taken as measured orobtained by meteorological model, with exception of winddirection. Due to the fact that this variable is circular(0°= 360°), it is represented by eastern (Un) and west-ern (Vn) wind components, which were previously normal-ized with WS to interval [-1 1], since the WS is alreadyincluded as independent variable. PM10, AOD and themost meteorological parameters show significant seasonalvariability, as presented in section 2.3. Previous studiesfound seasonal differences in the PM-AOD relationship,where larger errors were associated with PM estimationfor winter, when meteorological conditions - such as lowtemperature and shallow boundary layer - may lead topoor PM estimation, e.g. [12]. During the summer, theplanetary boundary layer is deeper and well mixed and insuch a situation columnar measurements are better cor-related with surface level pollution [13]. Hence, it is ex-pected that adding a “season” as a categorical predictorwill improve models’ performance. In order to test this as-sumption, two variants of each of four models were devel-oped: Variant 1, that assumes models without categoricalpredictors, and Variant 2 that includes “season” as a cat-egorical predictor. In the first three type of models (UV,MV1, MV2), the categorical predictor “season” was codedusing the sigma-restricted parameterization [30]. Descrip-tive parametric and non-parametric statistics of indepen-dent continuous variables is given in Table 1. The quan-titative description of linear regression models (equationsand regression parameters) is given in Appendix A.As a fourth model, a multi-layer perceptron (MLP) feedforward type of neural network was chosen [31, 32]. Ingeneral, artificial neural networks (ANN) represent a nu-merical method that simulates the biological brain usedfor learning and recognizing patterns in data sets, as theypredict desired output data based on the provided inputdata. They can be used in many cases for regressionand classification tasks. The most commonly used type ofneural networks is a feed forward multilayer perceptron(MLP). An artificial neural network commonly consists ofthree or more layers of neurons: the input layer, one ormore hidden layers, and an output layer. Output of ev-ery neuron is connected with all neurons in the next layer(Figure 4). Every connection has its weight and everyneuron has a bias and activation function. Weights andbiases are unknown parameters that need to be obtainedfrom training data. Output of the j-th neuron is calculatedas:
zj = g

(∑
i
aiwij + bj

)
, (1)

where ai is the output of the i-th neuron in previouslayer,wij is a weight of connection from that neuron to j-thneuron in the current layer, bj is the bias of j-th neuronand g is an activation function of j-th neuron. We used oneof the most common, a logistic sigmoid activation function,given by
g(x) = 11 + e−x . (2)

The complexity of ANN depends on a number of weightsand biases which depends on number and size of hiddenlayers. Finding these parameters from training data isreferenced as training of neural network. In this study,the ffnet module for Python [33] was used for develop-ment of ANNs. It is a quick and easy-to-use feed-forwardneural network training solution package that uses feed-forward architecture and a sigmoid activation function. Inthe Python package, several methods for training ANNshave been implemented. We have chosen the rprop algo-rithm, originally designed by Riedmiller and Braun [34],because of its speed and simplicity. It is a widely usedalgorithm especially for multilayer feed-forward networksdesigned to overcome inherent disadvantages of earliergradient-descent algorithm. If the number of parametersis too small, ANN will have poor fit on training data. Ifthe number of parameters is too large, ANN will havegood fit on training data but will fail to generalize to newdata (“overfitting”). One way to overcome this problem isa method of early stopping [31] where training is stoppedwhen error (measured with respect to independent dataset not used for training) started to increase. That dataset is generally called the validation data set. To get anoptimal ANN architecture (number of hidden layers andneurons) we have trained many instances of ANNs of spe-cific architecture using early stopping method (1-2 hiddenlayers with 10-30 hidden neurons per layer). To constructeach of these ANNs, the dataset was randomly split intotraining (60%), validation (20%) and test (20%) datasets.Because there are many ANNs trained, there is a chancethat network with best performance on validation data setmight not be the one with the best performance on newtest data. Therefore we need test data set which is usedonly once on every trained network and the network withthe best performance on test data set is chosen as thebest.This procedure is used for both Variant 1 and Variant 2ANN models. Performance of trained ANNs is measuredby using the Root Mean Square Error (RMSE) statistic,given by
RMSE = √√√√1

n

n∑
i=1 (pi − oi)2, (3)
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Table 1. Descriptive (parametric and none parametric) statistics for independent variables in modeling dataset (7114 samples): Mean, Stan-
dard Deviation (Std), Minimum (Min), 10th percentile (p10), Median (Med), Median Absolute Deviation (Mad), 90th percentile (p90) and
Maximum (Max).

Statistics PM10 ( µgm−3) AOD T (°C) PBLH (km) P (hPa) RH (%) WS (m/s) Un (m/s) Vn (m/s) CFMean 26.65 0.16 21.27 1.27 1017.94 48.69 2.87 −0.02 0.15 0.06Std 17.18 0.13 7.65 0.64 5.91 11.87 2.15 0.68 0.64 0.12Min 0.15 0.00 −5.91 0.01* 988.01 19.71 0.23 −1.00 −1.00 0.00p10 9.28 0.02 9.90 0.43 1011.43 34.50 1.12 −0.93 −0.84 0.00Med 23.40 0.13 22.95 1.27 1017.52 47.34 2.27 0.03 0.29 0.00Mad 12.44 0.10 6.25 0.53 4.46 9.41 1.43 0.62 0.57 0.09p90 46.78 0.33 29.85 2.11 1025.44 64.95 5.19 0.85 0.90 0.23Max 190.95 1.96 36.57 3.26 1044.84 100.00 19.57 1.00 1.00 0.80*This unrealistically low PBLH value (0.01) is a probable consequence of WRF model error at one singlecoastal station (KA-SU).

Figure 4. The optimal neural network architecture for surface PM10
concentration estimation. Left: ANN in Variant 1 without
seasons as independent variables. Right: ANN in Vari-
ant 2 with seasons coded as S1-winter, S2-spring, S3–
summer and S4-autumn. Each red circle represents one
neuron in ANN. Output of each neuron (except neurons in
the input layer) is calculated according to Eq. 1.

where n represents the number of samples, pi the esti-mated PM10 concentration, and oi the observed PM10concentration. The optimal neural network architecturefor Variant 1 consists of 9 neurons in input layer (predic-tors), 2 hidden layers with 13 neurons in each of them,and one output layer node (with PM10 surface mass con-centration as output), whereas in Variant 2, ANN has 13neurons in input layer (the same variables as in Variant2 plus seasons), 2 hidden layers with 10 neurons in each(Figure 4). The number of ANN model parameters is 326in Variant 1, and 261 in Variant 2.
3. Results and discussion

3.1. Overall model performance

The overall performance of four different models is sum-marized in Table 2 in terms of RMSE defined by Eq. 3

and linear correlation coefficient (R) given by
R = ∑

i(oi − o)(pi − p)√∑
i(oi − o)2∑i(pi − p)2 . (4)

The overall performance is the poorest for UV model andincreases as the model complexity increases (from UV toANN), for both variants (with and without season as acategorical predictor), as was expected. R is significantlyhigher (R difference test, p < 0.01) for all linear models(UV, MV1, MV2) in Variant 2 than in Variant 1. In the caseof ANN, adding season as a categorical variable doesn’tsignificantly change the correlation coefficient (p > 0.01).It appears that the neural network recognizes seasonalpatterns from meteorological parameters, without categor-ical addition of seasonality. As our goal was to find themost suitable model for PM10 mapping and there was nospecial reason not to include season as an independentvariable, only models in Variant 2 are discussed furtheron. Overall improvement of more complex models com-pared to UV model, in terms of the percentage increase ofR is 53.1% for MV1, 65.6% for MV2 and 90.6% for ANN.The RMSE decreases the most for ANN (21.4%) but lessso for MV1 (7.9%) and MV2 (10.1%). The correlation co-efficients for UV and MV1 are similar to other findings forlocations in Europe [5, 12].The procedure of finding the best model subsets in caseof MV1 and MV2 (using Mallows’ CP criterion) revealedsignificant contribution (for which p < 0.01) of the follow-ing variables, listed in order of significance of contributionfor MV1: AOD, WS, Vn, RH, PBLH, Un, T CF, P; and forMV2: AOD, WS, PBLH, PBLH2, T2, RH2, AOD2, Vn, T.Sensitivity analysis for ANN which is capable of recog-nizing and learning complex patterns in data, showed sen-sitivity for all input variables (using F-test for comparison
8



S. Grgurić et al.

Table 2. Statistics (R, RMSE) of four model types (UV, MV1, MV2, ANN) performance for two variants, the first without categorical independent
variables, and the second with season as a categorical independent variable. RMSE is given in µgm−3.

Model type-> UV MV1 MV2 ANNPerformance measure-> R RMSE R RMSE R RMSE R RMSEVariant1-without categorical variables N=7114 N=1453 (test data set)Overall performance 0.28 16.49 0.45 15.36 0.49 15.02 0.60 12.99Variant 2 - with season as categorical variable N=7114 N=1453 (test data set)Overall performance 0.32 16.26 0.49 14.98 0.53 14.62 0.61 12.78

of variances, p < 0.01), meaning that exclusion of one theparameters would result in a significant difference in thevariance of error.
3.2. Model performance by seasons

Performance of all models varies by seasons (Table 3).Seasons are defined as winter (December - Febru-ary), spring (March-May), summer (June-August), andautumn (September-November). The simplest model(UV) has the poorest performance in winter (R=0.26,RMSE=23.53 µgm−3); this could be associated with lowerPBLHs (compared to other seasons) that do not allow mix-ing in longer air column, and so could affect the PM10-AOD relationship [12]. Performance in winter improveswith inclusion of meteorological variables, where ANNshows the highest rate of improvement (161% for R, and23% for RMSE). In the case of winter, MV1 model performsslightly better than the more complex MV2 model. For allother seasons, model performance increases with increasein model complexity, where the ANN has the highest rateof improvement for all seasons. The linear correlation co-efficient for MV1, MV2 and ANN models is the highest forautumn (0.53, 0.60 and 0.69, respectively) and the lowestfor spring (0.43, 0.45 and 0.49, respectively).
The seasonal variability of R reflects the complexity ofthe relationship between dependent (PM10) and inde-pendent variables (AOD, CF, meteorological parameters)and has to be the subject of future research. Possiblecauses for this variability are: 1) seasonal variations inaerosol vertical profile that affect AOD-PM10 relation-ship, 2) seasonally variable transport of aerosol in upperlayers, 3) seasonal variations of uncertainties in AOD re-lated to temporal heterogeneity of aerosol type and com-position (not included in assumed model used in MODISaerosol retrieval algorithm) and 4) seasonal variations inaccuracy of meteorological parameters obtained by WRFmodel (caused by complex topography and climatic char-acteristics of the study area).

3.3. Model performance by stations

The performance of all models varies with geographic lo-cations (Figure 5). A comparison of model performance bystation shows that inclusion of meteorological variables(within MV1, MV2 and ANN models) leads to improve-ment of PM10 estimates at all stations (Figure 5), com-pared to simple UV model. Average improvement rate ofR over all stations is 50.2% for MV1, 61.3% for MV2 andthe highest for ANN (74.6%). However, ANN doesn’t per-form better equally at all stations compared to MV1 andMV2 models, where R ranges from 0.39 to 0.75. At threecoastal stations (KA-SU, KOR, RI-1) performance of ANNis similar to MV2 where both ANN and MV2 perform bet-ter than MV1. At one coastal station (RI-2) performanceof the ANN model shows no improvement over simplerMV1 and MV2 models (Figure 3). Similar findings forthe poorer performance of ANN estimates of PM2.5 forcoastal stations have been already reported by Gupta andChristopher [14]. This could be related to higher uncer-tainties associated with satellite retrievals that containmixed land and sea surface reflectance, which may leadto high AOD values [18], as well as to higher uncertain-ties of modeled meteorological parameters at the land-seaboundaries, due to the complex topography at the coastalarea.Additionally, it has to be emphasized that continental sta-tions, which have higher mean and variability of PM10values than coastal stations, are better represented byneural network due to larger dataset (N=4425, in com-parison to N=2689 for coastal stations). The performanceof ANN improved the most for ZG-1, ZG-3 and OS-2 sta-tions, all being continental stations. We will further dis-cuss performance of the ANN model as it shows the bestoverall performance.
3.4. ANN residuals

The differences between observed and estimated PM10concentrations (residuals) for ANN by seasons and sta-tions are given in Figure 6. Negative residuals point to
9
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Table 3. Comparison of performance of different models in Variant 2 (with “season” as categorical variable) by seasons in terms of linear correlation
coefficient (R) and Root Mean Square Error (RMSE). RMSE is given in µgm−3. The numbers in parenthesis represent percentage
improvement over univariate (UV) model.

Model type-> UV MV1 MV2 ANNN R RMSE R RMSE R RMSE R RMSEWinter 665 0.26 23.53 0.52 (105) 20.86 (11) 0.49 (92) 21.25 (10) 0.66 (161) 18.06 (23)Spring 1849 0.32 12.67 0.43 (36) 12.26 (48) 0.45 (42) 12.16 (48) 0.49 (55) 11.59 (51)Summer 2824 0.27 14.61 0.45 (66) 13.54 (42) 0.51 (89) 13.05 (45) 0.56 (109) 12.53 (47)Autumn 1776 0.37 18.59 0.53 (42) 16.98 (28) 0.6 (61) 16.2 (31) 0.69 (84) 14.52 (38)

Figure 5. Comparison of linear correlation coefficient (R) (left) and Root Mean Square Error (RMSE) (right) for ground-based stations for four
models: univariate linear regression model (UV), multivariate linear regression model with first-order effects (MV1), multivariate linear
regression model with first and second-order effects (MV2) and Artificial neural network (ANN).

overestimation of PM10 values, and positive to underes-timation of PM10 concentrations. The spread of residualsis highest and most spatially heterogeneous for winterand most homogenous for summer. For winter, PM10 con-centrations are mostly underestimated for the majority ofcontinental stations (SI-1, KU-1, ZG-1, ZG-2, ZG-3) andmostly overestimated for majority of coastal stations (RI-2, KA-SU, CAM, KOR). This implies that two separateANN models for continental and for coastal Croatia mightgive better results. The problem with this would be def-inition of the border between those two parts on whichthe model could be applied. High positive residuals arerelated to episodes with high observed PM10 concentra-tions that ANN model underestimated and could not ex-plain with independent variables. Generally, the modelperforms better for PM10 values lower than 40 µgm−3(representing 84% of data) than for higher PM10 val-ues (Figure 7). This could be due to very low numberof samples with high PM10 values (only 1.5% of PM10measurements are higher than 80 µgm−3). Values lowerthan 20 µgm−3 are mostly overestimated and values higherthan 20 µgm−3 are mostly underestimated where the dis-crepancies between observed and estimated PM10 valuesincrease with increase of PM10 values (Figure 7). Differ-ences in annual means between observed and estimatedPM10 concentrations for 5 years and 12 stations show

that 50% of annual means are within range from -2.9 to2.3 µgm−3; thus, PM10 estimation represents a relativelygood proxy for annual mean of PM10 mass concentrations.The uncertainties in estimated concentrations originatefrom variation in satellite retrieval uncertainties, uncer-tainties in measured PM10 data and modeled meteoro-logical fields as well as from spatio-temporal averaging,as each of these uncertainties propagates to modeling re-sults. Other factors that control PM10 concentrations,such as spatio-temporal variations of emissions and ver-tical gradients of meteorological variables have not beenincluded in the analysis and might improve the estima-tions. The best results may be achieved using informationon aerosol vertical profile from satellite or ground-basedlidars, if available.
3.5. Examples of estimated PM10 spatial
maps

Spatial maps of surface PM10 mass concentrations havebeen derived using ANN model that demonstrated the bestoverall performance, as discussed in the previous para-graphs. Seasonal and annual mean PM10 maps (Fig-ures 8 and 9) have been estimated from gridded AODvalues available in the period 2008-2012, and meteoro-logical fields from WRF model on a daily basis and av-
10
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Figure 6. Statistics of PM10 residuals (observed – estimated values; Y - axis) by seasons (graph titles) and stations (X – axis). Outliers: values
higher than RES90%+1.5*(RES90%-RES10%) and lower than (RES10% -1.5*(RES90%-RES10%), where RES is PM10 residual.

Figure 7. Statistics of ANN PM10 residuals (observed – estimated
values; Y-axis) by PM10 categories (X-axis). Outliers: val-
ues higher than RES90%+1.5*(RES90%-RES10%) and lower
than (RES10% -1.5*(RES90%-RES10%), where RES is PM10
residual.

eraged by seasons, after which seasonal maps were aver-aged to get map of annual means. The generated seasonalmean maps show reasonable spatio-temporal distributionof PM10 concentrations, with the highest values in thecentral, northern and eastern (agricultural) part of Croa-tia during winter and autumn, indicating areas at risk ofexceeding limit values set by EU. High estimated PM10

values at coastal and in the southern part of Croatia atthe land-sea boundary are probably a consequence of ap-plication of the land algorithm to fragments of sea, whichis likely to lead to high AOD values [8]. In these areas(including islands), there are no known sources of pol-lution that could cause higher values than in the conti-nental area. Uncertainty in AOD retrievals over coastalareas hinders PM10 estimates, and has to be further an-alyzed and validated using ground-based AOD measure-ments, which are currently not available.The Croatian air quality network has very recently beenupgraded to rural/background stations that provide bet-ter area coverage and also include PM2.5 measurements.When validated data from these stations becomes avail-able, the model will be reassessed. These results will alsobe further combined and compared with the results of anatmospheric chemical transport model.
4. Summary and conclusions
This study shows promising potential for air quality mon-itoring and exposure assessment using satellite remotesensing and modeled meteorological fields, as extensionto measurements of PM10 over Croatia at the locationswhere measurements do not exist. This approach can beapplied to other countries with sparse PM10 monitoring
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Figure 8. Estimated seasonal mean PM10 mass concentrations for
period 2008-2012 using ANN model. PM10 is given in
µgm−3.

Figure 9. Estimated annual mean surface PM10 mass concentra-
tions (given in µgm−3) derived with ANN model. Labels
represent locations of ground-based PM10 measurement
stations.

stations and/or with lack of emission inventories neededfor running atmospheric chemical transport models, sincethe satellite AOD data are globally available with highspatial and temporal resolution in near-real time, and themeteorological fields can be obtained from a meteorolog-ical model, for which initial and boundary conditions areglobally and regularly available. The advantage of thisapproach is that it doesn’t require extensive effort to deriveemission inventories and the cost is much lower than thecost of maintaining a single measurement station. More-over, derived spatial maps of PM10 can be used for the as-sessment, spatial optimization and refinement of existingground-based monitoring networks, since they indicate ar-

eas of increased aerosol loading. Combined with trajec-tory models, AOD data and spatial (daily) PM10 mapscan provide guidance to air quality modeling and fore-casting community in determining possible aerosol move-ment or studying transboundary air pollution. Since thederived PM10 maps provide better spatial coverage thanground measuremens, it can also be usefull as additionalinformation for chemical transport models calibration andvalidation.In this study, the relationship between satellite derivedAOD and PM10 was used to obtain surface PM10 massconcentrations. The PM10-AOD relationship was ana-lyzed using a linear univariate model (UV) that estimatesPM10 concentrations using only AOD as the input vari-able, and more complex multivariate models (MV1, MV2and ANN) that estimate PM10 concentrations using 5years (2008-2012) of meteorological fields from meteo-rological WRF model, as well as MODIS AOD and CFdata. All the models demonstrated better performancewhen seasonality is included as predictor. Among mod-els that include seasonality, UV model has demonstratedthe poorest overall performance (R=0.32), suggesting thatadditional information is needed to convert columnar mea-surements to surface values.The addition of meteorological variables in multivariatemodels significantly improved PM10 concentration esti-mation, where the most complex ANN model showed thehighest percentage of increase in R (90.63%) relative to UVmodel, whereas the MV1 and MV2 models led to increaseof R of 53.1% and 65.6%, respectively. The performanceof the models varies with seasons and with geographicallocations. The ANN model demonstrated the highest rateof improvement for all seasons compared to other models,with the highest percentage increase of R compared toUV model of 161% for winter. ANN model performs thebest during autumn (R=0.69) and winter (R=0.66) withintermediate success during summer (R=0.56) and spring(R=0.49). The seasonal differences in the models’ per-formance may be associated with seasonal variations inaerosol vertical profile that affect the AOD-PM10 rela-tionship, seasonally variable transport of aerosol in upperlayers, seasonal variations of uncertainties in AOD relatedto temporal heterogeneity of aerosol type and compositionand seasonal variations in accuracy of meteorological pa-rameters obtained by WRF model (caused by complex to-pography and climatic characteristics of the study area)that are subject to further research.The average improvement rate of R over all stations is50.3% for MV1, 61.3% for MV2 and 74.6% for ANN, com-pared to the UV model. Performance of all models isgenerally better for continental than for coastal stations,which may be explained with higher uncertainties in satel-
12
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lite AOD retrievals due to mixed land and sea surfaces, aswell as to higher uncertainties of modeled meteorologicalparameters at coastal area with complex topography.Sensitivity analysis for ANN has shown that all testedindependent variables (AOD, PBLH, WS, Un, Vn, T, P,CF) were significant predictors of PM10.Despite to the fact that the estimation of PM10 concen-trations from satellite AOD data and meteorological pa-rameters provides a good proxy for seasonal and annualaverage values for the entire country, there is still unex-plained variability in the PM10-AOD relationship, whichremains a challenge for future work, especially related toestimation of episodic high PM10 values.Further research with 1) use of more complex neural net-works, 2) configurations of meteorological model includ-ing better vertical and horizontal model resolution anddifferent schemes for boundary layer, 3) inclusion of verti-cal distribution of meteorological parameters and 4) gen-eration of separate models for continental and coastalparts, may lead to better results. Finally, consideration ofaerosol vertical profiles, from satellite or ground-based li-dars, could improve our understanding of the PM10-AODrelationship and improve PM10 estimates in the future.Due to lack of data from rural and background stations,the models were established with data mainly from urbanstations, thus being more representative for urban areasthan for rural areas. Background stations have recentlybeen established and when data becomes available, themodel will be revised to include those stations.Additionally, the 3 km resolution MODIS AOD productexpected as part of the Collection 6 and the newly devel-oped Multi-Angle Implementation of Atmospheric Correc-tion (MAIAC) algorithm [35] with 1 × 1 km spatial resolu-tion may give better results, with possibility of recognizingspatial variability within larger urban areas.
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Appendix A: QUANTITATIVE DE-
SCRIPTION OF MODELS
1. Description of univariate (UV) and multi-
variate linear regression models (MV1 and MV2)
in Variant 1
The general form of multivariate linear regression modelsis given by

Y = α0 + α1(Var1) + . . . + αn(Varn). (A1)
The dependent variable Y on the left side is the measuredsurface PM10 concentration. The independent continu-ous variables (Var1. . .Varn) are on the right side. Theparameters α0...αn represent regression coefficients for in-dependent variables.The univariate linear model (UV) has only one (n = 1)independent continuous variable (AOD). The multivariatelinear model with first order effects (MV1) has 9 (n = 9)independent continuous variables (AOD, PBLH, WS, RH,Un, Vn, T, P, CF). The multivariate linear model with firstand second order effects (MV2) has first (linear) and sec-ond order (quadratic) terms of the same continuous vari-ables as in MV1 model.The described empirical models were optimized throughuse of Mallows’ CP criterion [29], resulting in models withbest subsets of independent continuous variables. Theregression parameters of optimized models (UV, MV1 andMV2) are given in Table 4.
2. Description of univariate (UV) and multi-
variate linear regression models (MV1 and MV2)
in Variant 2
In Variant 2, a categorical variable “season” has beenadded to the above presented UV, MV1, and MV2 models.The general form of these models is given by
Y =α0 + α1(Var1) + . . . + αn(Varn) + αw (winter)+ αsp(spring) + αsu(summer) + αau(autumn).(A2)

The season (as categorical variable) is coded with sigma-restricted parameterization [29]. The regression parame-ters (estimates) for the optimized models (best subsets ofindependent variables defined by Mallows Cp criterion)for UV, MV1 and MV2 in Variant 2 are given in Table 5.
13
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Table 4. Estimated parameters of the optimized empirical models (UV, MV1, MV2) in Variant 1 represented by Eq. A1.

Variant 1 UV MV1 MV2Independent variables par est std err t p(t) par est std err t p(t) par est std err t p(t)Intercept 20.884 0.304 68.680 <10-4 −150.242 37.014 −4.06 <10-4 61.367 1.657 37.04 <10-4AOD 35.991 1.454 24.760 <10-4 42.476 1.417 29.98 <10-4 58.790 2.401 24.48 <10-4WS – – – – −1.485 0.093 −15.96 <10-4 −1.866 0.089 −21.08 <10-4PBLH – – – – −5.487 0.438 12.54 <10-4 −19.095 1.108 −17.23 <10-4RH – – – – −0.257 0.022 −11.86 <10-4 −0.282 0.021 −13.48 <10-4Vn – – – – 3.388 0.321 10.55 <10-4 3.053 0.318 9.60 <10-4Un – – – – 2.451 0.286 8.57 <10-4 – – – –CF – – – – −9.848 1.522 −6.47 <10-4 – – – –P – – – – 0.191 0.036 5.33 <10-4 – – – –T – – – – – – – – −1.205 0.103 <10-4 11.70PBLH2 – – – – – – – – 4.673 0.389 <10-4 12.02T2 – – – – – – – – 0.032 0.003 <10-4 11.96AOD2 – – – – – – – – −34.796 3.310 <10-4 10.51
par est - parameter estimate; std err - standard error of the parameter estimate; t - t-statistics. p(t) - probability of t-statistics (that
parameter estimated is equal to zero, i.e. without significant contribution to the model estimation).

Table 5. Estimated parameters of the optimized empirical models (UV, MV1, MV2) in Variant 2 represented by Eq. A2.

Variant 2 UV MV1 MV2Independent variables par est std err t p(t) par est std err t p(t) par est std err t p(t)Intercept 21.486 0.314 68.45 <10-4 −119.994 38.066 −3.16 0.0016 47.437 1.497 31.70 <10-4Winter 4.404 0.502 8.77 <10-4 9.105 0.616 14.79 <10-4 6.651 0.632 10.52 <10-4Spring −3.822 0.353 −10.84 <10-4 −3.880 0.343 −11.30 <10-4 −2.254 0.379 −5.95 <10-4Summer −2.395 0.310 −7.74 <10-4 −6.427 0.460 −13.98 <10-4 −7.264 0.452 16.080 <10-4Autumn 0.000 – – – 0.000 – – – 0.000 – – –AOD 38.968 1.459 26.71 <10-4 42.789 1.418 30.18 <10-4 57.920 2.409 24.04 <10-4WS – – – – −1.566 0.093 −16.79 <10-4 −1.936 0.086 −22.44 <10-4PBLH – – – – −3.977 0.457 −8.70 <10-4 −19.461 1.106 −17.60 <10-4RH – – – – −0.229 0.022 −10.60 <10-4 −0.002 0.000 −11.33 <10-4Vn – – – – 3.617 0.328 11.01 <10-4 3.228 0.314 10.27 <10-4Un – – – – 2.315 0.282 8.22 <10-4 – – – –CF – – – – −9.931 1.498 −6.63 <10-4 – – – –P – – – – 0.153 0.037 4.17 <10-4 – – – –T – – – – 0.355 0.044 8.12 <10-4 −0.971 0.121 −8.06 <10-4PBLH2 – – – – – – – – 5.459 0.385 14.20 <10-4T2 – – – – – – – – 0.037 0.003 11.51 <10-4AOD2 – – – – – – – – −35.531 3.248 −10.94 <10-4
par est - parameter estimate; std err - standard error of the parameter estimate; t - t-statistics. p(t) - probability of t-statistics (that
parameter estimated is equal to zero, i.e. without significant contribution to the model estimation).
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