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Abstract:
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This study analyzes the relationship between Aerosol Optical Depth (AOD) obtained from Terra and Aqua Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and ground-based PM10 mass concentration distribution
over a period of 5 years (2008-2012), and investigates the applicability of satellite AOD data for ground PM10
mapping for the Croatian territory. Many studies have shown that satellite AOD data are correlated to ground-
based PM mass concentration. However, the relationship between AOD and PM is not explicit and there are
unknowns that cause uncertainties in this relationship.

The relationship between MODIS AOD and ground-based PM10 has been studied on the basis of a large data
set where daily averaged PM10 data from the 12 air quality stations across Croatia over the 5 year period are
correlated with AODs retrieved from MODIS Terra and Aqua. A database was developed to associate coinci-
dent MODIS AOD (independent) and PM10 data (dependent variable). Additional tested independent variables
(predictors, estimators) included season, cloud fraction, and meteorological parameters - including temperature,
air pressure, relative humidity, wind speed, wind direction, as well as planetary boundary layer height - using
meteorological data from WRF (Weather Research and Forecast) model.

It has been found that 1) a univariate linear regression model fails at explaining the data variability well which
suggests nonlinearity of the AOD-PM10 relationship, and 2) explanation of data variability can be improved with
multivariate linear modeling and a neural network approach, using additional independent variables.

MODIS AOD « PM10 » PM10-AOD relationship « aerosol « multivariate linear regression « artificial neural network
+ Croatia.
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1. Introduction

Particulate matter (PM) is nowadays one of the major
air quality issues in Europe [1], as well as in Croatia [2]
Exposure to small particles with diameter size less than
10 pm can lead to respiratory problems and cause prema-
ture death [3]. An estimated 5 million years of life are lost
per year due to fine particles (PM2.5) alone in the geo-
graphic area covering 32 member countries of European
Environment Agency (EEA-32) [1]. Therefore, the EU has
set limit values for PM10 for daily and annual averages
(50 ngm=3 and 40 pgm=3, respectively). Daily averages
may not be exceeded more than 35 times per year. For
PM2.5 an annual average limit of 25 pgm= has to be
reached in 2015 with further reduction to 20 ugm=3 to be
reached in 2020.

Alir quality assessment of PM is usually based on mea-
surement data from established ground monitoring sta-
tions. However, these are point measurements and do not
provide an adequate spatial coverage to fulfill the needs
of mapping regional air quality and human exposure as-
sessments [4]. Another tool for assessing air quality and
understanding PM spatial distribution is air quality mod-
eling, which apart from gaps in our knowledge in chemical
and physical processes in the atmosphere, suffers mostly
from incomplete emission inventory data needed as an in-
put [5]. Although satellite measurements are less precise
than ground-based measurements, aerosol optical depth
(AOD) retrieved from satellite sensors is considered as a
good proxy for ground observed PM mass concentrations
and a valuable tool for monitoring aerosol pollution [5-
8]. The Moderate Resolution Imaging Spectroradiometer
(MODIS) provides distribution of AOD near-globally on
a daily basis at spatial resolution of 10 kmx10 km over
both ocean and land.

Ground based measurements represent dry mass concen-
tration of PM at the surface, whereas AOD represents the
columnar aerosol loading from the surface to the top of the
atmosphere [7]. The relationship between these two vari-
ables depends on various factors, including aerosol verti-
cal distribution, aerosol type and its chemical composition,
as well as its spatial and temporal variability, which are
governed by spatio-temporal distribution of emissions and
meteorological conditions [8].

During the last decade, various studies have analyzed
the relationship between PM and AOD [5, 7-12]. Earlier
studies [7, 9, 10] reported a wide range of correlation co-
efficients (R) for univariate linear regression models (UV)
for different areas around the globe. For example, a study
of PM2.5-A0D relationship over the entire United States
of America (USA), which included 1300 ground monitor-
ing stations, found non-uniform correlations across USA,

being strongest in the northeast part of USA (R >0.8) and
weakest in the northwestern part of USA (R <0.2),  with
an average of 0.43 over the entire area [7]. For 26 cities
around the globe (in India, Australia, Hong Kong, United
States of America and Switzerland), R ranged from 0.11 to
0.85 [10]. Although AOD and PM correlate well for some
regions and in specific situations with stable meteorologi-
cal conditions and fixed pollution sources [8], most of these
studies have concluded that AOD alone do not explain
surface PM concentrations well, since other factors affect
the PM-AOD relationship (such as the vertical distribu-
tion of aerosols, aerosol type and chemical composition,
its temporal variability, and meteorological parameters).

In situations with aerosols transported aloft - which
ground monitors may not capture - columnar AOD and
surface PM mass concentration may not correlate well.
Additionally, satellites can measure almost the same
columnar AOD during two different conditions: one with
low planetary boundary layer height (PBLH) when sur-
face PM concentrations can be high (if aerosol is con-
fined within planetary boundary layer); and second with
high PBLH when surface concentrations are low (when di-
luted in vertical column) [12]. Ground and space borne li-
dars, such as Cloud Aerosol and Infrared Pathfinder Satel-
lite Observation (CALIPSO) provide information on verti-
cal distribution of aerosols that can help assess whether
the aerosol is confined to the surface planetary boundary
layer (PBL) or aloft [13]. Moreover, lidar apportionment
of the fraction of aerosol optical depth that is within the
PBL can be scaled to give better agreement with surface
PM than does the total column amount [13].

However, there are limitations with these data. CALIPSO
provides observations in a very narrow swath and global
coverage is reached only after several weeks. On the other
side, ground-based lidars are spatially very sparse and do
not operate continuously. Although these data cannot be
used for spatial mapping of daily averaged PM concen-
tration, it can be useful for interpretation and improve-
ment of the PM-AOD relationship by finding the most
significant upper-level transport events. As some stud-
ies (using limited observations of vertical distribution of
aerosols from lidars) have demonstrated that aerosols are
well mixed and mostly confined within the PBL, a PBLH
can be used as a surrogate to estimate the height of the
aerosol layer [12]. Other meteorological parameters in-
fluencing PM-AQD relationship are humidity (due to hy-
groscopic growth of particles and production of secondary
particles), temperature (T) (due to effect on photochemi-
cal reactions in which PM particles are produced), wind
speed (WS) (affecting horizontal and vertical dispersion),
and temperature vertical gradients (affecting vertical mix-
ing). A detailed discussion on meteorological parameters
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affecting PM concentration is given in Gupta and Christo-
pher, 2009 [12].

Inclusion of meteorological parameters, such as PBLH,
WS and relative humidity (RH) into PM-AOD relation-
ship, improved estimation of PM2.5/PM10 concentrations
using multivariate linear (MV) and non-linear regression
models compared to UV model [5, 10, 12, 14]. For example,
average R over the entire Europe (not including Croatia)
improved from 0.3 to 0.5 (0.6) for PM10 (PM2.5) with in-
clusion of PBLH and RH into the PM-AOD relationship,
where R varied in respect to location and season [5].  In
recent studies, an artificial neural network (ANN) was ap-
plied to estimate PM2.5, taking into account T, RH, WS
and PBLH [15, 16]. The estimates of PM2.5 with ANN
for 85 monitoring stations across the USA improved (R
= 0.83) compared to UV (R = 0.67) and MV (R = 0.77)
models, indicating that a neural network approach is bet-
ter suited for deriving PM-AOD relationship [15]. The
study with application of ANN in China [16] obtained R
that varied both with location and season (the highest R
being 0.74). Those studies concluded that PBLH is one of
the dominant factors determining the performance of ANN.
The objective of this study was to explore the possibility of
spatial mapping of surface PM10 concentrations with spa-
tially generalized model for Croatia using satellite data in
order to obtain estimates for areas where measurements
do not exist, that currently covers almost half of 20 coun-
ties in Croatia. The PM10-AOD relationship has been
assessed using four different empirical models in order to
find the model with best estimates: univariate linear re-
gression model (UV); multivariate linear regression model
with first order effects (MV1), multivariate linear regres-
sion model with first and second order effects (MV2) and
artificial neural network (ANN) model, using meteorolog-
ical parameters as independent predictors.

2. Data and methodology

2.1. Data

Assessment of the PM10-AOD relationship has been per-
formed using three different datasets over a period of 5
years (2008-2012): 1) hourly surface PM10 mass con-
centrations measured at 12 ground-based stations (see
Figures 1 and 2); 2) Terra and Aqua MODIS AOD at
0.55 pum and Cloud Fraction (CF); and 3) meteorological
parameters from WRF meteorological model over above
mentioned 12 stations in Croatia.

2.1.1.

Surface PM10 mass concentration data were obtained
from Air Quality Database of Croatian Environment

Surface PM10 mass concentration

Agency Information System. The Croatian air quality
monitoring network consists of national and several local
networks of ground measurement stations and it is still
under development. Currently, PM10 is monitored by 28
ground stations. Measurement methods are not unified
across stations, including mostly beta-absorption mea-
surement method and referent gravimetric method. This
study uses hourly PM10 mass concentration data from
12 ground monitoring stations, which met criteria of 70%
data capture through the period of 5 years. These stations
are equipped with automatic analyzers that utilize beta-
absorption method. The data were taken as measured,
without application of correction factors that should re-
sult from a test of equivalency with referent gravimetric
method, due to lack of such tests for all stations. Among
the 12 chosen stations (Figure 1 and 2), 11 are urban,
dominated by emission sources from industry and traf-
fic, and only 1 station is rural, dominated by industrial
emission sources (rural background stations are still un-
der development). Five of these stations are located in the
coastal area, and seven in the continental part of Croatia.

2.1.2. Satellite aerosol data

The MODIS instruments onboard the Terra (crossing
Europe ~10:30 local time) and Aqua (crossing Europe
~13:30 local time) satellites provide routine retrievals of
cloud and aerosol properties in seven different spectral
bands over the ocean and in three bands over land [18].
This study uses AOD and CF data from the new MODIS
algorithm (collection C051, based on the operational algo-
rithm V5.2) that incorporates improved estimation of sur-
face reflectance (for land) and applies stringent criteria
to select appropriate pixels in the retrieval process, com-
pared to collection C004 (V5.1) [17].

The AOD algorithms for land and ocean are independent
and different, due to different radiative properties of land
and water. The retrieval of AOD is based on analyz-
ing 20 x 20 pixels at 500 m resolution and reported at
10 x 10 km? resolution. The ocean algorithm is applied
only if all 400 pixels are identified as ocean pixels. If
any land is contained within the 10 km x 10 km cell,
the land algorithm is applied [18]. The retrieval is con-
sidered more accurate over ocean than over land, vali-
dated against ground-based AErosol RObotic NETwork
(AERONET), where one standard deviation of AOD fell
within the expected uncertainty level of +0.03+0.05 AOD
over ocean and of £0.05+0.15 AOD over land [17, 18].
This is because the reflection by water is homogenous,
relatively low and well known [18].  The operational
product Optical Depth Land and Ocean (AOD at 0.55 pum
band for ocean (best) and land (corrected) with best qual-
ity data (Quality Flag = 3) has been used in our study.



S. Grguri¢ et al.

AQOD count
S @ 9 51 0
si-1.KU-1 ZoLJ 23 .

!“\MMW ,&fﬂ

P
A
N 1057 - 1308

[ 944 - 1056
854-943
782 -853
707 - 781
608 - 706
483 -607

[ 321 - 482

Figure 1. Number of days with available AOD data in the period
2008-2012. Labels represent locations of ground-based
PM10 measurement stations.

The sources of uncertainties in MODIS AOD include in-
strument calibration errors, cloud-masking errors, incor-
rect assumptions on surface reflectance, and aerosol model
(fine or coarse mode) selection [18].

The smallest number of AOD values in the 5 year period
was retrieved for marine coastal area, with numerous is-
lands (approx. 1000) (Figure 1). Within that area, it is
likely that application of the land algorithm to fragments of
sea resulted in high AOD values [19] (Figure 2), as there
are no known sources or reasons for increased aerosol
pollution at that area. However, there were no available
ground-based AOD measurements for that area to check
those AOD values. Spatial distribution of averaged AOD
values for the period of 5 years for the inland part of Croa-
tia shows increased values in the most populated, central
part of Croatia and in the eastern, agricultural area (Fig-
ure 2).

2.1.3. Meteorological variables from WRF model

This study uses hourly analysis data of planetary bound-
ary layer height (PBLH), air temperature at 2 m height
(T), surface relative humidity (RH), wind speed (WS),
wind direction (WD) and surface pressure (P). These
meteorological variables were obtained with Weather
Research and Forecasting (WRF) mesoscale numerical
model V.3.3.1 [20]. The configuration of WRF model
consists of parent domain with horizontal resolution of
18 km x 18 km, encompassing countries surrounding
Croatia, and one nested domain with horizontal resolution
of 6 km x 6 km covering the entire of Croatia. Initial and
boundary conditions stemmed from NCEP FNL (National
Centers for Environmental Prediction Final Analyses) that
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Figure 2. Five-year (2008-2012) average of daily MODIS AOD val-
ues. Labels represent locations of ground-based PM10
measurement stations.

is provided globally on 1° x 1° grid every 6 h (FNL
ds083.2). FNL analysis is a quality-assured/quality-
controlled product from Global Data Assimilation System
(GDAS) which continuously produce multiple analyses on
collected observational data from Global Telecommunica-
tions System (GTS) and various other sources (e.g., syn-
optic stations, radiosondes, aircrafts, satellites) provided
by different countries and organizations and assimilated
by a modern analysis/forecast system to obtain a phys-
ically and thermodynamically consistent global reanaly-
sis of atmospheric fields. The output frequency of WRF
model was set to 1 hour. The integration time step was set
to 108 seconds. Vertically, the model had 35 unequally
spaced sigma levels that are more densely distributed
near the ground. For parameterization of the boundary
layer we used the YSU (YonSei University) scheme with
UNLSM model (Unified Noah Land-Surface model) for
surface [21, 22] and WSM (WRF Single-Monent) 6-class
Microphysics scheme [23]. For radiation parameterization,
a Rapid Radiative Transfer Model (RRTM) [24] scheme
was used for longwave, and Goddard short wave for short-
wave radiation [25]. For cumulus parameterisation a Kain-
Fritsch (new Eta) scheme was used [26].

2.1.4. Data integration and averaging schemes

Ground-based measurements are point values, whereas
MODIS AOD represents average values in 10 km x 10 km
pixels, and meteorological fields from WRF represent point
values in 6 km x 6 km grid. In order to integrate those
values into the process of estimating surface PM10 mass
concentrations, 5 years (2008-2012) of coincident data
from three different sources were collocated at the same
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temporal and spatial scales. As for the temporal scale,
hourly ground-based PM10 mass concentrations were av-
eraged over the period between 10:00 and 14:00 local
time, that corresponds with the period of Terra and Aqua
satellite passes. The same temporal averaging scheme
was applied to hourly meteorological fields from WRF. As
our PM10 measurement stations are mainly urban and
located in areas with complex topography, as an appro-
priate spatial averaging scheme we have chosen aver-
aging of MODIS Terra and Aqua AOD data over pixels
whose centers fall into a 10 km radius circle centered
over surface measurement stations, for each day. Meteo-
rological parameters from WRF model were interpolated
from a 6 km x 6 km grid to locations of ground-based
PM10 measurement stations using bilinear interpolation.
The matched data set contains spatio-temporally collo-
cated "daylight” daily average of satellite-derived AOD
and CF, surface PM10 measured mass concentration and
WRF derived meteorological parameters. The final data
set contains 7114 collocated samples, used for develop-
ment, testing and validation of statistical models.

2.2. Overview of the spatial and temporal vari-
ability of independent variables

The mean (+standard deviation) AOD value of the whole
data set is 0.16+0.13 and the mean (+standard devia-
tion) PM10 mass concentration is 26.65+17.18 (see Ta-
ble 1). Both AOD and PM10 show an overall decreas-
ing trend of aerosol pollution in Croatia in the period
from 2008 to 2012 (Figure 3). The highest decrease of
PM10 annual means was from 36.10 ugm=3 in 2008 to
23.45 pugm=3 in 2010. From 2010 to 2012 it increased
mildly to 24.67 pgm=3 in 2011 and then decreased again
to 22.85 ugm=3 in 2012. The mean AOD decreased from
0.18 in 2008 to 0.14 in 2012 with an exception of slight
increase of 0.003 in 2009. All the variables show signifi-
cant seasonal variability. AOD values are the highest in
spring (0.20+0.14) and the lowest in winter (0.11+0.09).
On the other hand, PM10 values are the highest in winter
(30.09424.18 pugm~3) and autumn (29.27+19.96 pgm=3)
and the lowest in spring (25.28413.30 ugm~—3) and sum-
mer (25.09£15.14 pgm=). Such seasonal PM10 vari-
ability is present only at continental stations, probably
due to combination of emissions from household heat-
ing and unfavorable meteorological conditions (e.g., tem-
perature inversions) that prevent dispersion of pollution
during colder parts of the year. A planetary bound-
ary layer is the highest in summer (1.48+0.63 km),
followed by spring (1.43+0.64 km) and the lowest in
winter with mean values of 0.71+0.41 km.
average higher at continental stations (1.51+0.58 km)
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Figure 3. Five-year (2008-2012) trend in annual mean of AOD (left)
and PM10 mass concentration (right).

than at coastal stations (0.89+0.51 km). The coastal
stations have on average lower AOD (0.14+0.12) and
PM10 (20.40+13.83 pngm~3) than continental stations
(AOD 0.17+0.14; PM10 30.69+17.76 pgm~3). Rel-
ative humidity mean values vary between 46% (sum-
mer) and 53% (winter). Wind speed is the highest in
the winter (4.14+3.37 m/s) and the lowest in the sum-
mer (2.46+1.50 m/s) and it is on average higher at
coastal stations (3.6+2.92 m/s) than at continental sta-
tions (2.4+1.29 m/s).

2.3. Development of empirical models (uni-
variate model, multivariate linear models, ANN)

Previous studies have demonstrated that the variability of
surface PM mass concentration can be better explained
with multivariate regression models (both linear and non-
linear) as well as with artificial neural networks (using
meteorological parameters as additional independent pre-
dictors) than with univariate linear regression model (with
AOD as predictor) [14-16]. Additionally, the neural net-
work approach has been widely used in atmospheric and
air quality modeling studies [27, 28] and demonstrated to
be effective for air pollution estimation and prediction.

In this study we analyzed and compared the PM10-AOD
relationship using four models: 1) univariate linear re-
gression model (UV); 2) multivariate linear regression
model with first-order effects (MV1); 3) multivariate linear
regression model with first and second-order effects of the
independent variables (MV2) and 4) artificial neural net-
work (ANN). The MV1 and MV2 models were built with
“best-subset” building method, using Mallows’ CP [29] as
the criterion for choosing the best subset of predictor ef-
fects. This measure of the quality of fit for a model tends
to be less dependent (than the R-square) on the number
of effects in the model, and hence, it tends to find the best
subset that includes only the important predictors of the
respective dependent variable.

The independent continuous variable used as predictor
of surface PM10 mass concentrations for UV model was
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AOD. For multivariate and ANN models tested continu-
ous variables were AOD, PBLH, RH, WS and WD, T, P
and CF. All the variables have been taken as measured or
obtained by meteorological model, with exception of wind
direction. Due to the fact that this variable is circular
(0°= 360°), it is represented by eastern (U,)and west-
ern (V,) wind components, which were previously normal-
ized with WS to interval [-1 1], since the WS is already
included as independent variable. PM10, AOD and the
most meteorological parameters show significant seasonal
variability, as presented in section 2.3. Previous studies
found seasonal differences in the PM-AOD relationship,
where larger errors were associated with PM estimation
for winter, when meteorological conditions - such as low
temperature and shallow boundary layer - may lead to
poor PM estimation, e.g. [12]. During the summer, the
planetary boundary layer is deeper and well mixed and in
such a situation columnar measurements are better cor-
related with surface level pollution [13]. Hence, it is ex-
pected that adding a “season” as a categorical predictor
will improve models’ performance. In order to test this as-
sumption, two variants of each of four models were devel-
oped: Variant 1, that assumes models without categorical
predictors, and Variant 2 that includes “season” as a cat-
egorical predictor. In the first three type of models (UV,
MV1, MV2), the categorical predictor “season” was coded
using the sigma-restricted parameterization [30]. Descrip-
tive parametric and non-parametric statistics of indepen-
dent continuous variables is given in Table 1. The quan-
titative description of linear regression models (equations
and regression parameters) is given in Appendix A.

As a fourth model, a multi-layer perceptron (MLP) feed
forward type of neural network was chosen [31, 32]. In
general, artificial neural networks (ANN) represent a nu-
merical method that simulates the biological brain used
for learning and recognizing patterns in data sets, as they
predict desired output data based on the provided input
data. They can be used in many cases for regression
and classification tasks. The most commonly used type of
neural networks is a feed forward multilayer perceptron
(MLP). An artificial neural network commonly consists of
three or more layers of neurons: the input layer, one or
more hidden layers, and an output layer. Output of ev-
ery neuron is connected with all neurons in the next layer
(Figure 4). Every connection has its weight and every
neuron has a bias and activation function. Weights and
biases are unknown parameters that need to be obtained
from training data. Output of the j-th neuron is calculated
as:

Z/ZQ(Z":‘WUJFIJ/)' (1)

where a; is the output of the i-th neuron in previous
layer,w;;is a weight of connection from that neuron to j-th
neuron in the current layer, b; is the bias of j-th neuron
and g is an activation function of j-th neuron. We used one
of the most common, a logistic sigmoid activation function,
given by

1
St e

g(x) )
The complexity of ANN depends on a number of weights
and biases which depends on number and size of hidden
layers. Finding these parameters from training data is
referenced as training of neural network. In this study,
the ffnet module for Python [33] was used for develop-
ment of ANNs. It is a quick and easy-to-use feed-forward
neural network training solution package that uses feed-
forward architecture and a sigmoid activation function. In
the Python package, several methods for training ANNs
have been implemented. We have chosen the rprop algo-
rithm, originally designed by Riedmiller and Braun [34],
because of its speed and simplicity. It is a widely used
algorithm especially for multilayer feed-forward networks
designed to overcome inherent disadvantages of earlier
gradient-descent algorithm. If the number of parameters
is too small, ANN will have poor fit on training data. If
the number of parameters is too large, ANN will have
good fit on training data but will fail to generalize to new
data (“overfitting”). One way to overcome this problem is
a method of early stopping [31] where training is stopped
when error (measured with respect to independent data
set not used for training) started to increase. That data
set is generally called the validation data set. To get an
optimal ANN architecture (number of hidden layers and
neurons) we have trained many instances of ANNs of spe-
cific architecture using early stopping method (1-2 hidden
layers with 10-30 hidden neurons per layer). To construct
each of these ANNSs, the dataset was randomly split into
training (60%), validation (20%) and test (20%) datasets.
Because there are many ANNSs trained, there is a chance
that network with best performance on validation data set
might not be the one with the best performance on new
test data. Therefore we need test data set which is used
only once on every trained network and the network with
the best performance on test data set is chosen as the
best.

This procedure is used for both Variant 1 and Variant 2
ANN models. Performance of trained ANNs is measured
by using the Root Mean Square Error (RMSE) statistic,
given by

RMSE =
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Table 1. Descriptive (parametric and none parametric) statistics for independent variables in modeling dataset (7114 samples): Mean, Stan-
dard Deviation (Std), Minimum (Min), 10" percentile (p10), Median (Med), Median Absolute Deviation (Mad), 90" percentile (p90) and

Maximum (Max).

Statistics PM10 ( ugm=3 AOD T (°C) PBLH (km) P (hPa) RH (%) WS (m/s) Un (m/s) Vn (m/s) CF

Mean 26.65 016 21.27 1.27
Std 1718 013 7.65 0.64
Min 0.15 0.00 —5.91 0.01*
p10 9.28 0.02 9.90 0.43
Med 23.40 013 2295 1.27
Mad 12.44 010 6.25 0.53
p90 46.78 0.33 29.85 211
Max 190.95 1.96 36.57 3.26

1017.94 48.69 2.87 —0.02 015 0.06

5.91 11.87 215 0.68 064 012
988.01 19.71 0.23 —-1.00 —1.00 0.00
1011.43 3450 112 —-093 —-0.84 0.00
101752 47.34 2.27 0.03 0.29 0.00

4.46 9.41 1.43 0.62 057 0.09
1025.44 64.95 5.19 0.85 090 023
1044.84 100.00 19.57 1.00 1.00 0.80

*This unrealistically low PBLH value (0.01) is a probable consequence of WRF model error at one single

coastal station (KA-SU).

AOD, CF, PBLH, RH, WS, Un, Vo, T, P AOD, CF, PBLH. RH, WS, Un, Vn, T, P, 81, 82, S3. 84

Tnput layer
st hidden layer
2nd hiddenlayer

Output layer

PM10

Figure 4. The optimal neural network architecture for surface PM10
concentration estimation. Left: ANN in Variant 1 without
seasons as independent variables. Right: ANN in Vari-
ant 2 with seasons coded as S1-winter, S2-spring, S3—
summer and S4-autumn. Each red circle represents one
neuron in ANN. Output of each neuron (except neurons in
the input layer) is calculated according to Eq. 1.

where n represents the number of samples, p; the esti-
mated PM10 concentration, and o; the observed PM10
concentration. The optimal neural network architecture
for Variant 1 consists of 9 neurons in input layer (predic-
tors), 2 hidden layers with 13 neurons in each of them,
and one output layer node (with PM10 surface mass con-
centration as output), whereas in Variant 2, ANN has 13
neurons in input layer (the same variables as in Variant
2 plus seasons), 2 hidden layers with 10 neurons in each
(Figure 4). The number of ANN model parameters is 326
in Variant 1, and 261 in Variant 2.

3. Results and discussion

3.1.  Overall model performance

The overall performance of four different models is sum-
marized in Table 2 in terms of RMSE defined by Eq. 3

and linear correlation coefficient (R) given by

>_i(0i = 0)(pi —P)
R = ! . 4
\/Zi(oi —0)?)_(pi —p)? (

=

The overall performance is the poorest for UV model and
increases as the model complexity increases (from UV to
ANN), for both variants (with and without season as a
categorical predictor), as was expected. R is significantly
higher (R difference test, p < 0.01) for all linear models
(UV, MV1, MV2) in Variant 2 than in Variant 1. In the case
of ANN, adding season as a categorical variable doesn’t
significantly change the correlation coefficient (p > 0.01).
It appears that the neural network recognizes seasonal
patterns from meteorological parameters, without categor-
ical addition of seasonality. As our goal was to find the
most suitable model for PM10 mapping and there was no
special reason not to include season as an independent
variable, only models in Variant 2 are discussed further
on. Overall improvement of more complex models com-
pared to UV model, in terms of the percentage increase of
R is 53.1% for MV1, 65.6% for MV2 and 90.6% for ANN.
The RMSE decreases the most for ANN (21.4%) but less
so for MV1 (7.9%) and MV2 (10.1%). The correlation co-
efficients for UV and MV1 are similar to other findings for
locations in Europe [5, 12].

The procedure of finding the best model subsets in case
of MV1 and MV2 (using Mallows’ CP criterion) revealed
significant contribution (for which p < 0.01) of the follow-
ing variables, listed in order of significance of contribution
for MV1: AOD, WS, Vn, RH, PBLH, Un, T CF, P; and for
MV2: AOD, WS, PBLH, PBLH?, T?,RH?, AOD?, Vn, T.
Sensitivity analysis for ANN which is capable of recog-
nizing and learning complex patterns in data, showed sen-
sitivity for all input variables (using F-test for comparison
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Table 2. Statistics (R, RMSE) of four model types (UV, MV1, MV2, ANN) performance for two variants, the first without categorical independent
variables, and the second with season as a categorical independent variable. RMSE is given in pgm=—3.

Model type-> uv MV1 Mv2 ANN
Performance measure-> R RMSE R RMSE R RMSE R RMSE
Variant1-without categorical variables N=7114 N=1453 (test data set)
Overall performance 0.28 16.49 0.45 1536 0.49 15.02 0.60 12.99
Variant 2 - with season as categorical variable N=7114 N=1453 (test data set)
Overall performance 032 16.26 0.49 14.98 053 14.62 0.61 1278

of variances, p < 0.01), meaning that exclusion of one the
parameters would result in a significant difference in the
variance of error.

3.2. Model performance by seasons

Performance of all models varies by seasons (Table 3).
Seasons are defined as winter (December - Febru-
ary), spring (March-May), summer (June-Augqust), and
autumn (September-November).  The simplest model
(UV) has the poorest performance in winter (R=0.26,
RMSE=23.53 pugm~3); this could be associated with lower
PBLHs (compared to other seasons) that do not allow mix-
ing in longer air column, and so could affect the PM10-
AOD relationship [12]. Performance in winter improves
with inclusion of meteorological variables, where ANN
shows the highest rate of improvement (161% for R, and
23% for RMSE). In the case of winter, MV1 model performs
slightly better than the more complex MV2 model. For all
other seasons, model performance increases with increase
in model complexity, where the ANN has the highest rate
of improvement for all seasons. The linear correlation co-
efficient for MV1, MV2 and ANN models is the highest for
autumn (0.53, 0.60 and 0.69, respectively) and the lowest
for spring (0.43, 0.45 and 0.49, respectively).

The seasonal variability of R reflects the complexity of
the relationship between dependent (PM10) and inde-
pendent variables (AOD, CF, meteorological parameters)
and has to be the subject of future research. Possible
causes for this variability are: 1) seasonal variations in
aerosol vertical profile that affect AOD-PM10 relation-
ship, 2) seasonally variable transport of aerosol in upper
layers, 3) seasonal variations of uncertainties in AOD re-
lated to temporal heterogeneity of aerosol type and com-
position (not included in assumed model used in MODIS
aerosol retrieval algorithm) and 4) seasonal variations in
accuracy of meteorological parameters obtained by WRF
model (caused by complex topography and climatic char-
acteristics of the study area).

3.3. Model performance by stations

The performance of all models varies with geographic lo-
cations (Figure 5). A comparison of model performance by
station shows that inclusion of meteorological variables
(within MV1, MV2 and ANN models) leads to improve-
ment of PM10 estimates at all stations (Figure 5), com-
pared to simple UV model. Average improvement rate of
R over all stations is 50.2% for MV1, 61.3% for MV2 and
the highest for ANN (74.6%). However, ANN doesn’t per-
form better equally at all stations compared to MV1 and
MV2 models, where R ranges from 0.39 to 0.75. At three
coastal stations (KA-SU, KOR, RI-1) performance of ANN
is similar to MV2 where both ANN and MV2 perform bet-
ter than MV1. At one coastal station (RI-2) performance
of the ANN model shows no improvement over simpler
MV1 and MV2 models (Figure 3). Similar findings for
the poorer performance of ANN estimates of PM2.5 for
coastal stations have been already reported by Gupta and
Christopher [14]. This could be related to higher uncer-
tainties associated with satellite retrievals that contain
mixed land and sea surface reflectance, which may lead
to high AOD values [18], as well as to higher uncertain-
ties of modeled meteorological parameters at the land-sea
boundaries, due to the complex topography at the coastal
area.

Additionally, it has to be emphasized that continental sta-
tions, which have higher mean and variability of PM10
values than coastal stations, are better represented by
neural network due to larger dataset (N=4425, in com-
parison to N=2689 for coastal stations). The performance
of ANN improved the most for ZG-1, ZG-3 and OS-2 sta-
tions, all being continental stations. We will further dis-
cuss performance of the ANN model as it shows the best
overall performance.

3.4. ANN residuals

The differences between observed and estimated PM10
concentrations (residuals) for ANN by seasons and sta-
tions are given in Figure 6. Negative residuals point to
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Table 3. Comparison of performance of different models in Variant 2 (with “season” as categorical variable) by seasons in terms of linear correlation
coefficient (R) and Root Mean Square Error (RMSE). RMSE is given in pgm~=3. The numbers in parenthesis represent percentage

improvement over univariate (UV) model.

Model type-> uv MV1

MvV2 ANN

N R RMSE R RMSE R RMSE R RMSE

Winter 665 0.26 23.53 0.52 (105) 20.86
Spring 1849 0.32 12.67 0.43 (36) 12.26
Summer 2824 027 1461 0.45 (66) 1354
Autumn 1776 037 1859 053 (42) 16.98

11) 0.49 (92) 21.25 (10) 0.66 (161) 18.06 (23)

48) 0.45 (42) 12.16 (48) 0.49 (55) 1159 (51)

42) 051 (89) 13.05 (45) 0.56 (109) 12.53 (47)
(

(
(
(
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Figure 5. Comparison of linear correlation coefficient (R) (left) and Root Mean Square Error (RMSE) (right) for ground-based stations for four
models: univariate linear regression model (UV), multivariate linear regression model with first-order effects (MV1), multivariate linear
regression model with first and second-order effects (MV2) and Artificial neural network (ANN).

overestimation of PM10 values, and positive to underes-
timation of PM10 concentrations. The spread of residuals
is highest and most spatially heterogeneous for winter
and most homogenous for summer. For winter, PM10 con-
centrations are mostly underestimated for the majority of
continental stations (SI-1, KU-1, ZG-1, ZG-2, ZG-3) and
mostly overestimated for majority of coastal stations (RI-
2, KA-SU, CAM, KOR). This implies that two separate
ANN models for continental and for coastal Croatia might
give better results. The problem with this would be def-
inition of the border between those two parts on which
the model could be applied. High positive residuals are
related to episodes with high observed PM10 concentra-
tions that ANN model underestimated and could not ex-
plain with independent variables. Generally, the model
performs better for PM10 values lower than 40 pgm=—
(representing 84% of data) than for higher PM10 val-
ues (Figure 7). This could be due to very low number
of samples with high PM10 values (only 1.5% of PM10
measurements are higher than 80 ugm=3). Values lower
than 20 pgm=3 are mostly overestimated and values higher
than 20 pgm~ are mostly underestimated where the dis-
crepancies between observed and estimated PM10 values
increase with increase of PM10 values (Figure 7). Differ-
ences in annual means between observed and estimated
PM10 concentrations for 5 years and 12 stations show

that 50% of annual means are within range from -2.9 to
2.3 ugm~3; thus, PM10 estimation represents a relatively
good proxy for annual mean of PM10 mass concentrations.

The uncertainties in estimated concentrations originate
from variation in satellite retrieval uncertainties, uncer-
tainties in measured PM10 data and modeled meteoro-
logical fields as well as from spatio-temporal averaging,
as each of these uncertainties propagates to modeling re-
sults. Other factors that control PM10 concentrations,
such as spatio-temporal variations of emissions and ver-
tical gradients of meteorological variables have not been
included in the analysis and might improve the estima-
tions. The best results may be achieved using information
on aerosol vertical profile from satellite or ground-based
lidars, if available.

3.5. Examples of estimated PM10 spatial
maps

Spatial maps of surface PM10 mass concentrations have
been derived using ANN model that demonstrated the best
overall performance, as discussed in the previous para-
graphs. Seasonal and annual mean PM10 maps (Fig-
ures 8 and 9) have been estimated from gridded AOD
values available in the period 2008-2012, and meteoro-
logical fields from WRF model on a daily basis and av-
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Figure 6. Statistics of PM10 residuals (observed — estimated values; Y - axis) by seasons (graph titles) and stations (X — axis). Outliers: values
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Figure 7. Statistics of ANN PM10 residuals (observed — estimated
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than (RES15 -1.5*(RESqo%-RES105), where RES is PM10
residual.

eraged by seasons, after which seasonal maps were aver-
aged to get map of annual means. The generated seasonal
mean maps show reasonable spatio-temporal distribution
of PM10 concentrations, with the highest values in the
central, northern and eastern (agricultural) part of Croa-
tia during winter and autumn, indicating areas at risk of
exceeding limit values set by EU. High estimated PM10

values at coastal and in the southern part of Croatia at
the land-sea boundary are probably a consequence of ap-
plication of the land algorithm to fragments of sea, which
is likely to lead to high AOD values [8].
(including islands), there are no known sources of pol-
lution that could cause higher values than in the conti-
nental area. Uncertainty in AOD retrievals over coastal

In these areas

areas hinders PM10 estimates, and has to be further an-
alyzed and validated using ground-based AOD measure-
ments, which are currently not available.

The Croatian air quality network has very recently been
upgraded to rural/background stations that provide bet-
ter area coverage and also include PM2.5 measurements.
When validated data from these stations becomes avail-
able, the model will be reassessed. These results will also
be further combined and compared with the results of an
atmospheric chemical transport model.

4. Summary and conclusions

This study shows promising potential for air quality mon-
itoring and exposure assessment using satellite remote
sensing and modeled meteorological fields, as extension
to measurements of PM10 over Croatia at the locations
where measurements do not exist. This approach can be
applied to other countries with sparse PM10 monitoring
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Figure 8. Estimated seasonal mean PM10 mass concentrations for
period 2008-2012 using ANN model. PM10 is given in
pgm=3.

Figure 9. Estimated annual mean surface PM10 mass concentra-
tions (given in ugm—3) derived with ANN model. Labels
represent locations of ground-based PM10 measurement
stations.

stations and/or with lack of emission inventories needed
for running atmospheric chemical transport models, since
the satellite AOD data are globally available with high
spatial and temporal resolution in near-real time, and the
meteorological fields can be obtained from a meteorolog-
ical model, for which initial and boundary conditions are
globally and regularly available. The advantage of this
approach is that it doesn’t require extensive effort to derive
emission inventories and the cost is much lower than the
cost of maintaining a single measurement station. More-
over, derived spatial maps of PM10 can be used for the as-
sessment, spatial optimization and refinement of existing
ground-based monitoring networks, since they indicate ar-

eas of increased aerosol loading. Combined with trajec-
tory models, AOD data and spatial (daily) PM10 maps
can provide guidance to air quality modeling and fore-
casting community in determining possible aerosol move-
ment or studying transboundary air pollution. Since the
derived PM10 maps provide better spatial coverage than
ground measuremens, it can also be usefull as additional
information for chemical transport models calibration and
validation.

In this study, the relationship between satellite derived
AOD and PM10 was used to obtain surface PM10 mass
concentrations. The PM10-AOD relationship was ana-
lyzed using a linear univariate model (UV) that estimates
PM10 concentrations using only AOD as the input vari-
able, and more complex multivariate models (MV1, MV2
and ANN) that estimate PM10 concentrations using 5
years (2008-2012) of meteorological fields from meteo-
rological WRF model, as well as MODIS AOD and CF
data. All the models demonstrated better performance
when seasonality is included as predictor. Among mod-
els that include seasonality, UV model has demonstrated
the poorest overall performance (R=0.32), suggesting that
additional information is needed to convert columnar mea-
surements to surface values.

The addition of meteorological variables in multivariate
models significantly improved PM10 concentration esti-
mation, where the most complex ANN model showed the
highest percentage of increase in R (90.63%) relative to UV
model, whereas the MV1 and MV2 models led to increase
of R of 53.1% and 65.6%, respectively. The performance
of the models varies with seasons and with geographical
locations. The ANN model demonstrated the highest rate
of improvement for all seasons compared to other models,
with the highest percentage increase of R compared to
UV model of 161% for winter. ANN model performs the
best during autumn (R=0.69) and winter (R=0.66) with
intermediate success during summer (R=0.56) and spring
(R=0.49). The seasonal differences in the models’ per-
formance may be associated with seasonal variations in
aerosol vertical profile that affect the AOD-PM10 rela-
tionship, seasonally variable transport of aerosol in upper
layers, seasonal variations of uncertainties in AOD related
to temporal heterogeneity of aerosol type and composition
and seasonal variations in accuracy of meteorological pa-
rameters obtained by WRF model (caused by complex to-
pography and climatic characteristics of the study area)
that are subject to further research.

The average improvement rate of R over all stations is
50.3% for MV1, 61.3% for MV2 and 74.6% for ANN, com-
pared to the UV model.
generally better for continental than for coastal stations,

Performance of all models is

which may be explained with higher uncertainties in satel-
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lite AOD retrievals due to mixed land and sea surfaces, as
well as to higher uncertainties of modeled meteorological
parameters at coastal area with complex topography.

Sensitivity analysis for ANN has shown that all tested
independent variables (AOD, PBLH, WS, Un, Vn, T, P,
CF) were significant predictors of PM10.

Despite to the fact that the estimation of PM10 concen-
trations from satellite AOD data and meteorological pa-
rameters provides a good proxy for seasonal and annual
average values for the entire country, there is still unex-
plained variability in the PM10-AOD relationship, which
remains a challenge for future work, especially related to
estimation of episodic high PM10 values.

Further research with 1) use of more complex neural net-
works, 2) configurations of meteorological model includ-
ing better vertical and horizontal model resolution and
different schemes for boundary layer, 3) inclusion of verti-
cal distribution of meteorological parameters and 4) gen-
eration of separate models for continental and coastal
parts, may lead to better results. Finally, consideration of
aerosol vertical profiles, from satellite or ground-based li-
dars, could improve our understanding of the PM10-AOD
relationship and improve PM10 estimates in the future.

Due to lack of data from rural and background stations,
the models were established with data mainly from urban
stations, thus being more representative for urban areas
than for rural areas. Background stations have recently
been established and when data becomes available, the
model will be revised to include those stations.

Additionally, the 3 km resolution MODIS AOD product
expected as part of the Collection 6 and the newly devel-
oped Multi-Angle Implementation of Atmospheric Correc-
tion (MAIAC) algorithm [35] with 1 x 1 km spatial resolu-
tion may give better results, with possibility of recognizing
spatial variability within larger urban areas.
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Appendix A: QUANTITATIVE DE-
SCRIPTION OF MODELS

1. Description of univariate (UV) and multi-
variate linear regression models (MV1 and MV2)
in Variant 1

The general form of multivariate linear regression models
is given by

Y=0 +a(Van)+... +a,(Var,). (A1)

The dependent variable Y on the left side is the measured
surface PM10 concentration. The independent continu-
ous variables (Vary...Var,) are on the right side. The
parameters qp_ o, represent regression coefficients for in-
dependent variables.

The univariate linear model (UV) has only one (n = 1)
independent continuous variable (AOD). The multivariate
linear model with first order effects (MV1) has 9 (n = 9)
independent continuous variables (AOD, PBLH, WS, RH,
Un, Vn, T, P, CF). The multivariate linear model with first
and second order effects (MV2) has first (linear) and sec-
ond order (quadratic) terms of the same continuous vari-
ables as in MV1 model.

The described empirical models were optimized through
use of Mallows’ CP criterion [29], resulting in models with
best subsets of independent continuous variables. The
regression parameters of optimized models (UV, MV1 and
MV2) are given in Table 4.

2. Description of univariate (UV) and multi-
variate linear regression models (MV1 and MV2)
in Variant 2

In Variant 2, a categorical variable “season” has been
added to the above presented UV, MV1, and MV2 models.
The general form of these models is given by

Y =0+ (Vary) + ... + a,(Var,) + ay(winter)

+ asp(spring) + as,(summer) + aqu(autumn).
(A2)

The season (as categorical variable) is coded with sigma-
restricted parameterization [29]. The regression parame-
ters (estimates) for the optimized models (best subsets of
independent variables defined by Mallows Cp criterion)
for UV, MV1 and MV2 in Variant 2 are given in Table 5.
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Table 4. Estimated parameters of the optimized empirical models (UV, MV1, MV2) in Variant 1 represented by Eq. A1.

Variant 1 uv MV1 MV2

Independent variables par est std err  t p(t) par est std err t p(t)  par est std err t p(t)
Intercept 20.884 0.304 68.680 <10-4 —150.242 37.014 —4.06 <10-4 61.367 1.657 37.04 <10-4
AOD 35.991 1.454 24760 <10-4 42476 1417 2998 <10-4 58.790 2401 24.48 <10-4
WS - - - - —1.485 0.093 —-1596 <10-4 —1.866 0.089 —21.08 <10-4
PBLH - - - - —5.487 0438 1254 <10-4 —19.095 1.108 —17.23 <10-4
RH - - - - —0.257 0.022 -11.86 <10-4 —0.282 0.021 —13.48 <10-4
Vn - - - - 3.388 0321 1055 <10-4 3.053 0.318 9.60 <10-4

Un - - - - 2.451 0.286 857 <10-4 - - - -

CF - - - - —9.848 1522 —-6.47 <10-4 - - - -

P - - - - 0.191 0.036 533 <10-4 - - - -
T - - - - - - - - —1.205 0103 <10-4 11.70
PBLH? - - - - - - - - 4.673 0389 <10-4 12.02
T? - - - - - - - - 0.032 0.003 <10-4 11.96
AOD? - - - - - - - - —=34.796 3310 <10-4 10.51

par est - parameter estimate; std err - standard error of the parameter estimate; t - t-statistics. p(t) - probability of t-statistics (that
parameter estimated is equal to zero, i.e. without significant contribution to the model estimation).

Table 5. Estimated parameters of the optimized empirical models (UV, MV1, MV2) in Variant 2 represented by Eq. A2.

Variant 2 uv MV1 MV2

Independent variables par est std err t p(t) par est std err t p(t) par est std err t p(t)
Intercept 21.486 0.314 68.45 <10-4 —119.994 38.066 —3.16 0.0016 47.437 1.497 31.70 <10-4
Winter 4.404 0502 877 <10-4 9.105 0616 1479 <10-4 6.651 0632 1052 <10-4
Spring —3.822 0353 —-10.84 <10-4 —-3.880 0343 —1130 <10-4 —2.254 0379 -5095 <10-4
Summer —2.395 0310 —-7.74 <10-4 —-6.427 0460 —1398 <10-4 —7.264 0.452 16.080 <10-4

Autumn 0.000 - - - 0.000 - - - 0.000 - - -
AOD 38.968 1.459 2671 <10-4 42.789 1.418 3018 <10-4 57.920 2409 24.04 <10-4
WS - - - - —1.566 0.093 —-16.79 <10-4 —1.936 0.086 —22.44 <10-4
PBLH - - - - —3.977 0457 -870 <10-4 —19.461 1.106 —17.60 <10-4
RH - - - - —0.229 0.022 -10.60 <10-4 -0.002 0.000 —11.33 <10-4
Vn - - - - 3.617 0328 11.01 <10-4 3.228 0314 10.27 <10-4

Un - - - - 2315 0282 822 <10-4 - - - -

CF - - - - —9.931 1498 -6.63 <10-4 - - - -

P - - - - 0.153 0.037 417 <10-4 - - - -
T - - - - 0355 0.044 812 <10-4 —-0.971 0121 -8.06 <10-4
PBLH? - - - - - - - - 5.459 0385 14.20 <10-4
T2 - - - - - - - - 0.037 0.003 1151 <10-4
AOD? - - - - - - - - —35.531 3.248 —10.94 <10-4

par est - parameter estimate; std err - standard error of the parameter estimate; t - t-statistics. p(t) - probability of t-statistics (that
parameter estimated is equal to zero, i.e. without significant contribution to the model estimation).
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