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Abstract: In this study, regression-based prediction of volume and aboveground biomass (AGB) of coniferous forests in
a mountain test site was conducted. Two datasets - one with applied topographic correction and one without
applied topographic correction - consisting of four spectral bands and six vegetation indices were generated from
SPOT 5 multispectral image. The relationships between these data and ground data from field plots and national
forest inventory polygons were examined. Strongest correlations of volume and AGB were observed with the near
infrared band, regardless of the topographic correction. The maximal correlation coefficients when using plotwise
data were -0.83 and -0.84 for the volume and AGB, respectively. The maximal correlation with standwise data
was -0.63 for both parameters. The SCS+C topographic correction did not significantly affect the correlations
between spectral data and forest parameters, but visually removed much of the topographically induced shading.
Simple linear regression models resulted in relative RMSE of 32-33% using the plotwise data, and 43-45% using
the standwise data. The importance of the source and the methodology used to obtain ground data for the
successful modelling was pointed out.
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1. Introduction

Forests in the south of Europe are predominantlyconcentrated in isolated mountain areas surrounded bygreatly transformed agricultural and urban environments.The Rila-Rhodopes massif in particular gives refuge toa large forest patch, which has substantial significanceboth for the forestry industry and the maintenanceof the ecological stability in the region. Coniferous
∗E-mail: petarkirilov@mail.bg

boreal species dominate here because of the altitude,and some rare endemic forest communities are alsopresent. The management and protection of these forestsrequires quantifying and spatially presenting differentforest parameters. Timber volume, for example, istraditionally used to characterize growing stock; whilebiomass assessment is increasingly discussed in thecontext of the full utilisation of all tree components [1].Forest biomass data is also needed in regional and globalcarbon stock studies and climate modelling. However,acquiring such data is a major issue because of thecomplex topography in the mountainous regions. Makinga field inventory is labour consuming and expensive, and
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in Bulgaria data is being updated at only every ten years.Estimation of volume and biomass of coniferous forestsusing remote sensing data has a relatively long history.Different methods have been proposed, with regressionanalysis still being among the most commonly used one.In this empirical method, a forest attribute is related tosurface reflectance or spectral vegetation indices (SVIs)derived from reflectance. The method is characterized byits simplicity and well established theoretical (statistical)basis. The weaknesses of its application are also wellunderstood [2, 3]. However, some of the problems withregression are present in other commonly used methodslike neural networks and kNN [4, 5].To derive the regression relationship, one should considerthe scale. It is dependant on the type of forest inventorydata, which are typically available at plot or standlevel. Both types of data have been used [6–10] withno commonly accepted preference. The effect of scale onthe strength of relationships is manifested through thesusceptibility to geometric errors in data and to the standborder conditions, which have been found to be a majorfactor in forest attributes estimation [8]. Muukkonen andHeiskanen [4] discussed that the use of standwise datamay solve the problems arising from the errors in imageregistration and location of sample plots.The fragmented nature and the relatively small size ofthe stands of many mountain forests suggest that satelliteimages with an appropriately fine spatial resolutionshould be used for volume and biomass estimation. TheHigh Resolution Geometric (HRG) sensor onboard theSatellite Pour l’Observation de la Terre (SPOT) 5 satelliteprovides multispectral images with 10 m pixel size, whichseems to be perfectly suited for forest mapping underthe described conditions. Since the pixel size is slightlylarger than the typical crown size of conifers, SPOT 5provides the finest possible resolution without resolvingindividual trees. Very high resolution satellite and aerialimages with pixel size as small as 1.0 m are increasinglyutilized for forest parameter estimation. In many studiesusing such data, however, information is aggregated tothe smaller scale, and as with lower resolution sensors,the reliance is on the relative proportion of shade castby the trees [7, 11].Widely acknowledged problem hindering automatedinformation extraction from satellite images inmountainous areas is the difference in illuminationof slopes with different steepness and azimuth angles.For the same cover type, the satellite sensor will registerhigher radiance when observing on slope facing the Sunand lower radiance when observing on slope tilted in theopposite direction. These differences may mask the realreflection characteristics of objects and should be removed

or diminished. The application of topographic correctionis believed to reduce the influence of topographic effects infavour of the intrinsic reflection properties of objects [12],thus providing for more accurate determination of thebiophysical properties of the surface. It has been shownthat a non-Lambertian topographic correction model canimprove the accuracy of land cover classification [13]and constitute an important step in obtaining physicallyreliable and homogeneous time series [14]. Comparingraw data with topographically corrected data, Dorren et
al. [15] show that the classification errors in the case whenuncorrected images were used are more concentratedin faintly illuminated pixels and that topographiccorrection improves the accuracy of Landsat TM-basedforest stand type maps in steep mountainous terrain.Using the statistic-empirical, Minnaert and C-correctionapproaches, Meyer et al. [12] also found an improvementin forest classification. The correction of topographiceffects is most often discussed and assessed with respectto image classification procedures. In forest environment,these effects can be expected to affect not only thepossibility for separating different forest types, but alsothe regression-based estimation of forest parameters.Moreover, in this type of analysis, pixel brightness ismost often expected to carry the information of interest.The general objective of this study is to examine thepossibility for estimation of tree volume and abovegroundbiomass (AGB) of coniferous forests in high relief usingmultispectral SPOT 5 imagery combined with ground truthdata at different scale. For the purpose, the predictioncapabilities of the SPOT 5 spectral bands and six spectralvegetation indices from topographically corrected and fromuncorrected image are assessed. The results from theuse of plotwise and standwise ground data are comparedand the differences and advantages of each type ofdata are discussed.
2. Study area

A region of ∼200 km2 located on the northern slope ofthe Rila Mountain (SW Bulgaria) was selected for thestudy (Figure 1). Seventy percent of the territory iscovered by coniferous forests, which spread from 1000 ma.s.l. to the tree line at 1800-2100 m a.s.l. They arecomposed by Scots pine (Pinus sylvestris L.), Norwayspruce (Picea abies (L.) Karst.), silver fir (Abies albaMill.), and Macedonian pine (Pinus peuce Griseb.). Thesespecies form pure and mixed stands with even and unevenage structures [16]. Hazel and juniper shrubs, and grassare present in the understory where stands are more open.Most stands are with high canopy cover (75-85%). The
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oldest stands are up to 120 years old. Part of the forestsin the study area is managed for timber production andother part falling in the "Rila" National park is protected.
3. Material and methods

The methodology of the study consists of several steps.Firstly, ground reference data for volume and AGBwas collected from two separate sources - sample plotmeasurements made for this study and stand level nationalforest inventory (NFI) data. Secondly, a SPOT 5image was geometrically corrected, calibrated to at-sensor radiances and used to calculate several SVIs.Additionally, using DEM, a topographically correctedimage was prepared from which SVIs were also calculated.Thirdly, the values of the four bands and the SVIs fromthe two images were extracted for each field plot andNFI stand and correlated with the volume and AGB datato select the most suitable satellite variable to be usedfor modelling. Finally, using the plot and stand dataseparately, two sets of regression models for volume andAGB were developed and then validated and compared.These steps are presented in more details in Figure 2and in the next paragraphs.
3.1. Ground data

3.1.1. Plot measurements

Thirty-two temporary plots were established in the studyarea. The sampled stands were selected using informationfrom available forest inventory maps and satellite imageswith the intention to represent a wide range of age classesand structural diversities. Depending on the density oftrees, square plots of 25 m2 to 900 m2 were used. Onthe field, the location of plots was determined accordingto the following criteria: to be in homogeneous partof the stand, and to be at least 20-30 m apart fromstand borders (the second condition was violated for theyoungest stands only due to the difficult access). Diameterat breast height (DBH), height and species was recordedfor every tree with DBH>10 cm in forests older than ∼20years, and with DBH>2 cm otherwise. In some plots,part or all trees were not measured for height, but theirheight was estimated based on the DBH using heightcurves calculated from the available measurements fromthe plots. The geographic coordinates at the centre ofeach plot were determined by averaging three 15-minutesGPS measurements with differential corrections appliedduring post processing. The volume (of stem) of each tree,
Vt (m3), was calculated using the equation provided in

Beruchashvili and Zhuchkova [17]:
Vt = 0.534 · H · D2 · q2, (1)

where H is the tree height (m), D is the DBH (m), and q2is the ratio of the diameter at half tree height to the DBH.The values of q2 used were: 0.70 for spruce and fir, and0.65 for pines [18]. The volume of all trees was summedby species and expressed to a hectare. The dry AGBof each species (t ha−1) was determined by multiplyingthe volume (m3 ha−1) by the timber density (t m−3) andadding the biomass of branches and foliage. The averagevalues for timber density and percentage of branches’and foliage’ biomass from the stem biomass by species,were taken from Beruchashvili and Zhuchkova [17]. Thevolume measured in the plots varied from 47 m3 ha−1 to985 m3 ha−1. The AGB was in the interval 21-462 t ha−1.The mean values can be seen in Table 7. Plots with AGBless than 100 t ha−1 were found as a rule in pure Scotspine forests with even aged structure and age of up to20-30 years. Some of these stands are plantations. Thecomposition and structure of the stands where higher AGBwas measured were highly variable -from pure Scots pineand Norway spruce stands to mixed stands and from one-storeyed and relatively open stands to multilayered densestands (Figure 3).
3.1.2. National forest inventory dataA NFI dataset, which covers part of the study area, wasavailable. The NFI data are presented at stand (sub-compartment) level and include several parameters fromwhich mean diameter, mean height and volume by forestlayers and tree species in the layers were used. Apolygonal layer with the borders of the sub-compartmentswas created in GIS by digitizing them from map of forestsites in scale 1:25000. The dataset was filtered bystand size, and 795 stands with area over one hectareremained to be used in the further analysis. The meanarea of the stands was 5.9 ha. The AGB of eachstand was calculated using species-specific coefficients forconversion from stand volume to biomass of different parts- stem, branches and foliage [19]. For the stem, singlecoefficient was used, while the coefficients for branchesand foliage should be calculated for each tree layerand/or species separately based on the mean diameter andheight [19]. The full AGB of a stand was derived by thesum of the biomasses calculated for each tree layer and/orspecies within the layer. Coefficients for Macedonianpine and silver fir are not provided in Zamolodchikov et
al. [19] and for these species the coefficients for Scots pineand Norway spruce were used instead. Since deciduoustree species are very rare in the studied stands, their
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Figure 1. Map of the study area showing the coverage of the national forest inventory polygons from which data was used and the location of the
field plots. The extent of coniferous forests was mapped by unsupervised classification of the SPOT 5 image.

Figure 2. Flow chart of the data processing and analysis steps in
the study. The steps shown with dashed lines were first
implemented followed by these shown with solid lines.

biomass was ignored. The biomass of understorey wasalso not taken into account. Stand volume and AGBdata was randomly split into training (70%) and validationdataset (30%).
3.2. Image pre-processing
A level 1A scene from SPOT 5 acquired on 14 July 2008was used in this study. The panchromatic image was firstorthorectified, using 32 GPS ground control points (GCPs)and an ASTER GDEM v.2 digital elevation model [20]

yielding a 0.8 pixels RMSE (accuracy assessment basedon 14 independent check points). The panchromaticimage was then used as a base image to orthorectify themultispectral image with RMSE of 0.5 pixels (accuracyassessed by 9 independent check points). Only the fourspectral bands (XS1:0.49-0.60 µm; XS2:0.61-0.68 µm;XS3:0.78-0.89 µm; SWIR:1.54-1.75 µm) were used in thefurther analysis. The digital numbers were convertedto radiances, L, (W m−2 sr−1 µm−1) using the coefficientsprovided with the image metadata [21]. Since ourmajor goal was to assess the relative performance ofplotwise and standwise ground data, as well as theeffect of topographic correction on a single image, theatmospheric effects and their correction was not dealt within this study.From the radiance image a topographically correctedimage was also prepared. Different models havebeen proposed for correction of topographic effects onsatellite imagery (see [23] for review), the simplestone representing a modification of the cosine correctioninvolving the solar zenith angle ([24] cited by Kane et
al., [23]). This cosine correction, however, only modelsthe direct part of the irradiance, while the weaklyilluminated regions may get a considerable amount ofdiffuse irradiance as well [12]. Overcorrection of theweakly illuminated pixels is characteristic for the cosinecorrected images. This method proved to be inappropriatefor sloped terrains [12, 24]. Methods like the Minnaertand C-correction can greatly diminish overcorrection by
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Figure 3. Typical forest stands in the study area: (a) pure Scots pine, even-aged stand - 220 t ha−1 AGB; (b) pure Norway spruce, even-aged
stand - 257 t ha−1 AGB; (c) mature Scots pine stand with sparse lower tree layer composed of Norway spruce - 420 t ha−1 AGB.

incorporating empirically derived constants in the cosinemodel. Gu and Gillespie [25] proposed a new approachintended specifically for application on forest images –the Sun-Canopy-Censor (SCS) model – which normalizethe mutual shadowing of trees.In this study, the SCS+C model [26] was used, whichis a modification of the model proposed by Gu andGillespie [25]. In this model, the parameter C is addedsimilarly to the c-corection method. The topographicallycorrected radiance (TC radiance), L0, was calculated usingthe following equations [26]:
L0 = L cosα cosθ + Ccos i+ C (2)

cos i = cosθ cosα + sinθ sinα cos(φ) (3)
where L is the radiance of the uncorrected pixel, α isthe slope of the pixel, θ is the solar zenith angle, i isthe incidence angle relative to the normal of the pixel,
φ is the difference between the pixel exposition andthe solar azimuth angles, and C is empirical constant.The constant C is equal to a/b, where a and b arecoefficients in the regression equation L = a + b · cos i.Adding of C is used to better characterize diffuse skyirradiance (downwelling spectral irradiance at the surfacedue to scattered solar flux in the atmosphere) and thus toreduce the overcorrection of faintly illuminated pixels [26].The constant C was calculated for the coniferous forestsonly. For the purpose, a random sample of 15000pixels representing coniferous forests was used, and foreach pixel, the radiance in the four bands and cos iwere extracted. Based on these data, the regressioncoefficients, and from them, C was found for each spectralband. To apply the correction, ASTER GDEM v2 wasused after resampling from the original resolution (30 m)to the spatial resolution of the SPOT 5 image (10 m).

Six SVIs were calculated both from the original radiancespectral data and the topographically corrected data (TCradiance). They are presented in Table 1 and includecommon indices based on the near infrared (NIR) and theshort wave infrared (SWIR) spectral bands used in mostforest studies.
3.3. Regression analysis and validation
The satellite variables - bands’ radiances and vegetationindices - were extracted from the images to explain thevolume and AGB. At plot level, the average of the fourclosest pixels to the plot’s centre was used. The averageof all pixels within a stand was extracted using the GISlayer with the stand borders. The pixels coinciding withthe borders were excluded from the calculation becausethey receive signal from two or more adjacent stands [8].Simple linear regression, with the NIR band asindependent variable, was used to model the volumeand AGB. To deal with heteroscedasticity problemsand non-linearity, base-10 logarithm transformation wasconsidered for y, x or both variables. The increase in
R2 was used as a measure when deciding whether atransformation of variables was needed. It was foundthat in all cases, the dependent variable, y, should betransformed. In this way, the linear regression equationwill give the volume and AGB in logarithms. When thecoefficients of this equation, b0 and b1, are found, y canbe calculated in the original units using equation (4); orusing equation (5) if the independent variable, x , wasalso transformed [33]:

y = 10b0 · 10b1·x · 10ε (4)
y = 10b0 · xb1 · 10ε (5)
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Table 1. Vegetation indices used in the study.

Index Formula ReferenceNormalised Difference Vegetation Index (NDVI) NIR – Red / NIR + Red [27]Corrected NDVI (NDVIc) NDVI · (1 – (SWIR – SWIRmin) / (SWIRmax – SWIRmin)) [28, 29]Simple Ratio (SR) NIR / RedReduced Simple Ratio (RSR) SR ·(1 – (SWIR – SWIRmin) / (SWIRmax – SWIRmin)) [30]Normalised Difference Infrared Index (NDII) NIR – SWIR / NIR + SWIR [31]Structural Index (SI) NIR / SWIR [32]
In the back-transformation using (4) and (5), the errorterm, ε, is included as suggested by Newman [33]to correct statistical bias. The procedure outlined inNewman [32] was used:

10ε = 10MSE/2, MSE = n∑
i=1

e2
i

n − 2 (6)
where MSE is the mean square of the error from theregression, ei is the residual for observation i, and n isthe number of observations.After applying back-transformation, the modelled valuesof volume and AGB, ŷi were compared with the measuredvalues yi, and two accuracy statistics - the root meansquare error (RMSE) and the Bias - were calculated [4]:

RMSE = √√√√ 1
n

n∑
i=1 (yi − ŷi)2 (7)

Bias = 1
n

n∑
i=1 (yi − ŷi) (8)

Their relative counterparts, RMSEr and Biasr werecalculated as a percent of the mean measured value ofthe forest parameter. The significance of Bias was testedusing the t-statistic (df = n − 1) := Bias/(SD/√n),where SD is the standard deviation of the residuals [4].To calculate the accuracy statistics for the models at standlevel, the validation stands were used. For the models atplot level, leave-one-out cross validation was used.
4. Results
4.1. Correlations
All spectral bands of SPOT 5 and the SVIs, except NDVIc,were statistically significantly correlated with the volumeand AGB in the plots (Table 2). For both parameters, thestrongest correlations were with the near infrared (XS3)band of SPOT 5 (r = −0.83 for volume and r = −0.84 for

AGB; p < 0.001), followed by the correlations with NDVIand SR. From the spectral bands, the correlations with thered (XS2) band were consistently lowest. The vegetationindices which use the SWIR band showed significantlylower correlations relative to the SWIR band itself.The volume and AGB of the stands were also statisticallysignificantly correlated with the four bands, and NDVIand SR, but were not correlated with any of the indicesusing the SWIR band (Table 3). As for the plots, themaximal correlations for both forest parameters wereobtained with the NIR band (r = −0.63; p < 0.001),followed by the NDVI, SR, and the green (XS1), SWIR,and red bands. Because the data for volume and AGBfrom the stands, as well as the corresponding satellitevariables extracted from the stands, were not normallydistributed, the Pearson product-moment correlationcoefficient (r) used here may be misleading. Therefore, thenonparametric correlation coefficient of Spearman (rs) wasalso calculated (Table 4). It displayed the same patternin the correlations as the Pearson’s coefficient.The correlations reported above are for the originaluncorrected image. Very close correlation coefficientswere obtained when using the topographically correctedimage. However, in most cases, the correlation coefficientswith the original data were slightly higher, especially forthe stands. The test for equality of correlation (Table 5)showed that these differences were not statisticallysignificant. The correlations of both forest parameterswith the NIR band of SPOT 5 were significantly differentat plot and stand level (Z = −2.600; p = 0.009 and
Z = −2.598; p = 0.009 for volume and AGB respectively;results for the TC Radiance data).
4.2. Regression models

Since the two forest parameters showed highestcorrelation with the near infrared band (XS3) of SPOT5, this band was used as predictor in the regressionanalysis. The TC radiance data was used. The regressionmodels developed using both data from the plots and thestands, as well as their accuracy statistics, are presentedon Table 6. At plot level, the NIR band explained 77% of
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Table 2. Correlation coefficients between the volume and AGB from the plots and the spectral bands and indices from SPOT 5.

XS1 XS2 XS3 SWIR NDVI SR NDII SI NDVIc RSRPearson product-moment correlation coefficient (r)VolumeRadiance -0.69*** -0.57** -0.83*** -0.63*** -0.79*** -0.77*** -0.47** -0.50** -0.34 -0.41*TC Radiance -0.71*** -0.57** -0.82*** -0.62*** -0.77*** -0.75*** -0.46** -0.49** -0.34 -0.41*AGBRadiance -0.72*** -0.60*** -0.84*** -0.66*** -0.78*** -0.77*** -0.44* -0.47** -0.32 -0.39*TC Radiance -0.73*** -0.59*** -0.82*** -0.64*** -0.76*** -0.75*** -0.44* -0.47** -0.32 -0.39**, **, and *** indicate significance at 0.05, 0.01 and 0.001 level, respectively
Table 3. Correlation coefficients between the volume and AGB from the training stands and the spectral bands and indices from SPOT 5.

XS1 XS2 XS3 SWIR NDVI SR NDII SI NDVIc RSRPearson product-moment correlation coefficient (r)VolumeRadiance -0.53*** -0.45*** -0.63*** -0.50*** -0.57*** -0.56*** -0.07 -0.13** 0.03 -0.04TC Radiance -0.48*** -0.40*** -0.58*** -0.46*** -0.49*** -0.50*** -0.04 -0.10* 0.04 -0.03AGBRadiance -0.55*** -0.47*** -0.63*** -0.52*** -0.57*** -0.56*** -0.04 -0.10* 0.05 -0.02TC Radiance -0.49*** -0.41*** -0.59*** -0.47*** -0.48*** -0.49*** -0.01 -0.07 0.07 -0.01*, **, and *** indicate significance at 0.05, 0.01 and 0.001 level respectively
the variations in the volume and 76% of the variations inthe AGB. The modelling of the volume yielded a RMSEof 152.4 m3 ha−1, while the error of the AGB model was70.2 t ha−1. The RMSEr was quite near for the two forestparameters (Table 6). The biases of the estimates of thetwo models were not significant. Moreover, the residualswere normally distributed as indicated by the Shapiro-Wilks test for normality (W = 0.968; p = 0.435 and W =0.967; p = 0.423 for the volume and AGB, respectively).The scatter plots (not shown) of standardized residualsversus standardized estimates showed that the residualshave constant variance and do not follow any pattern. Theplots in Figure 4a and Figure 4b show generally goodagreement of the plot-measured volume and AGB, on theone hand, and their modelled values, on the other hand.
The R2 values were lower for the models based onthe stand-averaged NFI data. The NIR band explainedonly 42-43% of the variations in the volume and AGB(Table 6). In accordance with this, the standard errors ofestimate (SEE) and the RMSEr were higher than thoseof the models utilizing plot level data. However, theRMSE was the same or even lower for the stand-levelmodels. The relative performance of the stand and plotmodels was inconsistent according to the SEE and RMSEstatistics. This could be due to the fact that the RMSEwas calculated by cross-validation procedures and therelative performance of the models may have changed inthe validation runs. As with the first two models, thebiases were not significant, but the Shapiro-Wilks test

indicated that residuals were not normally distributed(W = 0.967 and W = 0.965 for the volume and AGBrespectively; p < 0.001). Relatively poor agreement wasobserved between ground data and the modelled valuesof stands’ volume and AGB (Figure 4c and Figure 4d).For these two models, some underestimation of the highvalues and overestimation of the low values was obvious.
In Figure 5, fragments from maps of volume createdusing the NFI dataset and the two regression modelsare compared. For better comparison, the volumewas represented in six classes. The map createdusing the regression model generated from stand data(Figure 5a) was relatively accurate in reviewing thespatial distribution of volume as presented in the NFIdata (Figure 5c). There were, however, differences of oneor more classes in some places between the two maps.Large overestimation was observed for the regression mapbased on plot data (Figure 5b) as compared with theground NFI data. In fact, using this regression model,the volume was estimated to be over 500 m3 ha−1 formost of the territory. This result was confirmed also bythe comparison of the area covered by each volume class(Figure 6a). The area estimates were quite close for theNFI data and the SPOT 5 regression map based on thisdata (i.e. the stand model), especially for the interval from100 to 500 m3 ha−1. The inaccuracies in the satellite mapwere larger for the marginal classes - the class from 1 to100 m3 ha−1 featured area twice as small, while the classover 500 m3 ha−1 featured area twice as large than the
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Table 4. Spearman’s correlation coefficients between the volume and AGB from the training stands and the spectral bands and indices from
SPOT 5.

XS1 XS2 XS3 SWIR NDVI SR NDII SI NDVIc RSRSpearman’s rank correlation coefficient (rs)VolumeRadiance -0.55 -0.49 -0.65 -0.50 -0.55 -0.55 -0.14 -0.15 -0.07 -0.12TC Radiance -0.50 -0.44 -0.63 -0.47 -0.47 -0.47 -0.11 -0.12 -0.04 -0.10AGBRadiance -0.57 -0.51 -0.67 -0.54 -0.56 -0.56 -0.10 -0.11 -0.05 -0.10TC Radiance -0.51 -0.45 -0.63 -0.50 -0.47 -0.47 -0.07 -0.08 -0.01 -0.07
Table 5. Results from the equality test of correlation coefficients obtained using radiance and terrain corrected radiance data (H0 : ρ1 = ρ2). The

test statistic Z and its p-values are presented. None of the compared correlations differed significantly (all p-values are over 0.05).

Radiance vs terain corrected radianceXS1 XS2 XS3 SWIR NDVI SR NDII SI RSR
Z-statistic (p-value)Plots:Volume 0.113 -0.029 -0.097 -0.122 -0.147 -0.162 -0.029 -0.035 -0.001(0.910) (0.977) (0.923) (0.903) (0.883) (0.871) (0.977) (0.972) (0.999)AGB 0.064 -0.059 -0.170 -0.162 -0.192 -0.201 -0.032 -0.039 -0.006(0.949) (0.953) (0.865) (0.871) (0.848) (0.840) (0.974) (0.969) (0.995)Stands:Volume -1.188 -1.066 -1.142 -0.963 -1.798 -1.506 - - -(0.235) (0.287) (0.253) (0.336) (0.072) (0.132)AGB -1.294 -1.139 -1.280 -1.016 -1.932 -1.620 - - -(0.196) (0.255) (0.200) (0.309) (0.053) (0.105)

Figure 4. Results from the validation of the regression models for prediction of volume and aboveground biomass: (a) and (b) - models based on
plot data; (c) and (d) models based on stand data.
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Table 6. Regression models for volume and AGB developed by plot and stand data.

Regression parameters ValidationNo logY = (b0 + b1X1)∗ R2 SEE MSE RMSE RMSEr (%) Bias Biasr (%) p-value
b0 b1X1Plots:1 Volume ∗ 4.046 -0.029 (NIR) 0.77 0.177 0.031 152.4 33.0 9.9 2.1 0.7192 AGB ∗ 3.726 -0.029 (NIR) 0.76 0.183 0.033 70.2 32.4 4.6 2.1 0.717Stands:3 Volume ∗ 8.799 -3.837 (log NIR) 0.42 0.280 0.078 136.5 45.4 2.2 0.7 0.8094 AGB ∗ 8.128 -3.596 (log NIR) 0.43 0.260 0.067 69.0 43.5 1.9 1.2 0.672* The dependant variable is base-ten log-transformed;SEE–standard error of estimate (in logarithms);MSE–mean square of the error (residuals) from the regression.

NFI map. However, these differences are small comparedwith the discrepancy between the areas from the NFImap and the SPOT 5 regression map based on plot data(Figure 6a). The mean volume by age class for the threemaps was also compared (Figure 6b). The Wilcoxon pairedsigned-rank test (Z = −1.352; p = 0.176) did not showsignificant difference between the estimates obtained fromthe stand model and the NFI data. The mean volumeestimates obtained from the plot model were consistentlyhigher then those from the NFI data.
5. Discussion

5.1. Correlations

The relationship of volume and AGB with the SPOT 5NIR band (Figure 7) observed in this study was similar tothe relationships between these parameters and remotelysensed spectral data from other studies. In particular,typical inverse curvilinear form of the relationship waspresent, with gradually decreasing sensitivity of the NIRband with the increase of volume and AGB. The NIR bandshowed very small changes once the volume and AGBexceeded ∼300 m3 ha−1 and ∼150 t ha−1, respectively.The negative form of the relationship is typical forconiferous forests [4, 6]. This pattern is connected withthe natural development of forest structure. With theaging of the forest, the number and size of gaps in thecanopy increase [34]. The understory or the shortertrees filling the gaps are shaded by the adjacent highertrees. The structural complexity and increased shadowingin the older (and usually higher-volume/AGB) standsleads to an overall reduction of reflectance from thecanopy [32, 35]. The reduction is observed even in theNIR range [37], despite the high NIR reflectance at thesingle-needle level.The observed maximal correlation of the volume and AGB

with the NIR band is in contradiction with the results ofMuukkonen and Heiskanen [4]. These authors found thatthe volume and AGB in forests with similar compositionto the forests in this study are most strongly correlatedwith the green band of the Advanced Spaceborne ThermalEmission and Reflection Radiometer (ASTER) satellitesensor. It can be speculated that this difference isdue to the non-equal width of the spectral bands inSPOT 5 and ASTER or due to the fact that Muukkonenand Heiskanen [4] used atmospherically corrected image,whereas in this study, the atmospheric effects werenot corrected. However, the maximal correlation ofvolume/AGB with the NIR band is not unusual and hasbeen observed in previous studies, including those usingSPOT data [6].The vegetation indices that use the SWIR band did notprovide for straightening the relationships in comparisonwith the NDVI, SR, and the spectral bands, which wasunexpected. In fact, the SWIR band alone outperformedthe NDII, SI, NDVIc, and RSR. As a rule the SWIRcorrection factor in NDVIc and RSR accounts for thecanopy closer. This has been shown to improve therelationship with leaf area index (LAI) in open canopiesby reducing the effect of background reflectance [28, 30].In our study area, high canopy closure prevails, andbackground reflectance has minor importance, which canexplain the failure of NDVIc and RSR to improve therelationship between satellite data and forest parameters.Figure 7 shows that the general form of the relationshipbetween the NIR band and the Volume/AGB is the samefor both ground datasets -stands and plots. However,the mean volume and AGB were higher in the field plotdataset, and in it, the high values were better represented.Also, it seems that at certain radiance, plots tend tohave higher volume and AGB than stands. It would beappealing to explain this with scale dependant spectralresponse patterns, but this hypothesis was not examinedin this study. Alternatively, an important role of the
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Figure 5. Fragments from maps of volume created by the NFI data (c) and by the regression models applied to the SPOT 5 NIR band (a and b).
The models based on stand and plot data were used for (a) and (b), respectively. The borders from the NFI dataset were overlaid in (a)
and (b) for better comparison.

Figure 6. Comparison of the areas of volume classes (a) and the mean volume by age classes (b) according to NFI data and satellite-derived
maps.

different methods of gathering ground data in the twodatasets can be suggested. Gemmell [35] showed thatthe utility of TM data to estimate volume in mixed coniferspecies site was dependent on spatial scale. He foundthat sampling TM imagery in small areas (0.25 ha) wasnot suitable for specifying the relationship between TM

data and the forest information and suggested that insmall spatial areas, the sensitivity of measured radiance tostand characteristics like spatial gaps, variations in standdensity, and background reflectance impeded estimationof volume [35]. However, in this study, sampling andmodelling at plot level had better potential for volume
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Figure 7. Scatterplots of topographically corrected NIR radiance from SPOT 5 against the volume (a) and AGB (b) from the two ground datasets.
Smoothing trendlines were added for better comparison of plot and stand data.

and AGB prediction than the use of larger-area-averagedstand data as assessed by the R2 and RMSEr .
5.2. Topographic correction
Contrary to expectations, the topographic correction ofthe images did not improve the correlations betweenSPOT 5 data and volume and AGB. Similar results arereported by Turner et al. [36], who do not find apparentimprovement in the fit for the LAI-SVI relationships as aresult of the correction. Although positive effect of theSCS+C correction was not detected by the correlationcoefficient, the use of topographically corrected imagesshould be recommended. The reason for this is thattopographic correction has no obvious harmful effect onthe relationships, while at the same time, significantlyreduces the hillshade pattern of the image. Without sucha correction, the hillshade pattern would be transferred tothe estimated volume or AGB raster surface.
5.3. Regression models
The accuracies of prediction of volume and AGB in thisstudy were close to those reported in some previousstudies of coniferous forests using similar type of dataand methods (Table 7). The absolute errors (RMSE) inour study were highest of all authors cited in Table 7,but this could be expected since the forests studied herehave higher volume and AGB, as indicated by their meanvalues. The RMSEr on the other hand, were relativelylow, especially for the models generated by plot data. Inthe present study, the RMSEr for the volume was 33-45%depending on the type of used ground data, while in thediscussed previous studies, the RMSEr varies from 32% to

67%. Almost the same values hold for the AGB (Table 7).Since the RMSEr is a measure of the relative importanceof a certain amount of error with regard to the specificforest conditions, it is preferred in model comparisons. Forexample, while in a forest of low biomass, a RMSE of50 t ha−1 would likely be high, in a forest with biomass of300 t ha−1 or so, this value would be far more acceptable.The present study showed that in the coniferous forests ofthe Rila Mountain, SPOT 5 data and regression approachcan be used for volume and AGB prediction with the samesuccess as in other coniferous forest types in Europe andNorth America, as concerned the RMSEr .Different factors, such as errors in ground data andgeoreferencing can contribute to the uncertainty ofregression models. The errors in the NFI datasetare expected to be within 10-15%. The conversioncoefficients for AGB are quite accurate, as reportedby Zamolodchikov et al. [19] - the difference in themeans between measurements and estimates using thecoefficients being 1% for the Scots pine and 6% for theNorway spruce. However, it should be noted that thesecoefficients have been developed for different territory andmay not be fully applicable over our study area. Errors inplot measurements may have been caused by the use ofsingle value of q2 for all trees within a species, regardlessof their age. The determination of q2 for every tree on thefield was impossible. Errors in the biomass calculationin the plots may be also expected because of the use ofmean values for the percent of foliage and branch biomass.In some places positional errors of up to several tens ofmeters were present in the stand borders data from thedigitized paper map. As a result, some polygons may notbe homogeneous, which changes the extracted reflectancecharacteristics, especially for the smaller stands [7]. In this
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Table 7. Accuracy of volume and biomass predictions in coniferous forests according to some previous studies. Also shown are the mean values
for the volume and biomass in the datasets used by the authors and the used satellite sensor.

Volume BiomassReference Satellite sensor Mean RMSE RMSEr Mean RMSE RMSEr(m3ha−1) (%) (t ha−1) (%)[5] b - 187.0 - 58.0[5] b Landsat ETM+ 181.0 85.0 33.0[10] b SPOT5 HRG 277.0 83.0 32.0[8] b Landsat TM 135.8 71.3 47.6[7] SPOT XS 156.5 78.9 a 50.0[37] WorldView-2 61.5 27.2 44.2[4] Terra ASTER 93.0 88.5 44.8 115.0 48.2 39.5[38] Landsat ETM+ 194.1 70.0 36.1 114.4 37.6 32.9[39] b Landsat TM 182.0 - 66.6 92.3 - 66.5[9] Landsat TM 681.5 - 47.0 aThis study (stand model) SPOT5 HRG 301.1 136.5 45.4 158.5 69.0 43.5This study (plot model) SPOT5 HRG 462.4 152.4 33.0 216.6 70.2 32.4
a the value shown is the standard error of estimate, not the RMSE
b kNN or other method was used by these authors, not the regression analysis.

study, these effects were partly removed by using onlystands with area over one hectare and by masking theborder pixels. A similar effect may be caused by logginga stand after the NFI have been carried out and beforeimage acquisition. When such changes were identifiedon the image, the stand was removed from the analysis.However, not all changes may be visually recognized.Positional errors should have small effect on plot data,because of the generally good orthorectification resultsand the accurate GPS measurements.The usefulness of the stand-level NFI data for regressionmodelling is an important issue in countries where thisdata are the only ground truth data available. In ourcase, the regression models for volume and AGB basedon the NFI data had lower RMSE, but higher RMSErcompared to the regression models based on plot data.This discrepancy could be attributed to the statisticaldifferences in ground data itself. Although they representthe forest in a same territory, the NFI data had lowervalue for the mean volume and AGB compared withthe plot data (Table 7). Thus, the relative errors forthe standwise models were 26-27% higher than for theplotwise models, even though the absolute errors wereonly 2 to 10% higher. The differences in the means of thetwo datasets hinder the comparison of model accuracies.One independent measure is how the model line fits thedata. In our case, the R2 were much higher for the modelsusing plot data (Table 6). Another problem that furtherquestions any comparisons is that the two ground datasetswere created using different methodologies. This raisesquestions about the importance of the different samplingstrategies and about the need for accuracy assessmentof ground data. As shown in Figure 5 and Figure 6,

the plotwise model strongly overestimates the volume ascompared with the NFI data. It is not likely that this isan appropriate validation criterion, however, because themodel was generated using different reference data. Andfinally, mismatch of the trendlines in Figure 7 should beattributed to real, scale-dependent physical processes ormerely to errors in ground data. Unfortunately, we wereunable to verify the accuracy of the data used in this studythrough independent means.Each of the two types of ground data has its advantages.The using of existing NFI stand data allows using largersample size, which is important for every statisticalprocedure, including regression. On the other hand,when ground data are gathered from specifically designednetwork of plots (for example as a part of a project activity),better sampling and accuracy control may be achieved andparameters not included in the NFI may be measured, ifrequired. Also, the introduction of noise in the modelcaused by errors in the stand borders map and standheterogeneity may be avoided when using plots.
5.4. Forest mapping and applicability
Good agreement between the NFI volume map andthe map generated from SPOT 5 image and the standmodel was observed (Figure 5a and Figure 4c). Mostof the differences were not greater than one volumeclass. Moreover, part of the differences may be due toheterogeneity of the stands, which is not resolved in theNFI polygon data. One advantage of the satellite-derivedmap is the better representation of the coniferous forestextent. It was determined by unsupervised classificationof the SPOT 5 image and all other territories were
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masked. For example, many young stands occupyingformer pastures (the upper left part of the map fragmentsin Figure 5) do not exist in the NFI map, but were mappedusing the satellite data.The suitability of the proposed regression modelsvaries with the specific application and its accuracyrequirements. According to the current regulations inBulgaria, the errors in forest inventory data used tosupport operational activities in forestry should not exceed10-15%. Therefore, the models presented here can not beapplied for this purpose. However, data about volumeand AGB are needed not only for operational purposes,but also for planning and development of differentstrategies [40]. Fazakas et al. [39] show that RMSEdecreases with the increase of the area of aggregationof the estimates obtained from satellite data and reachesacceptable level for areas over 100 ha. As the biases of theproposed regression models were not significant and theresiduals were more or less random, the averaged models’estimates should be close to the actual mean values ofvolume and AGB in a territory. To test the possibilitiesfor making more general assessments, we compared thegrowing stock for all the NFI dataset with the estimatesof the standwise regression model for the same territory(486 ha). The growing stock according to the NFI datawas 1.65 millions m3, and according to the SPOT 5 derivedmap - 1.75 millions m3. The relatively small difference(6.2%) between the two sources of data confirmed thepotential for general assessments of timber resources.
6. Conclusions

The SPOT 5 satellite data combined with regressionanalysis showed good potential for volume and AGBmapping in the studied mountainous region of Bulgaria.The relative errors of the estimates were not higher thanthose reported in literature for other regions, and asregards to the models developed by data from the fieldplots, they were lower than in most previous studies.Although the absolute errors were high, the results arereasonable having in mind the characteristically highbiomass of the studied forests - conditions under whichestimation of forest parameters by satellite spectral datais usually difficult. Remote sensing estimation of volumeand AGB can be of benefit for forest management andprotection in the studied region by providing cost effectivedata suitable for preliminary planning, transitional dataupdating and monitoring, and ecological studies. Forthese applications arrangement of the estimates in broadclasses may be sufficient. Another possibility is to usethe obtained raster layers for estimating the mean values

for a larger area, such as compartment or administrativeforestry unit. The topographic correction of the SPOT 5image using the SCS+C method provided good resultsas assessed by the visual inspection of the image. Thistechnique should be advised when regression modelsare to be developed in areas with high relief. Withouttopographic correction unrealistic spatial distribution ofthe modelled volume/AGB is observed, with consistentlyhigher values on weakly illuminated slopes. Furtherstudies are needed in order to find if scale affects thestrength of the modelled relationships and if any reasonsexist to prefer either plotwise or standwise data. Thecurrent study pointed out the importance of the source andmethodology behind the ground data used for regressionmodelling of forest parameters.
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