

P-T data of Ky-St-Grt gneisses hosting HP amphibolites and eclogites from the Austroalpine Polinik complex, Kreuzeck Mountains, Eastern Alps, Austria

Research article

Martin Michálek^{1*}, Marián Putiš¹, Christoph A. Hauzenberger²

¹ Department of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, 845 15 Bratislava, Slovakia

² Department of Earth Sciences, Karl-Franzens-University Graz, Universitätsplatz 2, 8010 Graz, Austria

Received 12 March 2011; accepted 23 May 2011

Abstract: This study focuses on metapelites of the Polinik complex in the Kreuzeck Mts. southeast of the Tauern Window, Eastern Alps, where kyanite – staurolite - garnet gneisses host eclogites and high pressure (HP) amphibolites of the Austroalpine basement. The stable mineral assemblage is garnet – staurolite – biotite – kyanite – quartz. Estimated metamorphic conditions from conventional geothermobarometry are 654 ± 30 °C and 0.9 ± 0.08 GPa, and Average P-T values calculated by THERMOCALC, are 665 ± 15 °C at 0.77 ± 0.09 GPa. Formation of the present mineral association in gneisses is related to the exhumation (D2) stage of hosted eclogites/HP amphibolites within a lateral strike-slip zone.

Keywords: Ky-St-Grt gneiss • geothermobarometry • PT Average • Austroalpine Polinik complex • gneiss • eclogite • lateral strike-slip

© Versita Sp. z o.o.

1. Introduction

The region of the Kreuzeck Mts. southeast of the Tauern Window in the Austrian Eastern Alps reveals a contrasting Cretaceous overprint of the Austroalpine (AA) basement complexes from (sub-) greenschist to high-pressure (HP) amphibolites/eclogite facies [1–3]. The HP amphibolites/eclogites and the host Ky-Grt paragneisses, or-

thogneisses and rare calc-silicate layers form tectonic lenses of the AA Polinik structural complex along a dextral strike-slip shear zone (Fig. 1). The first evidence of HP metamorphism in the Kreuzeck Mts. was mentioned by [1]. Putiš et al. [2] discovered the eclogitic metabasites in close association with eclogitic micaschists, mylonites, mylonitoclasites to ultracataclasites within the AA basement and defined the separated HP Polinik structural complex (Fig. 1).

Hoke [1] found a WNW-ESE tectonic zone between the area of the Strieden peak and the Teuchl Valley and called it the main mylonite zone (MMZ). Putiš et al. [2] recog-

*E-mail: michalek@fns.uniba.sk

nized the continuation of the MMZ further to the east at least up to the eastern edge of the Kreuzeck Massive and performed a detailed meso- and microfabric analysis along this WNW-ESE striking and steeply SSW dipping dextral lateral strike slip zone, with associated mylonites, mylonitoclasites and ultracataclasites. Mylonitoclasite is a transitional member here between mylonites and cataclasites, where plastic (dislocation creep) and cataclastic flow run contemporaneously in separated layers of the same rock. While quartz or calcite rich aggregates are still plastically deforming phases in mylonitic layers, feldspars or dolomite rich aggregates/layers behave cataastically in the same rock. This mechanism seems to be characteristic of the exhumation temperature interval between 500 – 300 °C at relatively higher exhumation rates and differential stresses [2] in quartz-feldspar, or calcite-dolomite rocks in the studied shear zone, dividing the Ragga and Strieden structural complexes, with the exhumed HP rocks of the Polinik complex (Fig. 1).

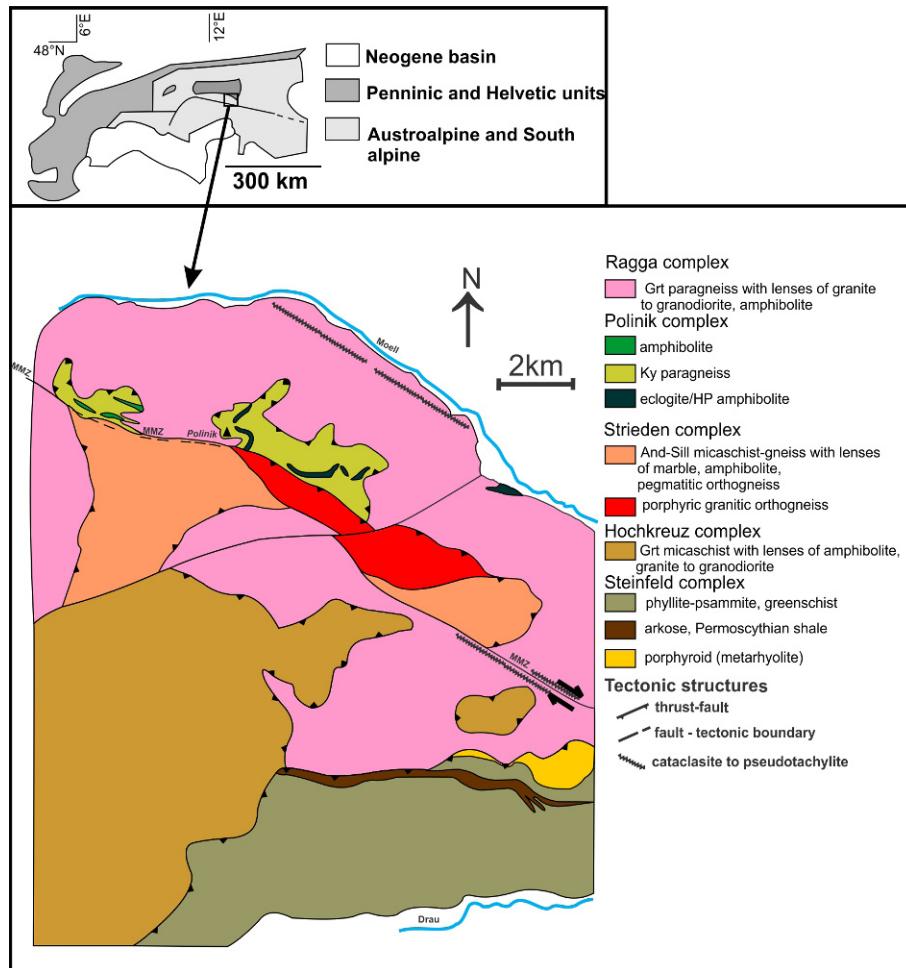
The AA unit of the studied Kreuzeck Mts. is incorporated into Cretaceous collision nappe structure, truncated by steeply south dipping Tertiary dextral (top-to-WNW) strike slip fault zones [4–6].

The AA complexes represent an orogenic wedge [7] of continental crust that formed during the Early Cretaceous collision [8, 9] following the closure of the Meliata-Hallstatt ocean in the Late Jurassic. This event caused an extreme shortening of the AA unit with internal structural complexes metamorphosed to eclogite to greenschist facies cropping out in the Kreuzeck Mts. at the distance of a few kilometers.

The HP amphibolites, eclogites and eclogitic micaschists of the AA Polinik structural complex form tectonic lenses within the Ky-Grt paragneisses, orthogneisses and amphibolites, sporadically containing thin layers of marbles and calc-silicate rocks. These rocks often show ductile deformation and dynamic recrystallization of plagioclase and quartz, while the mafic minerals such as amphibole and pyroxene were subjected only to reaction via recrystallization during the exhumation [2].

The aim of the paper is to characterize the metamorphic P-T conditions of Ky-St-Grt paragneisses that are hosting rocks of HP amphibolites/eclogites in the Polinik structural complex. Metamorphism of Ky-St-Grt paragneisses was referred to the exhumation (D2 stage) of the HP amphibolites and eclogites. The estimated temperature of metamorphism, D1-stage, represented by peak metamorphic assemblage of HP amphibolites (garnet, barroisite, clinzoisite, rutile) to eclogites (garnet, omphacite, zoisite, rutile) was ca. 530 °C at minimum pressure of 1.1 GPa [2] according to conventional geothermobarometry. Pseudo-

section calculation from an eclogite yields pressure of ca. 1.6 GPa and temperature around 650 °C, represented by garnet, omphacite, zoisite, phengite, rutile field [3].


Abbreviations of minerals [10]: Ann – annite, An – anorthite, Alm – almandine Als – aluminosilicate, Bt – biotite, Chl – chlorite, Cld – chloritoid, Grt – garnet, Grs – grossular, Ky – kyanite, Ms – muscovite, Pl – plagioclase, Qtz – quartz, Prp – pyrope, Rt – rutile, Sil – sillimanite, Sps – spessartine, St – staurolite, Tur – tourmaline, Wmca – white mica.

2. Geological setting

The Alpine structure of the Eastern Alps was formed during two main orogenies, a Cretaceous orogeny followed by a Tertiary one [11]. They reflect the closure of an embayment of the Neotethys Ocean (Meliata Ocean). The latter is due to the closure of the Alpine Tethys oceans between Apulia and Europe. The result of the orogenic movement is a complex nappes stack, which is built up from north to south and from bottom to the top by the following units [12]: The proximal parts of the Jurassic to Cretaceous European margin built up the northern Alpine foreland and the Helvetic nappes comprises the Piemont-Ligurian and Valais ocean (Alpine Tethys) and the Brianconnais Terrain. Apulia consists of the northern Austroalpine nappes and the Southern Alpine unit [13]. The Cretaceous (Eo-Alpine) metamorphism affects mainly the Austroalpine nappes, while the Tertiary metamorphism primarily evident in the Pennic domain, and some units of the Lower Austroalpine nappes show signs of both events [14, 15].

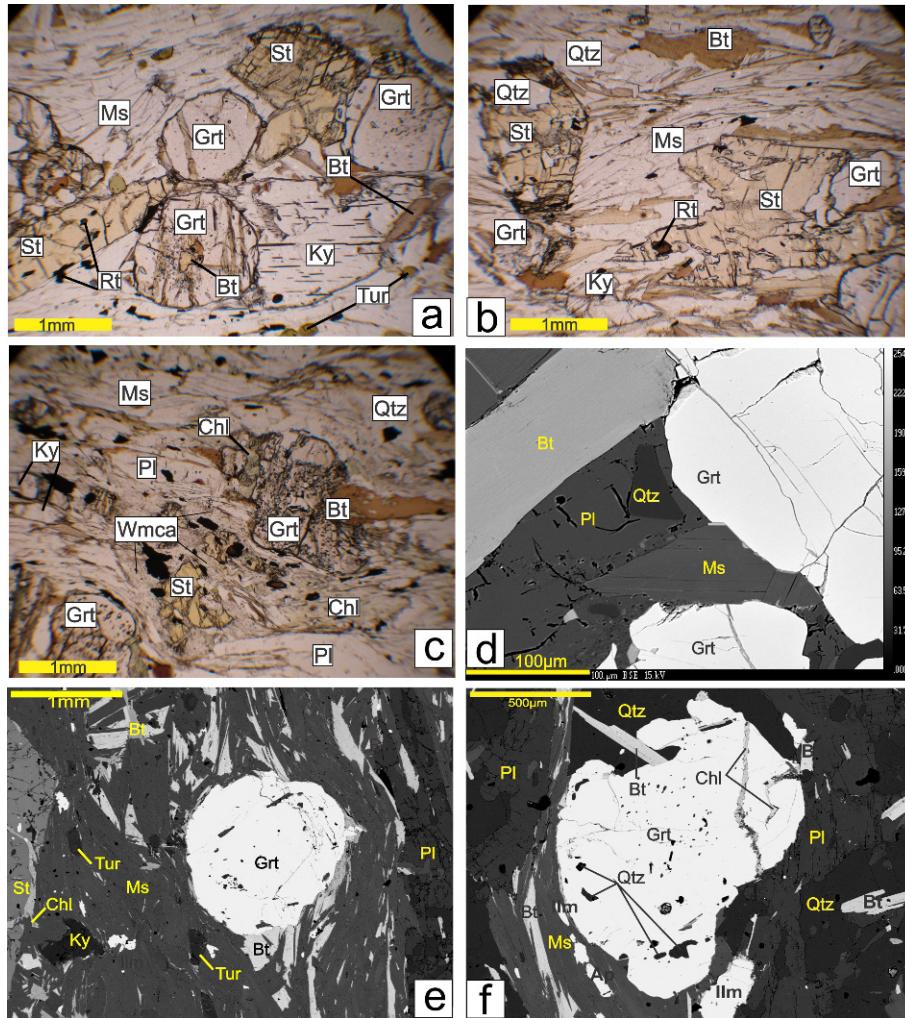
The AA nappes [16] are composed of crustal material with a complex Phanerozoic history. They can be subdivided into a Lower and an Upper Austroalpine unit. The former shows a remarkable reworking related to the opening and closure of the Piemont – Ligurian and Valais ocean, whereas the internal structure of the latter is due to the closure of the Tethys embayment. Coming from the north the Upper Austroalpine unit is built up by Mesozoic sedimentary sequences of the Northern Calcareous Alps, Paleozoic metasediments and metavolcanics of the Graywacke zone and the crystalline basement units with remnants of Paleozoic and Mesozoic metasediments.

The strongly reactivated higher-grade metamorphic Variscan basement structural complexes ("Altkristallin") with the occurrences of Alpine amphibolites to eclogites were also mapped westwards of the Kreuzeck Mountains – in the Schober Mountains – and mentioned in published short reports [17–20] for the Austrian Geological Survey

Figure 1. Simplified geological map of the central part of the Kreuzeck Mts. (after Putiš et al., 1995-1997 and Putiš, 1998)

in Vienna.

The Polinik structural complex is located in the Kreuzeck Mts. south of the Tauern Window as a part of the AA basement structural complexes (Fig. 1). Hoke [1] published examples on mesostructures and their relationship to metamorphic and mylonitic events from the northwest part of the Kreuzeck Mts. According to mapping work [17, 21, 22] there are at least 5 stacked AA structural complexes in the Kreuzeck Mts. (Fig. 1).


They are (from north and tectonic bottom):

1. The Ragga structural complex, built of paragneisses, amphibolites, migmatites and orthogneisses;
2. The Polinik structural complex with eclogites, eclogitic high-Na augite amphibolites and

barroisite-bearing amphibolites, orthogneisses and Ky-St-Grt paragneisses to eclogitic micaschists;

3. The Strieden structural complex with Sil-And paragneisses and St-Grt micaschist gneisses, associated with Grt amphibolites, Cal-Dol-Tr marbles, small pegmatitic and large orthogneiss bodies;
4. The Hochkreuz structural complex with micaschists, graphitic quartzites and large amphibolitic, gabbro-amphibolitic to layered amphibolitic bodies;
5. The Steinfeld structural complex with metapelites, metagreywackes, greenschists, porphyroblasts and Cld schists.

The Polinik structural complex shows the strongest Alpine overprint [2] and is restricted along the MMZ around the Polinik Mt. peak [1]. Recently, tourmaline-bearing eclogites were found in this region [3], which probably indicate

Figure 2. Microstructures and BSE images of Ky-St-Grt gneisses. a-b) Stable mineral assemblage Grt-St-Ms-Ky-Pl-Qtz (Sample Pomo41). c) Staurolite is replaced by white mica and chlorite, garnet is replaced by chlorite (Sample Pomo16). d - f) BSE images of mutual contact between Grt, Bt, Pl, Ms, used for geotermobarometry (Sample Pomo41).

external boron-rich fluid infiltration during eclogite metamorphism.

3. Material and Methods

Three samples of gneisses were collected from the area of the Polinik Mörnig (N 46°54,109', E 13°10,034') and Kesselsee (N 46°53,065', E 13°12,126') in the Polinik structural complex.

Chemical composition of minerals and BSE images were obtained by using a JEOL 6310 SEM equipped with a LINK ISIS energy dispersive system and a MICROSPEC wavelength dispersive system at the Department of Min-

eralogy und Petrology, University of Graz (Austria), where analytical conditions were 15 keV accelerating voltage and 6 nA beam current on PCD with following standards used: Si $K\alpha$, Al $K\alpha$ and K $K\alpha$: orthoclase, Fe $K\alpha$, Mg $K\alpha$: garnet, Mn $K\alpha$: rhodonite, Na $K\alpha$: jadeite, Ti $K\alpha$: sphene, Zn $K\alpha$: willemite, Ni $K\alpha$: Ni. and by a CAMECA SX-100 electron-microprobe at Dioniz Štúr State Institute of Geology in Bratislava (Slovakia), where analytical conditions were 15 keV accelerating voltage and 20 nA beam current, beam size was 2 – 10 μm . The following standards were used: Si $K\alpha$, Ca $K\alpha$: wollastonite, Al $K\alpha$: corundum, K $K\alpha$: orthoclase, Fe $K\alpha$: fayalite, Mg $K\alpha$: forsterite, Mn $K\alpha$: rhodonite, Na $K\alpha$: albite, Ti $K\alpha$: rutile, Zn $K\alpha$: willemite, Ni $K\alpha$: Ni.

For bulk-rock chemical analysis a Bruker Pioneer S4

XRF-system was used at the Department of Earth Sciences, Karl-Franzens-University, Graz, Austria. Samples were prepared as fused pellets (containing 1 [g] powdered sample + 7 [g] Fluxana FX-X100 powder). Major and trace elements were measured and standardized by approximately 40 international standard materials. XRF analysis have the following uncertainties: major elements (1–100%: 1–2% relative), minor elements (0.1–1%: 2–5% relative), trace elements (100 – 1000 ppm: ~5% relative; <100 ppm: 5–10% relative).

Common geothermometers based on Fe–Mg exchange reactions between coexisting Grt and Bt [23] combined with the GASP geobarometer [24] were used to estimate *P*–*T* conditions of metamorphism and using the average *P*–*T* mode in THERMOCALC (version 3.31 and dataset 5.5) [25] with internally-consistent thermodynamic dataset of [26], following the approach given in [27]. Activities for mineral end-members were calculated using the AX software written by Tim Holland [28].

4. Petrography and mineral chemistry

Ky-St-Grt paragneisses consist of the main mineral assemblage Grt, St, Bt, Ms, Pl, Ky, Qtz, ±Tur (Fig. 2a–b). Garnet forms euhedral to subhedral porphyroblast (up to 0.3 cm) and it is mostly enriched in quartz (50 – 100 μm) inclusions. Some of the porphyroblasts contain inclusions of biotite (100 – 200 μm) and white mica (100 – 150 μm).

Biotite occurs as matrix minerals and inclusion in Grt. As a matrix mineral it is in mutual contact with Grt, Ms and Pl (Fig. 2d). Kyanite occurs in the matrix as prismatic subhedral grains (Fig. 2a). Ky–Sil transformation that would indicate a shift from the kyanite into the sillimanite field is not observable. Plagioclase varies in grains size (100 – 500 μm) and occurs within the matrix only (Fig. 2d–f). The whole matrix is overgrown by muscovite. Retrograde chlorite replaces Grt and Bt. Kyanite is partly replaced by margarite and staurolite by white mica and chlorite respectively (Fig. 2c). Tourmaline, titanite, apatite, monazite occur as accessory mineral phases in the matrix.

Representative microprobe analyses are given in Table 1 – 2.

Garnet porphyroblast ($\text{Alm}_{71–77}\text{Prp}_{15–20}\text{Grs}_{5–2}\text{Sps}_{7–1}$) reveals a growth zoning (Fig. 3) with a higher Mn concentration (5 – 7 mol %) in the core ($\text{Alm}_{71}\text{Prp}_{18}\text{Sps}_7\text{Grs}_2$). The outer rim composition ($\text{Alm}_{72}\text{Prp}_{20}\text{Grs}_5\text{Sps}_2$) is poorer in Sps and richer in Prp component then the core composition. The rim shows an increase in Mn of up to 4

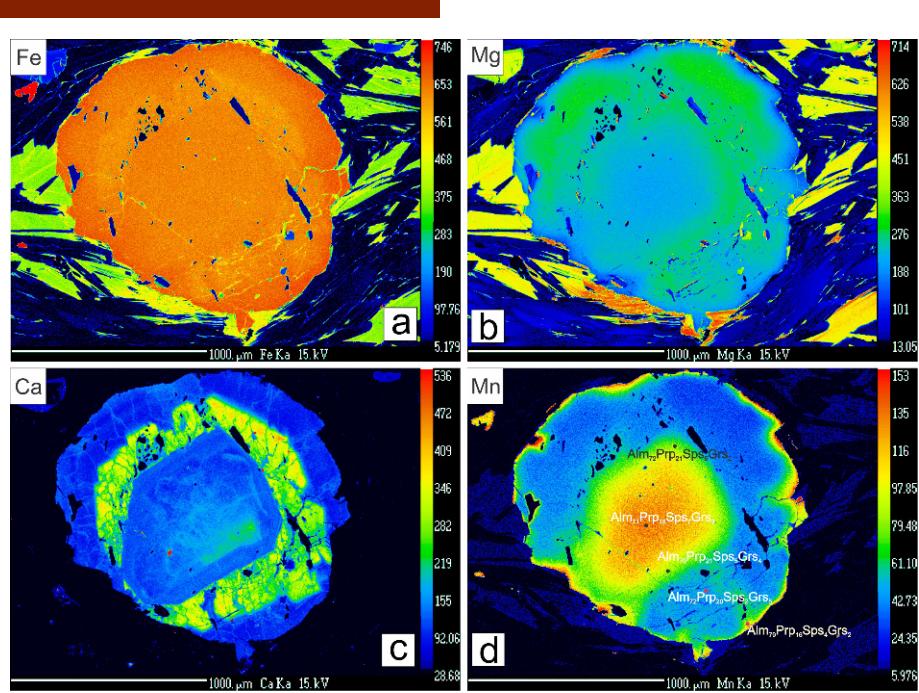
mol% and increase in Alm component of up to 77 mol% ($\text{Alm}_{77}\text{Prp}_{15}\text{Sps}_4\text{Grs}_2$). Ca, Mg, Mn and Fe maps of garnet (Fig. 3) show zoning patterns that are consistent with prograde Grt growth. There is a slight increase in manganese in the rim of Grt which indicates slight resorption (Fig. 3d).

All chemical analyses of biotite are normalised on the basis of 22 O assuming all Fe as Fe^{2+} . Composition of the Bt inclusions with $X_{\text{Mg}} = 0.55 – 0.46$ is very similar to matrix Bt with $X_{\text{Mg}} = 0.51 – 0.55$. Ti in biotite is in the range of 0.17 – 0.21 *a.p.f.u.* (atom per formula unit).

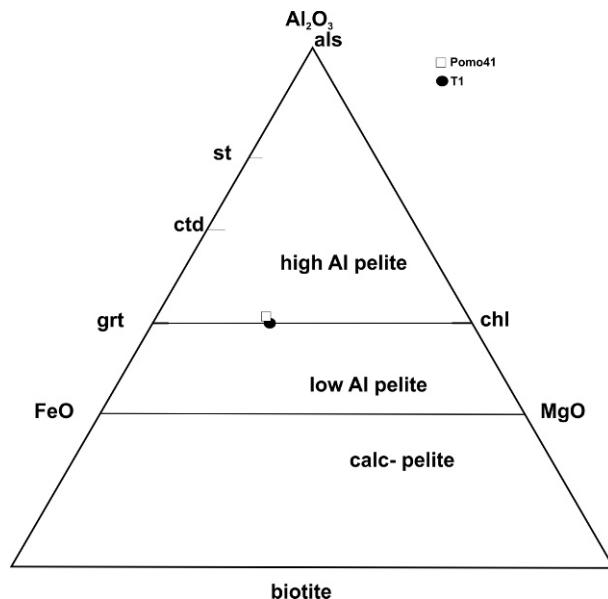
Staurolite occurs in the matrix as porphyroblast (up to 0.1 – 0.3 cm) with inclusions of Qtz, Bt, and Rt. Staurolite contains up to 0.64 wt% of ZnO and the X_{Mg} of 0.22 – 0.14 exhibits a slight decrease towards the rim.

White mica is present as inclusions within Grt and as a porphyroblast overgrowing the foliation. Inclusions show slight chemical variation where X_{Mg} is in range from 0.5 – 0.3 and muscovite content is ~0.6, paragonite content is ~0.3 with celadonite ~0.07 and Fe-celadonite ~0.03 content. Chemical composition of matrix white mica is muscovitic ~0.6, paragonitic ~0.2 with celadonite ~0.12 and Fe-celadonite ~0.08 content in the rim.

Plagioclase composition ranges from X_{An} 0.12 – 0.13.


Quartz forms veins and occurs mostly in mutual contact with plagioclase and some occurrence is around garnet.

5. Chemical whole rock composition


The studied rocks consist of SiO_2 in the range of 50.4 – 51.13 wt%. Al_2O_3 is in the limits of 25.21 – 26.68 wt% which is compatible with the abundant occurrence of Ky and St in the rocks. The content of Fe_2O_3 varies from 10.41 to 11.39 wt%. The amount of MnO is less then 1% (0.14 – 0.32 wt%), CaO is from 0.3 to 1.4 wt% and K_2O is in the range of 4.4 – 4.7 wt%. Figure 4 displays the plotted fields for common bulk compositions for pelitic schists and metagranites. The high Al pelite field represents bulk composition of studied rocks.

6. Geothermobarometry

The *P*–*T* conditions of metamorphism of Ky-St-Grt paragneisses were calculated for the stable mineral assemblage Grt–Bt–St–Ms–Pl–Qtz. The intersection of Grt–Bt geothermometer and GASP geobarometer show temperature of 654 ± 30 °C at 0.9 ± 0.08 GPa. Temperature

Figure 3. X-ray maps of Fe, Mg, Ca and Mn distribution in Grt in Ky-St-Grt gneiss, sample Pomo41.

Figure 4. AFM projection showing position of bulk composition of Ky-St-Grt gneisses. Projection is done from muscovite using composition corrected for Al_2O_3 .

665 ± 15 °C at 0.77 ± 0.09 GPa has been calculated by P-T average mode in THERMOCALC 3.31 (Table. 3). Results are in good accordance with THERMOCALC calculations as can be expected from mineral assemblage and chem-

istry.

7. Discussion and conclusions

The change of tectonic regime from compressional thrusting to strike slip is evident from the mapped geological structure of the Kreuzeck Mts., as well as microstructures and related textural patterns of Qtz and Cal [2]. This is related to the closure of the Pennine ocean and the following continental collision between Apulia or Adria indenter (with the AA structural complexes) and the European plate [11, 12].

Pre-Late-Cretaceous collisional compression and nappe thrusting of the AA structural complexes within the studied area can be inferred mainly from regional subhorizontal boundaries of the 5 crustal sheets or nappes (= structural complexes), thrust one over another with a clear north-directed vergency [2, 29].

The HP Polinik and the MP Strieden structural complexes, which were tectonically emplaced onto the Ragga structural complex, represent the AA basement fragments with the recorded features of Cretaceous-Tertiary reactivation, because these complexes are located along the ductile-brittle strike-slip shear zone or MMZ [1, 2].

Hoke [1] proposed exhumation of HP rocks along the MMZ

Table 1. Representative microprobe analyses of garnet, biotite and white mica.

Garnet				Biotite				White mica			
Sample	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41	Pomo41
Position	core	rim	core	rim	core	rim	incl	incl	core	rim	matrix
SiO ₂	37.78	37.80	37.56	37.35	37.76	37.33	36.49	35.93	35.84	34.91	47.85
TiO ₂	0.01	0.02	0.00	0.00	0.00	0.00	1.43	1.78	1.47	1.32	0.72
Al ₂ O ₃	20.71	21.00	20.58	20.69	20.72	20.46	18.52	18.57	18.19	18.51	36.18
FeO	31.84	34.29	32.45	34.81	34.17	35.39	16.49	19.62	19.12	19.81	0.64
MnO	2.96	1.73	2.67	3.07	0.79	1.84	0.13	0.16	0.00	0.00	0
MgO	4.59	3.86	4.61	2.97	5.21	4.01	11.01	9.41	10.10	9.64	0.57
CaO	1.22	0.60	1.26	1.04	0.51	0.63	0.10	0.09	0.00	0.00	0.03
Na ₂ O	bd	bd	bd	bd	bd	bd	0.15	0.15	0.25	0.13	2.12
K ₂ O	bd	bd	bd	bd	bd	bd	9.34	8.95	8.91	9.07	8.15
Total	99.12	99.30	99.13	99.93	99.16	99.66	93.65	94.66	93.88	93.39	96.23
Si	3.032	3.030	3.019	3.016	3.025	3.009	5.560	5.493	5.513	5.433	3.107
Al	1.960	1.989	1.952	1.970	1.958	1.947	3.326	3.346	3.298	3.395	0.035
Ti	0.000	0.001	0.000	0.000	0.000	0.000	0.163	0.205	0.170	0.155	2.769
Fe ³⁺	0.007	0.000	0.026	0.012	0.016	0.039	0.000	0.000	0.000	0.000	0.000
Fe ²⁺	2.130	2.329	2.156	2.338	2.273	2.346	2.101	2.509	2.459	2.578	0.035
Mn	0.201	0.117	0.182	0.210	0.054	0.126	0.017	0.021	0.000	0.000	0.000
Mg	0.549	0.461	0.552	0.357	0.622	0.482	2.501	2.146	2.316	2.236	0.055
Ca	0.105	0.051	0.109	0.090	0.044	0.054	0.016	0.015	0.000	0.000	0.002
Na	0.000	0.000	0.000	0.000	0.000	0.000	0.043	0.043	0.074	0.039	0.267
K	0.000	0.000	0.000	0.000	0.000	0.000	1.816	1.745	1.748	1.799	0.675
X _{alm}	0.71	0.79	0.72	0.78	0.76	0.78					
X _{prp}	0.04	0.02	0.04	0.03	0.01	0.02					
X _{sps}	0.07	0.04	0.06	0.07	0.02	0.04					
X _{grs}	0.04	0.02	0.04	0.03	0.01	0.02					
X _{Mg}	0.18	0.16	0.18	0.12	0.21	0.16	0.54	0.46	0.49	0.46	

due to Cretaceous northward syn-collisional thrusting of the AA unit. A low-angle normal fault might have been active during the first exhumation stage as a continuation of collision/subduction D1 stage. However, no N-S striking stretching lineations have been preserved due to D2 and D3 tectonometamorphic overprints within the lateral strike-slip zone.

Putiš et al. [2] have proved that the final medium- (D2) to low-temperature (D3) exhumation occurred in a lateral transpression zone evidenced by the subhorizontal orientation of stretching lineations and asymmetric textural patterns of quartz and calcite. The data in this paper are related to final exhumation and emplacement of the HP (the Polinik structural complex) and MP rocks (the Strieden structural complex) during the Late Cretaceous dextral lateral strike slip movements in the frontal part of this collision wedge with stacked basement structural complexes.

Grt-St-Ky paragneisses as host rocks of metabasites (HP amphibolites to eclogites) in the Polinik structural complex reflect the metamorphic conditions of the exhumation (D2) stage of the HP rocks. They were either completely adapted to D2 metamorphic conditions during the exhumation of HP rocks, or they are the host rocks for only the D2 exhumation stage of the enclosed HP rocks. They do not preserve any relics of metamorphic minerals from an inferred former D1 peak burial stage.

The rock textures and conventional geothermobarometric data suggest intermediate to high grade of metamorphism of Grt-Ky paragneisses in the upper amphibolite facies. Zonation of Grt growth indicates prograde metamorphic reactions in paragneisses. The HP metabasites were partly retrograde overprinted at similar conditions [1, 2]. A slight retrograde overprint is seen in the Mn increase in garnet rims, which can be interpreted as the result of local resorption (Fig. 3d).

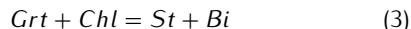
Table 2. Representative microprobe analyses of staurolite and plagioclase.

Sample	Staurolite				Plagioclase			
	Position	Pomo41 core	Pomo41 rim	Pomo41 core	Pomo41 rim	Pomo41 rim	Pomo41 Pl	Pomo41 Pl
SiO ₂		28.24	28.77	28.72	28.96	28.90	66.37	66.97
TiO ₂		0.62	0.48	0.72	0.54	0.66	bd	bd
Cr ₂ O ₃		0.05	0.00	0.01	0.02	0.08	bd	bd
Al ₂ O ₃		53.72	54.79	54.57	54.90	54.71	21.29	21.56
FeO		12.99	11.85	12.62	12.20	12.39	bd	bd
MnO		0.11	0.07	0.10	0.06	0.21	bd	bd
MgO		1.92	1.11	1.55	1.13	1.33	bd	bd
ZnO		0.64	0.60	0.51	0.50	0.45	bd	bd
CaO		bd	bd	bd	bd	bd	2.49	2.56
Na ₂ O		bd	bd	bd	bd	bd	9.33	9.33
K ₂ O		bd	bd	bd	bd	bd	0.09	0.11
Total		98.26	97.67	98.81	98.31	98.73	99.69	100.53
Si		7.791	7.915	7.845	7.919	7.889	2.913	2.919
Ti		0.128	0.099	0.147	0.111	0.136	0.000	0.000
Cr		0.010	0.000	0.002	0.005	0.017	0.000	0.000
Al		17.471	17.764	17.570	17.694	17.605	1.101	1.105
Fe ²⁺		2.997	2.725	2.883	2.791	2.830	0.000	0.000
Mn		0.025	0.016	0.022	0.013	0.049	0.000	0.000
Mg		0.788	0.457	0.632	0.459	0.540	0.000	0.000
Zn		0.130	0.121	0.104	0.101	0.090	0.000	0.000
Ca		0.000	0.000	0.000	0.000	0.000	0.117	0.119
Na		0.000	0.000	0.000	0.000	0.000	0.794	0.787
K		0.000	0.000	0.000	0.000	0.000	0.005	0.006
X _{Mg}		0.21	0.14	0.18	0.14	0.16		
X _{An}						0.13	0.13	0.12

Table 3. Average P-T according to THERMOCALC v3.31, abbreviation of end members after [26]

Sample	T(°C)	P(Gpa)	X _{H₂O}	Fit	Cor	End members	Independent set of reactions
Pomo41	665±15	0.77±0.09	1	0.8	0.79	fst, an, ab, mu, pa, phl, ann, east, py, gr, alm, q, H ₂ O, ky	1) gr + q + 2ky = 3an 2) 6fst + 23gr + 48q = 69an + 8alm + 12H ₂ O 3) 3an + pa = ab + gr + H ₂ O + 3ky 4) 3east + 6q = 2mu + phl + py 5) mu + 2phl + 2ky = 3east + 5q 6) ann + q + 2ky = mu + alm

The observed mineral assemblage Grt, Bt, St, Ms, Pl, Qtz, Ky ± Tur indicates intermediate P-T Barrovian type of metamorphism. P-T condition were obtained by conventional geothermobarometry (654±30 °C at 0.9±0.08 GPa) and P-T Average mode from calculated equilibrium reactions by THERMOCALC 3.31 (665±15 °C at 0.77±0.09 GPa).


The reaction involved during metamorphism of Grt-Ky

paragneisses resulting in the formation of Grt and Bt at the expense of Chl and Ms is:

This reaction limits the presence of Chl where Ms is in excess and is replaced by Grt and Bt at a temperature of about 520 °C [30]. Considering Mn contents in garnet

cores, it can be assumed that Grt appears most likely at temperatures around 500 °C. Staurolite formation involves two main reactions:

The chloritoid consuming reaction 2 is not observed in our samples. No inclusions of Cld were identified in garnet, so it can be assumed that reaction 3 is the main discontinuous AFM reaction producing St, partly consuming Grt at temperatures slightly above 600 °C [30, 31]. Formation of Ky shortly thereafter, involves some St and all Chl being removed from the assemblage with the production of some Bt via reaction:

The resulting mineral assemblage is St-Ky-Bt-Grt-Ms-Pl-Qtz, representing middle to upper part of amphibolite facies (ca. 650 °C at 0.7-1.0 GPa), which is consistent with microtextural and geothermobarometric data.

The obtained petrological data do not provide any evidence of paragneisses as primary host rocks of HP metabasites during the D1 burial stage. Rather, alternation of these rocks as different lithological layers in many outcrops, indicate their common D1 stage of collision-subduction burial.

Rapid uplift and nearly isothermal decompression enabled sufficient time for the action of amphibolites facies conditions during the D2 exhumation stage of the HP rocks, including the host paragneisses.

Acknowledgments

We appreciate very much the suggestions of both unknown reviewers that contributed to the improvement of the original manuscript. The financial support from Slovak Research and Development Agency (No. APVV-0279-07 and APVV-0081-10), VEGA Agency (1/0255/11) and from CEEPUS Program is greatly acknowledged.

References

[1] Hoke L., The Altkristallin of the Kreuzeck Mountains, SE Tauern Window, Eastern Alps – Basement crust in a convergent plate boundary zone. *Jahrbuch der Geologischen Bundesanstalt*, 1990, 133, 5-87

[2] Putiš M., Körkóvský S.P., Unzog W., Olesen N.Oe., HP rocks associated with mylonitoclasites: a result of polystage overprint of the Austro-Alpine basement (Kreuzeck Massif, Eastern Alps). 2002, *Slovak Geological Magazine*, 8, 1, 65-87

[3] Konzett J., Hoinkes G., Hauzenberger Ch., Krenn K., Repolust T., Whitehouse M., A tourmaline-bearing eclogite from the austroalpine Kreuzeck mountains, Eastern Alps, Austria: an example for Eo-Alpine high pressure metasomatism. Abstracts of 8th International Eclogite Conference, Xining, Qinghai Province, China, 2009, 73

[4] Ratschbacher L., Wenk H.-R., Sintubin M., Calcite textures: examples from nappes with strain-path partitioning. *J. Struct. Geol.*, 1991, 13, 369-384

[5] Frisch W., Brügel A. J., Dunkl I., Kuhlemann J., Satir M., Post-collisional large-scale extension and mountain uplift in the Eastern Alps.-Mem. *Memorie della Società Geologica Italiana*, 1999, 51, 3-23

[6] Mancktelow N.S., Meier A., Viola G.A.M., Müller W., Fügenschuh B., Seward D., Villa I.M., The Periadriatic and adjacent fault systems in the Eastern Alps south and west of the Tauern Window. Abstracts of the 4th Workshop on Alpine Geological Studies, Tübingen. *Tübinger Geowissenschaftliche Arbeiten*, Series A, 1999, 52, 7-9

[7] Platt J.P., Exhumation of high-pressure rocks: a review of concepts and processes. *Terra Nova*, 1993, 5, 119-133

[8] Neubauer F., Kontinentkollision in den Ostalpen. *Geowissenschaften*, 1994, 12, 136-140

[9] Dallmeyer R.D., Handler R., Neubauer F., Fritz H., Sequence of thrusting within a thick-skinned tectonic wedge: evidence from ⁴⁰Ar/³⁹Ar and Rb-Sr ages from the Austroalpine Nappe Complex of the Eastern Alps. *J. Geol.*, 1998, 106, 71-86

[10] Siivola J., Schmid R. A systematic nomenclature for metamorphic rocks: 12. List of mineral abbreviations. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Recommendations, web version of 01.02.2007. <http://www.bgs.ac.uk/scmr/products.html>.

[11] Froitzheim N., Schmid S.M., Frey M., Mesozoic paleogeography and the timing of eclogite-facies metamorphism in the Alps: A working hypothesis. *Eclogae Geologicae Helvetiae*, 1996, 89, 81-110

[12] Schmid S. M., Fugenschuh B., Kissling E., Schuster R., Tectonic map and overall architecture of the Alpine orogen. *Eclogae Geologicae Helvetiae*, 2004, 97, 93-117

[13] Stampfli G.M., Mosar J., The making and becoming of Apulia. *Memorie della Società Geologica Italiana*,

1999, 51/1, 141–154

[14] Liu Y., Genser J., Handler R., Friedl G., Neubauer F., $^{40}\text{Ar}/^{39}\text{Ar}$ muscovite ages from the Penninic/Austroalpine plate boundary, Eastern Alps. *Tectonics*, 2001, 20, 528–547

[15] Heidorn R., Neubauer F., Genser J., Structural evolution along the NW margin of the Tauern Window and the relationship to the Geier-Reckner ophiolite-like complex (eastern Alps, Austria). TRANSALP Conference, Extended abstract of oral and poster presentations, Trieste, 10 – 12 February 2003, *Memorie della Società Geologica Italiana*, 2003, 54, 213–216

[16] Tollmann A., Geologie von Österreich. Band I: Die Zentralalpen. [The Central Alps] Deuticke, Vienna, 1977

[17] Putiš M., Bezák V., Janák M., Kohút M., Kováčik M., Madarás J., Marko F., Plašienka D., Geological map of the central part of the Kreuzeck Massif, Eastern Alps. Austrian Geological Survey, scale 1:25 000, Vienna, 1996

[18] Putiš M., Bezák V., Kohút M., Kováčik M., Marko F., Plašienka D., Bericht 1996 and 1997 über geologische Aufnahmen im Kristallin auf Blatt 181 Oberzellach. *Jb. Geol. B.-A.*, 1997, 140, 345–348

[19] Linner M., Bericht 1996 über geologische Aufnahmen im Kristallin auf den Blättern 179 Lienz und 180 Winklern. *Jahrbuch der Geologischen Bundesanstalt*, 1997, 140, 342–345

[20] Spaeth G., Bericht 1995 über geologische Aufnahmen im Kristallin der Schobergruppe auf Blatt 179 Lienz. *Jahrbuch der Geologischen Bundesanstalt*, 1997, 140, 387–389

[21] Putiš M., Bezák V., Janák M., Kohút M., Kováčik M., Madarás J., Marko F., Plašienka D., Geological map of the western part of the Kreuzeck Massif, Eastern Alps. Austrian Geological Survey, scale 1:25 000, Vienna, 1995

[22] Putiš M., Bezák V., Kohút M., Kováčik M., Marko F., Plašienka D., Geological map of the eastern part of the Kreuzeck Massif, Eastern Alps. Austrian Geological Survey, scale 1:25 000, Vienna, 1997

[23] Holdaway M. J., Application of new experimental and garnet Margules data to the garnet–biotite geothermometer. *Am. Min.*, 2000, 85, 881–892

[24] Koziol A.M., Recalibration of the garnet-plagioclase- Al_2SiO_5 -quartz (GASP) geobarometer and application to natural parageneses. American Geophysical Union Spring Meeting, Baltimore, Maryland, EOS, 1989, 70, 493

[25] Powell R., Holland T. J.B., An internally consistent thermodynamic dataset with uncertainties and correlations: 3: application methods, worked examples and a computer program. *J. Metamorph. Geol.*, 1988, 6, 173–204

[26] Holland T.J.B., Powell R., An internally consistent thermodynamic data set for phases of petrological interest. *J. Metamorph. Geol.*, 1998, 16, 309–344

[27] Powell R., Holland T., Optimal geothermobarometry and geobarometry, *Am. Min.*, 1994, 79, 120–133

[28] Tim Holland's Home Page: <http://www.ccp14.ac.uk/ccp/webmirrors/crush/astaff/holland/>

[29] Putiš M., Compiled Geological map of Kreuzeck Massif, Eastern Alps, Austrian Geological Survey, scale 1:25000, Vienna, 1998

[30] Bucher K., Frey M., Petrogenesis of Metamorphic Rocks. Springer-Verlag; Berlin, Heidelberg, 1994

[31] Spear F.S., Metamorphic phase equilibria and pressure–temperature–time paths, *Mineral. Soc. Am., Monogr. Ser.*, Washington (D.C), 1993