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Abstract: In this study, regression-based prediction of volume and aboveground biomass (AGB) of coniferous forests in
a mountain test site was conducted. Two datasets - one with applied topographic correction and one without
applied topographic correction - consisting of four spectral bands and six vegetation indices were generated from
SPOT 5 multispectral image. The relationships between these data and ground data from field plots and national
forest inventory polygons were examined. Strongest correlations of volume and AGB were observed with the near
infrared band, regardless of the topographic correction. The maximal correlation coefficients when using plotwise
data were -0.83 and -0.84 for the volume and AGB, respectively. The maximal correlation with standwise data
was -0.63 for both parameters. The SCS+C topographic correction did not significantly affect the correlations
between spectral data and forest parameters, but visually removed much of the topographically induced shading.
Simple linear regression models resulted in relative RMSE of 32-33% using the plotwise data, and 43-45% using
the standwise data. The importance of the source and the methodology used to obtain ground data for the
successful modelling was pointed out.
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1. |ntr0ducti0n boreal species dominate here because of the altitude,
and some rare endemic forest communities are also
present. The management and protection of these forests
requires quantifying and spatially presenting different

Forests in the south of Europe are predominantly forest parameters.  Timber volume, for example, is
concentrated in isolated mountain areas surrounded by traditionally used to characterize growing stock; while
greatly transformed agricultural and urban environments. biomass assessment is increasingly discussed in the
The Rila-Rhodopes massif in particular gives refuge to context of the full utilisation of all tree components [1].
a large forest patch, which has substantial significance Forest biomass data is also needed in regional and global
both for the forestry industry and the maintenance carbon stock studies and climate modelling. However,
of the ecological stability in the region. Coniferous acquiring such data is a major issue because of the

complex topography in the mountainous regions. Making
a field inventory is labour consuming and expensive, and
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in Bulgaria data is being updated at only every ten years.

Estimation of volume and biomass of coniferous forests
using remote sensing data has a relatively long history.
Different methods have been proposed, with regression
analysis still being among the most commonly used one.
In this empirical method, a forest attribute is related to
surface reflectance or spectral vegetation indices (SVIs)
derived from reflectance. The method is characterized by
its simplicity and well established theoretical (statistical)
basis. The weaknesses of its application are also well
understood [2, 3]. However, some of the problems with
regression are present in other commonly used methods
like neural networks and kNN [4, 5].

To derive the regression relationship, one should consider
the scale. It is dependant on the type of forest inventory
data, which are typically available at plot or stand
level. Both types of data have been used [6-10] with
no commonly accepted preference. The effect of scale on
the strength of relationships is manifested through the
susceptibility to geometric errors in data and to the stand
border conditions, which have been found to be a major
factor in forest attributes estimation [8]. Muukkonen and
Heiskanen [4] discussed that the use of standwise data
may solve the problems arising from the errors in image
registration and location of sample plots.

The fragmented nature and the relatively small size of
the stands of many mountain forests suggest that satellite
images with an appropriately fine spatial resolution
should be used for volume and biomass estimation. The
High Resolution Geometric (HRG) sensor onboard the
Satellite Pour l'Observation de la Terre (SPOT) 5 satellite
provides multispectral images with 10 m pixel size, which
seems to be perfectly suited for forest mapping under
the described conditions. Since the pixel size is slightly
larger than the typical crown size of conifers, SPOT 5
provides the finest possible resolution without resolving
individual trees. Very high resolution satellite and aerial
images with pixel size as small as 1.0 m are increasingly
utilized for forest parameter estimation. In many studies
using such data, however, information is aggregated to
the smaller scale, and as with lower resolution sensors,
the reliance is on the relative proportion of shade cast
by the trees [7, 11].

Widely acknowledged problem hindering automated
information  extraction from satellite images in
mountainous areas is the difference in illumination
of slopes with different steepness and azimuth angles.
For the same cover type, the satellite sensor will register
higher radiance when observing on slope facing the Sun
and lower radiance when observing on slope tilted in the
opposite direction. These differences may mask the real
reflection characteristics of objects and should be removed

or diminished. The application of topographic correction
is believed to reduce the influence of topographic effects in
favour of the intrinsic reflection properties of objects [12],
thus providing for more accurate determination of the
biophysical properties of the surface. It has been shown
that a non-Lambertian topographic correction model can
improve the accuracy of land cover classification [13]
and constitute an important step in obtaining physically
reliable and homogeneous time series [14]. Comparing
raw data with topographically corrected data, Dorren et
al. [15] show that the classification errors in the case when
uncorrected images were used are more concentrated
in faintly illuminated pixels and that topographic
correction improves the accuracy of Landsat TM-based
forest stand type maps in steep mountainous terrain.
Using the statistic-empirical, Minnaert and C-correction
approaches, Meyer et al. [12] also found an improvement
in forest classification. The correction of topographic
effects is most often discussed and assessed with respect
to image classification procedures. In forest environment,
these effects can be expected to affect not only the
possibility for separating different forest types, but also
the regression-based estimation of forest parameters.
Moreover, in this type of analysis, pixel brightness is
most often expected to carry the information of interest.

The general objective of this study is to examine the
possibility for estimation of tree volume and aboveground
biomass (AGB) of coniferous forests in high relief using
multispectral SPOT 5 imagery combined with ground truth
data at different scale. For the purpose, the prediction
capabilities of the SPOT 5 spectral bands and six spectral
vegetation indices from topographically corrected and from
uncorrected image are assessed. The results from the
use of plotwise and standwise ground data are compared
and the differences and advantages of each type of
data are discussed.

2. Study area

A region of ~200 km? located on the northern slope of
the Rila Mountain (SW Bulgaria) was selected for the
study (Figure 1). Seventy percent of the territory is
covered by coniferous forests, which spread from 1000 m
as.l. to the tree line at 1800-2100 m a.s.l. They are
composed by Scots pine (Pinus sylvestris L.), Norway
spruce (Picea abies (L.) Karst.), silver fir (Abies alba
Mill.), and Macedonian pine (Pinus peuce Griseb.). These
species form pure and mixed stands with even and uneven
age structures [16]. Hazel and juniper shrubs, and grass
are present in the understory where stands are more open.
Most stands are with high canopy cover (75-85%). The
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oldest stands are up to 120 years old. Part of the forests
in the study area is managed for timber production and
other part falling in the "Rila" National park is protected.

3. Material and methods

The methodology of the study consists of several steps.
Firstly, ground reference data for volume and AGB
was collected from two separate sources - sample plot
measurements made for this study and stand level national
forest inventory (NFI) data. Secondly, a SPOT 5
image was geometrically corrected, calibrated to at-
sensor radiances and used to calculate several SVls.
Additionally, using DEM, a topographically corrected
image was prepared from which SVIs were also calculated.
Thirdly, the values of the four bands and the SVIs from
the two images were extracted for each field plot and
NFI stand and correlated with the volume and AGB data
to select the most suitable satellite variable to be used
for modelling. Finally, using the plot and stand data
separately, two sets of regression models for volume and
AGB were developed and then validated and compared.
These steps are presented in more details in Figure 2
and in the next paragraphs.

3.1. Ground data

3.1.1. Plot measurements

Thirty-two temporary plots were established in the study
area. The sampled stands were selected using information
from available forest inventory maps and satellite images
with the intention to represent a wide range of age classes
and structural diversities. Depending on the density of
trees, square plots of 25 m? to 900 m? were used. On
the field, the location of plots was determined according
to the following criteria: to be in homogeneous part
of the stand, and to be at least 20-30 m apart from
stand borders (the second condition was violated for the
youngest stands only due to the difficult access). Diameter
at breast height (DBH), height and species was recorded
for every tree with DBH>10 cm in forests older than ~20
years, and with DBH>2 cm otherwise. In some plots,
part or all trees were not measured for height, but their
height was estimated based on the DBH using height
curves calculated from the available measurements from
the plots. The geographic coordinates at the centre of
each plot were determined by averaging three 15-minutes
GPS measurements with differential corrections applied
during post processing. The volume (of stem) of each tree,
V; (m3), was calculated using the equation provided in

Beruchashvili and Zhuchkova [17]:
Vi =0534-H-D? g, (1)

where H is the tree height (m), D is the DBH (m), and g»
is the ratio of the diameter at half tree height to the DBH.
The values of g, used were: 0.70 for spruce and fir, and
0.65 for pines [18]. The volume of all trees was summed
by species and expressed to a hectare. The dry AGB
of each species (tha™') was determined by multiplying
the volume (m®ha~") by the timber density (tm~3) and
adding the biomass of branches and foliage. The average
values for timber density and percentage of branches’
and foliage’ biomass from the stem biomass by species,
were taken from Beruchashvili and Zhuchkova [17]. The
volume measured in the plots varied from 47 m*ha=" to
985 m3ha~". The AGB was in the interval 21-462 tha~".
The mean values can be seen in Table 7. Plots with AGB
less than 100 tha~" were found as a rule in pure Scots
pine forests with even aged structure and age of up to
20-30 years. Some of these stands are plantations. The
composition and structure of the stands where higher AGB
was measured were highly variable -from pure Scots pine
and Norway spruce stands to mixed stands and from one-
storeyed and relatively open stands to multilayered dense
stands (Figure 3).

3.1.2. National forest inventory data

A NFI dataset, which covers part of the study area, was
available. The NFI data are presented at stand (sub-
compartment) level and include several parameters from
which mean diameter, mean height and volume by forest
layers and tree species in the layers were used. A
polygonal layer with the borders of the sub-compartments
was created in GIS by digitizing them from map of forest
sites in scale 1:25000. The dataset was filtered by
stand size, and 795 stands with area over one hectare
remained to be used in the further analysis. The mean
area of the stands was 59 ha. The AGB of each
stand was calculated using species-specific coefficients for
conversion from stand volume to biomass of different parts
- stem, branches and foliage [19]. For the stem, single
coefficient was used, while the coefficients for branches
and foliage should be calculated for each tree layer
and/or species separately based on the mean diameter and
height [19]. The full AGB of a stand was derived by the
sum of the biomasses calculated for each tree layer and/or
species within the layer. Coefficients for Macedonian
pine and silver fir are not provided in Zamolodchikov et
al. [19] and for these species the coefficients for Scots pine
and Norway spruce were used instead. Since deciduous
tree species are very rare in the studied stands, their
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Figure 1. Map of the study area showing the coverage of the national forest inventory polygons from which data was used and the location of the
field plots. The extent of coniferous forests was mapped by unsupervised classification of the SPOT 5 image.
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Figure 2. Flow chart of the data processing and analysis steps in
the study. The steps shown with dashed lines were first
implemented followed by these shown with solid lines.

biomass was ignored. The biomass of understorey was
also not taken into account. Stand volume and AGB
data was randomly split into training (70%) and validation
dataset (30%).

3.2. Image pre-processing

A level 1A scene from SPOT 5 acquired on 14 July 2008
was used in this study. The panchromatic image was first
orthorectified, using 32 GPS ground control points (GCPs)
and an ASTER GDEM v.2 digital elevation model [20]

yielding a 0.8 pixels RMSE (accuracy assessment based
on 14 independent check points). The panchromatic
image was then used as a base image to orthorectify the
multispectral image with RMSE of 0.5 pixels (accuracy
assessed by 9 independent check points). Only the four
spectral bands (XS1:0.49-0.60 pm; XS2:0.61-0.68 pm;
XS3:0.78-0.89 pym; SWIR:1.54-1.75 pm) were used in the
further analysis.
to radiances, L, (Wm™2sr~" um™') using the coefficients
Since our

The digital numbers were converted

provided with the image metadata [21].
major goal was to assess the relative performance of
plotwise and standwise ground data, as well as the
effect of topographic correction on a single image, the
atmospheric effects and their correction was not dealt with
in this study.

From the radiance image a topographically corrected
image was also prepared. Different models have
been proposed for correction of topographic effects on
satellite imagery (see [23] for review), the simplest
one representing a modification of the cosine correction
involving the solar zenith angle ([24] cited by Kane et
al, [23]). This cosine correction, however, only models
the direct part of the irradiance, while the weakly
illuminated regions may get a considerable amount of
diffuse irradiance as well [12]. Overcorrection of the
weakly illuminated pixels is characteristic for the cosine
corrected images. This method proved to be inappropriate
for sloped terrains [12, 24]. Methods like the Minnaert
and C-correction can greatly diminish overcorrection by




Combining SPOT 5 imagery with plotwise and standwise forest data

212

Figure 3. Typical forest stands in the study area: (a) pure Scots pine, even-aged stand - 220 tha~—' AGB; (b) pure Norway spruce, even-aged
stand - 257 tha~! AGB; (c) mature Scots pine stand with sparse lower tree layer composed of Norway spruce - 420 tha—' AGB.

incorporating empirically derived constants in the cosine
model. Gu and Gillespie [25] proposed a new approach
intended specifically for application on forest images —
the Sun-Canopy-Censor (SCS) model — which normalize
the mutual shadowing of trees.

In this study, the SCS+C model [26] was used, which
is a modification of the model proposed by Gu and
Gillespie [25]. In this model, the parameter C is added
similarly to the c-corection method. The topographically
corrected radiance (TC radiance), Ly, was calculated using
the following equations [26]:

cosacos O+ C
b=t sivC .

cos i = cos B cos a + sin B sin a cos(¢) (3)

where L is the radiance of the uncorrected pixel, a is
the slope of the pixel, 6 is the solar zenith angle, i is
the incidence angle relative to the normal of the pixel,
¢ is the difference between the pixel exposition and
the solar azimuth angles, and C is empirical constant.
The constant C is equal to a/b, where a and b are
coefficients in the regression equation L = a + b - cos .
Adding of C is used to better characterize diffuse sky
irradiance (downwelling spectral irradiance at the surface
due to scattered solar flux in the atmosphere) and thus to
reduce the overcorrection of faintly illuminated pixels [26].
The constant C was calculated for the coniferous forests
only. For the purpose, a random sample of 15000
pixels representing coniferous forests was used, and for
each pixel, the radiance in the four bands and cosi
were extracted. Based on these data, the regression
coefficients, and from them, C was found for each spectral
band. To apply the correction, ASTER GDEM v2 was
used after resampling from the original resolution (30 m)
to the spatial resolution of the SPOT 5 image (10 m).

Six SVIs were calculated both from the original radiance
spectral data and the topographically corrected data (TC
radiance). They are presented in Table 1 and include
common indices based on the near infrared (NIR) and the
short wave infrared (SWIR) spectral bands used in most
forest studies.

3.3. Regression analysis and validation

The satellite variables - bands’ radiances and vegetation
indices - were extracted from the images to explain the
volume and AGB. At plot level, the average of the four
closest pixels to the plot's centre was used. The average
of all pixels within a stand was extracted using the GIS
layer with the stand borders. The pixels coinciding with
the borders were excluded from the calculation because
they receive signal from two or more adjacent stands [8].
Simple linear regression, with the NIR band as
independent variable, was used to model the volume
and AGB. To deal with heteroscedasticity problems
and non-linearity, base-10 logarithm transformation was
considered for y, x or both variables. The increase in
R? was used as a measure when deciding whether a
transformation of variables was needed. It was found
that in all cases, the dependent variable, y, should be
transformed. In this way, the linear regression equation
will give the volume and AGB in logarithms. When the
coefficients of this equation, by and b4, are found, y can
be calculated in the original units using equation (4); or
using equation (5) if the independent variable, x, was
also transformed [33]:

y = 10% . 10%1% . 10¢ (4)

y = 10%0 . x> . 10¢ (5)
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Table 1. Vegetation indices used in the study.

Index Formula Reference
Normalised Difference Vegetation Index (NDVI) NIR — Red / NIR + Red [27]
Corrected NDVI (NDVIc) NDVI - (1 — (SWIR — SWIRmin) / (SWIRmax — SWIRmin)) [28, 29]
Simple Ratio (SR) NIR / Red

Reduced Simple Ratio (RSR) SR (1 = (SWIR = SWIRmin) / (SWIRmax — SWIRmin)) (30]
Normalised Difference Infrared Index (NDII) NIR - SWIR / NIR + SWIR [31]
Structural Index (SI) NIR / SWIR (32]

In the back-transformation using (4) and (5), the error
term, €, is included as suggested by Newman [33]
to correct statistical bias. The procedure outlined in
Newman [32] was used:

2

€
p— (6)

10° = 10ME2,  MSE = Z
i=1

where MSE is the mean square of the error from the
regression, e; is the residual for observation i, and n is
the number of observations.

After applying back-transformation, the modelled values
of volume and AGB, §; were compared with the measured
values y;, and two accuracy statistics - the root mean
square error (RMSE) and the Bias - were calculated [4]:

1« .
RMSE = | -3 (yi—0:)? 7)
i=1
‘ ¢ .
Bias =3 (y:— ) (8)
i=1

Their relative counterparts, RMSE, and Bias, were
calculated as a percent of the mean measured value of
the forest parameter. The significance of Bias was tested
using the t-statistic (df = n — 1) := Bias/(SD/\/n),
where SD is the standard deviation of the residuals [4].
To calculate the accuracy statistics for the models at stand
level, the validation stands were used. For the models at
plot level, leave-one-out cross validation was used.

4. Results

4.1. Correlations

All spectral bands of SPOT 5 and the SVls, except NDVic,
were statistically significantly correlated with the volume
and AGB in the plots (Table 2). For both parameters, the
strongest correlations were with the near infrared (XS3)
band of SPOT 5 (r = —0.83 for volume and r = —0.84 for

AGB; p < 0.001), followed by the correlations with NDVI
and SR. From the spectral bands, the correlations with the
red (XS2) band were consistently lowest. The vegetation
indices which use the SWIR band showed significantly
lower correlations relative to the SWIR band itself.

The volume and AGB of the stands were also statistically
significantly correlated with the four bands, and NDVI
and SR, but were not correlated with any of the indices
using the SWIR band (Table 3). As for the plots, the
maximal correlations for both forest parameters were
obtained with the NIR band (r = —0.63; p < 0.001),
followed by the NDVI, SR, and the green (XS1), SWIR,
and red bands. Because the data for volume and AGB
from the stands, as well as the corresponding satellite
variables extracted from the stands, were not normally
distributed, the Pearson product-moment correlation
coefficient (r) used here may be misleading. Therefore, the
nonparametric correlation coefficient of Spearman (r;) was
also calculated (Table 4). It displayed the same pattern
in the correlations as the Pearson’s coefficient.

The correlations reported above are for the original
uncorrected image. Very close correlation coefficients
were obtained when using the topographically corrected
image. However, in most cases, the correlation coefficients
with the original data were slightly higher, especially for
the stands. The test for equality of correlation (Table 5)
showed that these differences were not statistically
significant. The correlations of both forest parameters
with the NIR band of SPOT 5 were significantly different
at plot and stand level (Z = —2.600; p = 0.009 and
Z = —2.598; p = 0.009 for volume and AGB respectively;
results for the TC Radiance data).

4.2. Regression models

Since the two forest parameters showed highest
correlation with the near infrared band (XS3) of SPOT
5, this band was used as predictor in the regression
analysis. The TC radiance data was used. The regression
models developed using both data from the plots and the
stands, as well as their accuracy statistics, are presented
on Table 6. At plot level, the NIR band explained 77% of
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Table 2. Correlation coefficients between the volume and AGB from the plots and the spectral bands and indices from SPOT 5.

XS1 XS2 XS3 SWIR NDVI SR NDII Sl NDVic RSR
Pearson product-moment correlation coefficient (r)
Volume
Radiance -0.69*** -057**  -083** -0.63"* -0.79*** -0.77*** -047"  -050"  -0.34 -0.41*
TC Radiance -0.71***  -057**  -0.82"* -0.62*** -0.77*** -0.75""* -0.46™  -0.49*  -0.34 -0.41*
AGB
Radiance -0.72**  -0.60"*  -0.84"*  -0.66™* -0.78""" -0.77"" -0.44" -0.477*  -0.32 -0.39*
TC Radiance -0.73***  -0.59"** -0.82"** -0.64™* -0.76""* -0.75""" -0.44" -0.47**  -0.32 -0.39*

*, ** and *** indicate significance at 0.05, 0.01 and 0.001 level, respectively

Table 3. Correlation coefficients between the volume and AGB from the training stands and the spectral bands and indices from SPOT 5.

XS1 XS2 XS3 SWIR NDVI SR NDII SI NDVlc RSR
Pearson product-moment correlation coefficient (r)
Volume
Radiance -0.53***  -0.45*** -0.63""* -050"* -0.57*** -0.56*** -0.07 -0.13** 0.03 -0.04
TC Radiance -0.48***  -0.40*** -058"* -0.46™* -0.49*** -0.50**" -0.04 -0.10* 0.04 -0.03
AGB
Radiance -0.55***  -0.47**  -0.63"* -052"* -0.57*"** -0.56""" -0.04 -0.10* 0.05 -0.02
TC Radiance -0.49***  -0.41*** -059** -047"** -0.48*** -0.49*** -0.01 -0.07 0.07 -0.01

the variations in the volume and 76% of the variations in
the AGB. The modelling of the volume yielded a RMSE
of 152.4 m3>ha~", while the error of the AGB model was
70.2 tha™'. The RMSE, was quite near for the two forest
parameters (Table 6). The biases of the estimates of the
two models were not significant. Moreover, the residuals
were normally distributed as indicated by the Shapiro-
Wilks test for normality (W = 0.968; p = 0.435 and W =
0.967; p = 0.423 for the volume and AGB, respectively).
The scatter plots (not shown) of standardized residuals
versus standardized estimates showed that the residuals
have constant variance and do not follow any pattern. The
plots in Figure 4a and Figure 4b show generally good
agreement of the plot-measured volume and AGB, on the
one hand, and their modelled values, on the other hand.

The R? values were lower for the models based on
the stand-averaged NFI data. The NIR band explained
only 42-43% of the variations in the volume and AGB
(Table 6). In accordance with this, the standard errors of
estimate (SEE) and the RMSEr were higher than those
of the models utilizing plot level data. However, the
RMSE was the same or even lower for the stand-level
models. The relative performance of the stand and plot
models was inconsistent according to the SEE and RMSE
statistics. This could be due to the fact that the RMSE
was calculated by cross-validation procedures and the
relative performance of the models may have changed in
the validation runs. As with the first two models, the
biases were not significant, but the Shapiro-Wilks test

, and *** indicate significance at 0.05, 0.01 and 0.001 level respectively

indicated that residuals were not normally distributed
(W = 0.967 and W = 0.965 for the volume and AGB
respectively; p < 0.001). Relatively poor agreement was
observed between ground data and the modelled values
of stands’ volume and AGB (Figure 4c and Figure 4d).
For these two models, some underestimation of the high
values and overestimation of the low values was obvious.

In Figure 5, fragments from maps of volume created
using the NFI dataset and the two regression models
are compared.  For better comparison, the volume
was represented in six classes.  The map created
using the regression model generated from stand data
(Figure 5a) was relatively accurate in reviewing the
spatial distribution of volume as presented in the NFI
data (Figure 5c). There were, however, differences of one
or more classes in some places between the two maps.
Large overestimation was observed for the regression map
based on plot data (Figure 5b) as compared with the
ground NFI data. In fact, using this regression model,
the volume was estimated to be over 500 m*ha™" for
most of the territory. This result was confirmed also by
the comparison of the area covered by each volume class
(Figure 6a). The area estimates were quite close for the
NFI data and the SPOT 5 regression map based on this
data (i.e. the stand model), especially for the interval from
100 to 500 m* ha~". The inaccuracies in the satellite map
were larger for the marginal classes - the class from 1 to
100 m3 ha"' featured area twice as small, while the class

over 500 m3ha~" featured area twice as large than the
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Table 4. Spearman’s correlation coefficients between the volume and AGB from the training stands and the spectral bands and indices from

SPOT 5.
XS1 XS2 XS3 SWIR NDVI SR NDII Sl NDVic RSR
Spearman’s rank correlation coefficient (rs)
Volume
Radiance -0.55 -0.49 -0.65 -0.50 -0.55 -0.55 -0.14 -0.15 -0.07 -0.12
TC Radiance -0.50 -0.44 -0.63 -0.47 -0.47 -0.47 -0.11 -0.12 -0.04 -0.10
AGB
Radiance -0.57 -0.51 -0.67 -0.54 -0.56 -0.56 -0.10 -0.11 -0.05 -0.10
TC Radiance -0.51 -0.45 -0.63 -0.50 -0.47 -0.47 -0.07 -0.08 -0.01 -0.07

Table 5. Results from the equality test of correlation coefficients obtained using radiance and terrain corrected radiance data (Hy : p1 = p2). The
test statistic Z and its p-values are presented. None of the compared correlations differed significantly (all p-values are over 0.05).

Radiance vs terain corrected radiance

XS1 XS2 XS3 SWIR NDVI SR NDII Sl RSR
Z-statistic (p-value)
Plots:
Volume 0.113 -0.029 -0.097 -0.122 -0.147 -0.162 -0.029 -0.035 -0.001
(0.910) (0.977) (0.923) (0.903) (0.883) (0.871) (0.977) (0.972) (0.999)
AGB  0.064 -0.059 -0.170 -0.162 -0.192 -0.201 -0.032 -0.039 -0.006
(0.949) (0.953) (0.865) (0.871) (0.848) (0.840) (0.974) (0.969) (0.995)
Stands:
Volume -1.188 -1.066 -1.142 -0.963 -1.798 -1.506 - - -
(0.235) (0.287) (0.253) (0.336) (0.072) (0.132)
AGB -1.294 -1.139 -1.280 -1.016 -1.932 -1.620 - - -
(0.196) (0.255) (0.200) (0.309) (0.053) (0.105)
1200 500
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Figure 4. Results from the validation of the regression models for prediction of volume and aboveground biomass: (a) and (b) - models based on
plot data; (c) and (d) models based on stand data.
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Table 6. Regression models for volume and AGB developed by plot and stand data.

Regression parameters

Validation

N2 log Y = (bo + b1 Xq)* R? SEE MSE RMSE RMSE, (%) Bias Bias, (%) p-value
bo by Xq
Plots:
1 Volume * 4.046 -0.029 (NIR) 0.77 0177 0.031 152.4 33.0 9.9 2.1 0.719
2 AGB* 3726 -0.029 (NIR) 0.76 0.183 0.033 70.2 324 4.6 21 0.717
Stands:
3 Volume * 8.799 -3.837 (log NIR) 0.42 0.280 0.078 136.5 45.4 22 0.7 0.809
4 AGB* 8.128 -3.596 (log NIR) 0.43 0.260 0.067 69.0 435 1.9 1.2 0.672

* The dependant variable is base-ten log-transformed;
SEE-standard error of estimate (in logarithms);
MSE-mean square of the error (residuals) from the regression.

NFI map. However, these differences are small compared
with the discrepancy between the areas from the NFI
map and the SPOT 5 regression map based on plot data
(Figure 6a). The mean volume by age class for the three
maps was also compared (Figure 6b). The Wilcoxon paired
signed-rank test (£ = —1.352; p = 0.176) did not show
significant difference between the estimates obtained from
the stand model and the NFI data. The mean volume
estimates obtained from the plot model were consistently
higher then those from the NFI data.

5. Discussion

5.1. Correlations

The relationship of volume and AGB with the SPOT 5
NIR band (Figure 7) observed in this study was similar to
the relationships between these parameters and remotely
sensed spectral data from other studies. In particular,
typical inverse curvilinear form of the relationship was
present, with gradually decreasing sensitivity of the NIR
band with the increase of volume and AGB. The NIR band
showed very small changes once the volume and AGB
exceeded ~300 m*ha~" and ~150 tha™', respectively.
The negative form of the relationship is typical for
coniferous forests [4, 6]. This pattern is connected with
the natural development of forest structure. With the
aging of the forest, the number and size of gaps in the
canopy increase [34]. The understory or the shorter
trees filling the gaps are shaded by the adjacent higher
trees. The structural complexity and increased shadowing
in the older (and usually higher-volume/AGB) stands
leads to an overall reduction of reflectance from the
canopy [32, 35]. The reduction is observed even in the
NIR range [37], despite the high NIR reflectance at the
single-needle level.

The observed maximal correlation of the volume and AGB

with the NIR band is in contradiction with the results of
Muukkonen and Heiskanen [4]. These authors found that
the volume and AGB in forests with similar composition
to the forests in this study are most strongly correlated
with the green band of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) satellite
It can be speculated that this difference is
due to the non-equal width of the spectral bands in
SPOT 5 and ASTER or due to the fact that Muukkonen
and Heiskanen [4] used atmospherically corrected image,

sensor.

whereas in this study, the atmospheric effects were
not corrected. However, the maximal correlation of
volume/AGB with the NIR band is not unusual and has
been observed in previous studies, including those using
SPOT data [6].

The vegetation indices that use the SWIR band did not
provide for straightening the relationships in comparison
with the NDVI, SR, and the spectral bands, which was
unexpected. In fact, the SWIR band alone outperformed
the NDII, SI, NDVIc, and RSR. As a rule the SWIR
correction factor in NDVIc and RSR accounts for the
canopy closer. This has been shown to improve the
relationship with leaf area index (LAl) in open canopies
by reducing the effect of background reflectance [28, 30].
In our study area, high canopy closure prevails, and
background reflectance has minor importance, which can
explain the failure of NDVIc and RSR to improve the
relationship between satellite data and forest parameters.
Figure 7 shows that the general form of the relationship
between the NIR band and the Volume/AGB is the same
for both ground datasets -stands and plots. However,
the mean volume and AGB were higher in the field plot
dataset, and in it, the high values were better represented.
Also, it seems that at certain radiance, plots tend to
have higher volume and AGB than stands. It would be
appealing to explain this with scale dependant spectral
response patterns, but this hypothesis was not examined
in this study. Alternatively, an important role of the
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Figure 5. Fragments from maps of volume created by the NFI data (c) and by the regression models applied to the SPOT 5 NIR band (a and b).
The models based on stand and plot data were used for (a) and (b), respectively. The borders from the NFI dataset were overlaid in (a)

and (b) for better comparison.
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Figure 6. Comparison of the areas of volume classes (a) and the mean volume by age classes (b) according to NFI data and satellite-derived

maps.

different methods of gathering ground data in the two
datasets can be suggested. Gemmell [35] showed that
the utility of TM data to estimate volume in mixed conifer
species site was dependent on spatial scale. He found
that sampling TM imagery in small areas (0.25 ha) was
not suitable for specifying the relationship between T™M

data and the forest information and suggested that in
small spatial areas, the sensitivity of measured radiance to
stand characteristics like spatial gaps, variations in stand
density, and background reflectance impeded estimation
of volume [35]. However, in this study, sampling and
modelling at plot level had better potential for volume
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Figure 7. Scatterplots of topographically corrected NIR radiance from SPOT 5 against the volume (a) and AGB (b) from the two ground datasets.
Smoothing trendlines were added for better comparison of plot and stand data.

and AGB prediction than the use of larger-area-averaged
stand data as assessed by the R? and RMSE,.

5.2. Topographic correction

Contrary to expectations, the topographic correction of
the images did not improve the correlations between
SPOT 5 data and volume and AGB. Similar results are
reported by Turner et al. [36], who do not find apparent
improvement in the fit for the LAI-SVI relationships as a
result of the correction. Although positive effect of the
SCS+C correction was not detected by the correlation
coefficient, the use of topographically corrected images
should be recommended. The reason for this is that
topographic correction has no obvious harmful effect on
the relationships, while at the same time, significantly
reduces the hillshade pattern of the image. Without such
a correction, the hillshade pattern would be transferred to
the estimated volume or AGB raster surface.

5.3. Regression models

The accuracies of prediction of volume and AGB in this
study were close to those reported in some previous
studies of coniferous forests using similar type of data
and methods (Table 7). The absolute errors (RMSE) in
our study were highest of all authors cited in Table 7,
but this could be expected since the forests studied here
have higher volume and AGB, as indicated by their mean
values. The RMSEr on the other hand, were relatively
low, especially for the models generated by plot data. In
the present study, the RMSE, for the volume was 33-45%
depending on the type of used ground data, while in the
discussed previous studies, the RMSE, varies from 32% to

67%. Almost the same values hold for the AGB (Table 7).
Since the RMSE, is a measure of the relative importance
of a certain amount of error with regard to the specific
forest conditions, it is preferred in model comparisons. For
example, while in a forest of low biomass, a RMSE of
50 tha=" would likely be high, in a forest with biomass of
300 tha=" or so, this value would be far more acceptable.
The present study showed that in the coniferous forests of
the Rila Mountain, SPOT 5 data and regression approach
can be used for volume and AGB prediction with the same
success as in other coniferous forest types in Europe and
North America, as concerned the RMSE,.

Different factors, such as errors in ground data and
georeferencing can contribute to the uncertainty of
regression models.  The errors in the NFI dataset
are expected to be within 10-15%. The conversion
coefficients for AGB are quite accurate, as reported
by Zamolodchikov et al. [19] - the difference in the
means between measurements and estimates using the
coefficients being 1% for the Scots pine and 6% for the
Norway spruce. However, it should be noted that these
coefficients have been developed for different territory and
may not be fully applicable over our study area. Errors in
plot measurements may have been caused by the use of
single value of g, for all trees within a species, regardless
of their age. The determination of g, for every tree on the
field was impossible. Errors in the biomass calculation
in the plots may be also expected because of the use of
mean values for the percent of foliage and branch biomass.
In some places positional errors of up to several tens of
meters were present in the stand borders data from the
digitized paper map. As a result, some polygons may not
be homogeneous, which changes the extracted reflectance
characteristics, especially for the smaller stands [7]. In this
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Table 7. Accuracy of volume and biomass predictions in coniferous forests according to some previous studies. Also shown are the mean values
for the volume and biomass in the datasets used by the authors and the used satellite sensor.

Volume Biomass

Reference Satellite sensor Mean RMSE RMSE, Mean RMSE RMSE,

(m3ha™") (%) (tha™") (%)
[5]? - 187.0 - 58.0
[5]° Landsat ETM+ 181.0 85.0 33.0
[10] b SPOT5 HRG  277.0 83.0 320
8] ¢ Landsat TM 13538 713 476
[7] SPOT XS 156.5 78.9 ¢ 50.0
[37] WorldView-2 615 27.2 442
[4] Terra ASTER  93.0 88.5 44.8 115.0 48.2 395
[38] Landsat ETM+ 1941 70.0 36.1 114.4 37.6 329
[39] © Landsat TM 182.0 - 66.6 923 - 66.5
9] Landsat TM 681.5 - 47.0 @
This study (stand model) SPOT5 HRG ~ 301.1 136.5 454 158.5 69.0 435
This study (plot model) SPOT5 HRG  462.4 152.4 33.0 216.6 70.2 324

9 the value shown is the standard error of estimate, not the RMSE
b kNN or other method was used by these authors, not the regression analysis.

study, these effects were partly removed by using only
stands with area over one hectare and by masking the
border pixels. A similar effect may be caused by logging
a stand after the NFI have been carried out and before
image acquisition. When such changes were identified
on the image, the stand was removed from the analysis.
However, not all changes may be visually recognized.
Positional errors should have small effect on plot data,
because of the generally good orthorectification results
and the accurate GPS measurements.

The usefulness of the stand-level NFI data for regression
modelling is an important issue in countries where this
data are the only ground truth data available.
case, the regression models for volume and AGB based
on the NFI data had lower RMSE, but higher RMSEr
compared to the regression models based on plot data.
This discrepancy could be attributed to the statistical
differences in ground data itself. Although they represent
the forest in a same territory, the NFI data had lower
value for the mean volume and AGB compared with
the plot data (Table 7).
the standwise models were 26-27% higher than for the

In our

Thus, the relative errors for

plotwise models, even though the absolute errors were
only 2 to 10% higher. The differences in the means of the
two datasets hinder the comparison of model accuracies.
One independent measure is how the model line fits the
data. In our case, the RZ were much higher for the models
using plot data (Table 6). Another problem that further
questions any comparisons is that the two ground datasets
were created using different methodologies. This raises
questions about the importance of the different sampling
strategies and about the need for accuracy assessment

of ground data. As shown in Figure 5 and Figure 6,

the plotwise model strongly overestimates the volume as
compared with the NFI data. It is not likely that this is
an appropriate validation criterion, however, because the
model was generated using different reference data. And
finally, mismatch of the trendlines in Figure 7 should be
attributed to real, scale-dependent physical processes or
merely to errors in ground data. Unfortunately, we were
unable to verify the accuracy of the data used in this study
through independent means.

Each of the two types of ground data has its advantages.
The using of existing NFI stand data allows using larger
sample size, which is important for every statistical
On the other hand,
when ground data are gathered from specifically designed
network of plots (for example as a part of a project activity),
better sampling and accuracy control may be achieved and
parameters not included in the NFI may be measured, if

procedure, including regression.

required. Also, the introduction of noise in the model
caused by errors in the stand borders map and stand
heterogeneity may be avoided when using plots.

5.4. Forest mapping and applicability

Good agreement between the NFI volume map and
the map generated from SPOT 5 image and the stand
Most
of the differences were not greater than one volume
class. Moreover, part of the differences may be due to
heterogeneity of the stands, which is not resolved in the

model was observed (Figure 5a and Figure 4c).

NFI polygon data. One advantage of the satellite-derived
map is the better representation of the coniferous forest
extent. It was determined by unsupervised classification
of the SPOT 5 image and all other territories were




Combining SPOT 5 imagery with plotwise and standwise forest data

I=t={a]

masked. For example, many young stands occupying
former pastures (the upper left part of the map fragments
in Figure 5) do not exist in the NFI map, but were mapped
using the satellite data.

The suitability of the proposed regression models
varies with the specific application and its accuracy
requirements. According to the current regulations in
Bulgaria, the errors in forest inventory data used to
support operational activities in forestry should not exceed
10-15%. Therefore, the models presented here can not be
applied for this purpose. However, data about volume
and AGB are needed not only for operational purposes,
but also for planning and development of different
strategies [40]. Fazakas et al. [39] show that RMSE
decreases with the increase of the area of aggregation
of the estimates obtained from satellite data and reaches
acceptable level for areas over 100 ha. As the biases of the
proposed regression models were not significant and the
residuals were more or less random, the averaged models’
estimates should be close to the actual mean values of
volume and AGB in a territory. To test the possibilities
for making more general assessments, we compared the
growing stock for all the NFI dataset with the estimates
of the standwise regression model for the same territory
(486 ha). The growing stock according to the NFI data
was 1.65 millions m3, and according to the SPOT 5 derived
map - 1.75 millions m3. The relatively small difference
(6.2%) between the two sources of data confirmed the
potential for general assessments of timber resources.

6. Conclusions

The SPOT 5 satellite data combined with regression
analysis showed good potential for volume and AGB
mapping in the studied mountainous region of Bulgaria.
The relative errors of the estimates were not higher than
those reported in literature for other regions, and as
regards to the models developed by data from the field
plots, they were lower than in most previous studies.
Although the absolute errors were high, the results are
reasonable having in mind the characteristically high
biomass of the studied forests - conditions under which
estimation of forest parameters by satellite spectral data
is usually difficult. Remote sensing estimation of volume
and AGB can be of benefit for forest management and
protection in the studied region by providing cost effective
data suitable for preliminary planning, transitional data
updating and monitoring, and ecological studies. For
these applications arrangement of the estimates in broad
classes may be sufficient. Another possibility is to use
the obtained raster layers for estimating the mean values

for a larger area, such as compartment or administrative
forestry unit. The topographic correction of the SPOT 5
image using the SCS+C method provided good results
as assessed by the visual inspection of the image. This
technique should be advised when regression models
are to be developed in areas with high relief. Without
topographic correction unrealistic spatial distribution of
the modelled volume/AGB is observed, with consistently
higher values on weakly illuminated slopes. Further
studies are needed in order to find if scale affects the
strength of the modelled relationships and if any reasons
exist to prefer either plotwise or standwise data. The
current study pointed out the importance of the source and
methodology behind the ground data used for regression
modelling of forest parameters.
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