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Abstract: In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in
reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Acrtificial Bee Colony (ABC) algorithm,
can give solutions to linear and non-linear problems near to the optimum for many applications; however, in
some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an
optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved
cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in
the implementation of this algorithm to obtain improved performance over previous versions. Using a series of
benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other
aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells
Algorithm (MSCA).
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1. IntrOductlon simplicity in formulation and the good understanding of
the development of these processes.

Optimization algorithms have been mainly inspired by
natural evolution. The most famous one is the genetic

The meta-heuristic algorithms are mostly derived from the algorithm [1], which is based on the idea of evolution in the

behavior of biological systems (such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Stem Cells
Algorithm (SCA)), or physical systems (such as Simulated
Annealing (SA)), among others. Some of the main reasons

nature and looks into a given problem on a fully random
basis. This method is based on biological techniques
such as genetics and mutation; the search is carried out
to find better responses in each generation compared to

for selection and development of these algorithms are their . .
the previous one. Among the key features of the genetic

algorithm are its ability to run in parallel and its capability
*E-mail: mtaherdangkoo@yahoo.com for searching very large and complex spaces [2].
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Another well-known optimization algorithm is Particle
Swarm Optimization (PSO), first proposed by Kennedy
and Eberhart [3], and proven useful for continuous and
discrete functions [4]. In this algorithm each particle
as a member of the society uses the experiences of its
previous particle as well as those of others in order to
reach the ultimate goal. This algorithm is able to find the
global optimum of the function in question in consequent
iterations [5].

The third optimization algorithm that has been considered
by many researchers is Ant Colony Optimization (ACO)
algorithm [6], used to solve the salesman problem. This
algorithm was inspired by studies and observations on
the behavior of ants in their colony. Its implementation
is based on the behavior of ants when searching food
for the survival of their colony, by considering the be-
havior whereby ants scatter a chemical material called
pheromone as they move, which evaporates and impresses
the others on their move, so that eventually the ants can
reach the food source (optimal response) [7]. One of the
disadvantages of this algorithm is its poor criterion for
iteration ending, because the process will continue until
reaching the maximum number of ants available to search,
lacking improvement. In addition it is very dependent on
the move transfer function and the pheromone evaporation
rate. Although these problems have been solved for many
applications, this has been the reason for it not being
widely used in the medical engineering field, especially
in the medical image segment where generally a unique
measure function that is consistent with the terms of this
algorithm cannot be designed.

Lastly, the Artificial Bee Colony (ABC) algorithm [8] was
inspired by the social behavior of honey bees in finding
food. In this algorithm, three types of bees (employer,
onlooker and scout) are used, but only the employer bee
is capable of becoming a scout bee. Employer bees are
responsible for searching a designated space, and they
return to the hive and share the gathered information with
onlooker bees after storing the location of food sources and
its nectar content in its memory. Onlooker bees select an
employer bee that contains the highest amount of nectar
according to classification of food sources. The employer
bee then becomes a scout bee and begins to recruit other
bees. It then moves with recruited bees toward the food
source in order to drain the nectar. This process will
continue until the entire space is covered and the optimal
response is achieved. Having low level of computation and
fairly good flexibility are considered as the advantages of
this algorithm.

In this paper, we have extended the performance of the
Stem Cells Algorithm (SCA) for real parameter optimization
on unimodal and multimodal functions, and have compared
its performance to that of the aforementioned algorithms.

2. Stem cells algorithm

The stem cells algorithm has been introduced as one of the
newest optimization algorithms for optimizing numerical
functions and data clustering [9, 10]. This algorithm was
introduced and implemented on the basis of stem cells
behavior in the human body (at the time of entering into
the body). In general, finding injured and weak organs is
the main goal of this algorithm. Each of these organs is
an optimum solution for solving all kinds of optimization
problems. In order to implement this algorithm, multidi-
mensional and self-renewal properties of stem cells are
used. A brief introduction of the algorithm is as follows. An
initial matrix which is composed of the problem variables,
namely stem cells properties that are inherent, is formed.
For example, we can point to the multidimensional property
as the ability of a stem cell transforming into the marrow
cells, blood cells, etc. The initial matrix is defined as:

SC,' :[SC,‘1,SC,'2,..
i=12,...,S

., SCp] o

where S represents the total number of cells participating
in the implementation process of the algorithm and D is
the dimension of the problem space.

In this algorithm, an initial population is selected from the
members, and then in subsequent iterations new members
are added to the old population by a specific percentage
fraction. This specific percentage of increment is deter-
mined before the implementation of the algorithm. Hence
the algorithm starts by using only a part of the total
members; if a large population was selected early dur-
ing the implementation of the optimization algorithm, it
would cause numerous iterations, high time consumption
and occasionally trapping in local minimums.

The initial population is selected so that its distribution
is uniformly and randomly extended in the problem space.
Then a cost function for each cell is defined as:

1
—— £>0

Cost(SC) = { a+1; (2)
1+|f] fi>0

where a is a positive random number in interval [0,1], but
for more cases with normal complex (for example Dimension
(D) < 50), a is a constant with value 1, and f; is the cost
value of the solution SC;. For maximization problems, the
cost function can be directly used as a fitness function.
Then the cost of each cell is normalized by:

Costn(SC),) = Max[Cost(SC)] — Cost(SC,)  (3)
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where Cost(SC,) is the cost of the n'" stem cell,
Max | Cost(SC)] is the maximum cost among stem cells
and Costn(SC),) is the normalized cost of the n'' stem
cell.

Each cell that has a higher cost is a weaker cell and thus
its normalized cost is lower. The ultimate parameter in
determining the best stem cell (optimum solution) is the
relative potency (i.e. the potential of each stem cell in
differentiating between different cell types, for example
bone marrow cells and blood cells). It is derived as follow:

Costn(SC,)

T Y% Costn(SC) )

n

ZL Costn(SC,) is the total cost of stem cells. From
another point of view, P, is the comparative power of the
n'" cell. After calculating comparative power of each cell,
its value is saved in the memory of each cell. Then each
of these cells shares information saved in its memory and
finally this information is classified in a table from highest
to the lowest order.

A part of the cells (e.g. one third of them) located at
the upper range of the table are permitted to participate
in self-renewal process and they form a portion of the
attended population in a next iteration (e.g. 60% of the
attended population in a next iteration). The rest of the
population is randomly selected from the cells that have
no information from the problem space. The self-renewal
process is done by the equation below:

SCoptimum(t + 1) = ¢ x SCoptimum(t) )

where t represents each cycle (iteration) and ¢ is a random
number in the interval [0,1].

For the sake of simplicity in implementing the self-renewal
process, which occurs similarly and reciprocally, { = 0.96
is set for similar self-renewal and ¢ = 0.01 for mutual
self-renewal. Also in some problems where problem space
dimension is high or the problem is highly complex, one
could utilize both self-renewal processes simultaneously
in order to prevent uniformity in reaching the optimum
solution. When using this algorithm in single variable
problems, the goal is the formation of an organ and the
algorithm would continue until reaching a complete organ.
But when the objective is obtaining optimum values of two
or more variables, the goal is to reach to two or more
complete organs that justify the multidimensional property
of stem cells.

3. Modified stem cells algorithm

As mentioned in the previous section regarding the main
algorithm of stem cells, self-renewal process is done either

similarly or mutually. Although this process has some
advantages in numerical functions, this method can lead
to difficulties in applying it to multi-objective functions
or data classification. In addition, convergence process
slows down and the time to reach the optimum solution
or ideal classification can increase. In this work, we sig-
nificantly improved the algorithm’s performance by using
Rechenberg’s 1/5 Mutation Rule. Here, we improved the
self-renewal process by modifying the Equation (5):

5COptimum(t + 1) = :(t + 1) X SCOpt[mum(t)
Qt+1)=p(t+1)x (1)

u(t) x 0.85 R <1/5 (6)
p(t+1)=13 p(t)/0.85 ’>1/5
p(t N=1/5

where the initial ¢ is determined before the process of
algorithm implementation and is a random number in the
interval [0,1], and R is also a random number in the interval
[—p, p] and is specified before implementing the algorithm.
If the algorithm cannot improve the solution with respect to
Rechenberg’s 1/5 rule (i.e. the ratio of successful mutations
to all mutations R is less than 1/5), p(t) is decreased. If
R is greater than 1/5, then p(t) is increased in order to
speed up the search.

In the original SCA, after each self-renewal process and in
the next iteration, the distribution of cells was considered
uniform and random in the whole problem space, but in this
new model, the location of each cell self-renewal is in the
table in which highly informative cells have been located
on the top. Then between each two cells (available space
between two cells in the problem space), a Beta distribution
is used instead of uniform distribution, in order to create
self-renewal process more randomly. Beta distribution
process of self-renewal cells is defined as:

B—1

Beta Distribution = |

1—x)

1
X

B(a, B)

a<x<b

1
B(a, B) = /O (1 = x)Pdx

2
=2 / (sin 8)%'(cos B)2~1d 6
0

where a and b are the first and second cells participating in
the distribution process and whose positions are specified
in the table. a and B are two positive symmetric random
numbers (a, B > 0).

The remaining cells participating in the process of al-
gorithm implementation have no information about the
sample space and their distribution happens uniformly and
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Figure 1. Stem cell self-renewal process, where the color circles
shows the stem cell and the yellow circle is the best stem
cell in the final iteration when the algorithm convergences
to optima.

randomly. Figure 1 shows an example of self-renewal
characteristics of stem cells until reaching to the optimum
cell [10].

The pseudo code of the modified stem cells optimization
algorithm is defined as follows:

Begin

Objective function, f(x), X =[x, .0, ....x, ]

Initialize population, X, fi =1,--,N}

Definece B.E 0 8 e 2R

Sort theinitial populationbased ontheir ohjective fiunction valueby equation(2).
Normalizethecos tof cacheell by equation (3).
Evaluatethecomparative powerof eachecll by equation (4).

while (1 < Maximum number of iterations’)

Find best stercell aceording te fitness value.

Allow best cells to self — renew by equation(6).

Beta Distributionof renewal cells in problem space by equation(T).
Ineachiteration Find best stem cell, replace with respectivestemoell
and camparewith stemcells in previous iteration.

I )= F X pniman )

Acceprand saverhtenewsolurionsinthe memory of stemcefll

end if

Search for the newsolutions incurrent iterationand compare

withrhe solufionsin previous step

eadwhile

end(obtainthe optimum responseaf the MSCA)

4. Experimental results

4.1. Benchmark functions

In order to prove our claim related to the better perfor-
mance of our proposed algorithm than other introduced
optimization algorithms, we have compared the efficiency
and the accuracy of the MSCA using Benchmark functions.
For all Benchmark functions, 50 runs were applied with
different random seeds for generating the random variables,
each run contains 5000 iterations, and the population size
was set to 100 for all optimization algorithms aforemen-
tioned except the MSCA. Note that when the space size

goes up (for example, Dimension (D) > 30) the performance
of the optimization algorithms drop dramatically because
the algorithms encounter several optimal solutions. In such
cases, selected answer in a considered space randomly
adds the complexity to the subject. Table 1 lists the eight
Benchmark functions.

4.2. Settings for algorithms

The number of maximum generations and population size
are common control parameters of the algorithms. In the
experiments conducted, maximum number of generations for
the dimensions (D) of 10, 20, 30 and 40 are considered to
be 500, 750 and 1000, respectively. Table 2 shows other
control parameters of the algorithms and the schemes,
along with the values of these control parameters applied
for GA, PSO, ACO, ABC and SCA and MSCA.

4.3. Comparison

Fifty runs were applied with different random seeds for
generating the random variables, each containing 5000
iterations. Computations were performed in Matlab on a
computer running Macintosh OS, two 2.93 GHz 6-Core
Intel processors, 64 GB Ram, and ATl Radeon HD 5870
graphics card. Figures 2 to 8 show the experimental re-
sults of applying all the algorithms to seven Benchmark
functions with different values of parameters. As can be
seen, the MSCA for most parameters has better conver-
gence to the minimum of the Benchmark functions than
the other optimization algorithms. This proves that MSCA
is able to avoid becoming trapped in local optima in the
problem space and to achieve the global minimum. In the
MSCA, the cells having higher comparative power than
the other cells are very good for global optimization, and
normal self-renewal process for best selected cells is very
efficient for local optimization. Therefore we obtain bet-
ter performance using MSCA in optimizing unimodal and
multimodal functions. For different dimensions (10, 20, 30
and 40) the mean and standard derivation (SD) function
values of the best solution found by the algorithms (GA,
PSO, ACO, ABC, SCA and MSCA) are shown in Tables A.1
to A.7 in the Appendix.

For comparison between the SCA and the MSCA, different
parameters values of these algorithms were used, which are
given in Table 3. Figure 9 shows the results when these
algorithms are run on the Quartic function. The effect of
scalability on the computational complexity of SCA and
MSCA for Rosenbrock function as described in [11] has
also been computed. Code execution time (7), execution
time of Rosenbrock function for 200,000 evaluations and
for five runs (T7), and mean of the MSCA execution time
on Rosenbrock function for 200,000 evaluations (fz) were
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Table 1. Benchmark functions

Function Global Min Search range Initial range Formulae
Sphere 0 [-100, 100]  [—100, 50] Y P.x?
Rosenbrock 0 [-2.04,2.04] [-2.04,0] Y23 [100(xi1 — x2)? + (xi — 1)7]
-02/1 D 2
Ackley 0 [-327,327] [-327,16] 20+ e— 209( D L ) — oD Xy cos(2mx)
Griewank 0 [600, 600]  [~600, 200] e (Zf’:1 (xi — 100)2) - (|‘|f’=1 cos (%)) +1
Weierstrass 0 (05,05 [-0502 Y2, (ngg [a? cos (27b¥ (x; + 0.5))]) — DY ke [a* cos(2bk0.5)],
a =05, b=3, kpa =20
Non-continuous 0 [-5.12,512] [-5.12, 2] ZiD:1 (y? — 10 cos(2y;) + 10)
Rastrigin
1
Xi Xi| < 5
yi= bl 2
d(2x;
foundl2) | > 4
Schwefel 0 [~500, 500]  [~500, 200] 418.9829D — Y 2, —x;sin (\/|x,'|)
Quartic 0 [-1.28,128] [-1.28, 0] Y 2 ix! + rand[0,1]

Table 2. Vvalues of parameters of each of six algorithms.

Algorithm Parameters Value
Population 100
Crossover 0.95
GA Mutation rate 0.001
Number of Iterations 1000
Number of Swarm 100
P =¢2 2
PSO M/min 0.7
Winax 0.9
Number of Iterations 500
Population 100
Probability threshold for maximum trail 0.95
ACO Local search probability 0.01
Evaporation rate 0.01
Number of Iterations 1000
Population 100
Number of Sites Selected for Neighborhood Search 10
ABC Number of Bees Recruited for Best Sites 5
Number of Iterations 500
Population 50
Cmin 0.01 or 0.98
SCA G 098
Number of Iterations 500
Population 50
Cmin 0.01 or 0.98
MSCA Cno 0.98
a=p 0.1
Number of Iterations 500
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Figure 2. The results of applying different algorithms on Sphere function.
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Figure 3. The results of applying different algorithms on Rosenbrock function.
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Figure 4. The results of applying different algorithms on Ackley function.
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Figure 5. The results of applying different algorithms on Griewank function.
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Figure 6. The results of applying different algorithms on Weierstrass function.
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Table 3. Parameter values for comparison between SCA and MSCA.
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Figure 8. The results of applying different algorithms on Schwefel function.

Algorithm

Parameters and Values

Figure

SCA (1)

Population = 100
Cmin = 0.01
Zmax =098
Number of Iterations = 1000

Fig. 9(a)

SCA (2)

Population = 50
Cmin = 0.0236
Cmax = 0.765
Number of Iterations = 1000

Fig. 9(b)

SCA (3)

Population = 50
Cmin = 0.0683
cmux = 0.587
Number of Iterations = 1000

Fig. 9(c)

MSCA (1)

Population = 50
(min = 0.01
(max =0.98
a=pB=0.1
Number of Iterations = 500

Fig. 9(a)

MSCA (2)

Population = 100
Cmin = 0.0126
(max = 0.628
a=pB=0.17
Number of Iterations = 1000

Fig. 9(b)

MSCA (3)

Population = 50
Cmin = 0.0278
Cmax = 0.0179
a=B=1
Number of Iterations = 500

Fig. 9(c)

determined. The complexity of algorithm was computed by
{(fz - T1)/T0}. These results are presented in Tables 4

and 5.

In order to further evaluate the proposed algorithm (MSCA),

we considered the performance of the MSCA using 25
functions from Suganthan et al. (2005). These 25 functions
consist of two categories:

The first one is Unimodal: F; (Shifted Sphere
Function), F, (Shifted Schwefel's problem 1.2), F3
(Shifted Rotated High Conditioned Elliptic Function),
F4 (Shifted Schwefel's Problem 1.2 with Noise in Fit-
ness), F5 (Schwefel's Problem 2.6 with global Optimum
on Bounds).

The second one is Multimodal: Basic Functions: Fg
(Shifted Rosenbrock’s Function), F7 (Shifted Rotated
Griewank’s Function without Bounds), Fg (Shifted
Rotated Ackley’s Function with Global Optimum on
Bounds), Fg (Shifted Rastrigin’s Function), F1o (Shifted
Rotated Rastrigin's Function), Fy; (Shifted Rotated
Weierstrass Function), F; (Shifted Schwefel's Prob-
lem 2.13); Expanded Functions: F;3 (Expanded Ex-
tended Griewank’s plus Rosenbrock’s Function), Fy4
(Shifted Rotated Expanded Scaffer’s); Hybrid Com-
position Functions: Fi5 (Shifted Rosenbrock’s Func-
tion), Fy (Shifted Rotated Griewank’s Function with-
out Bounds), Fy7 (Shifted Rotated Ackley’s Function
with Global Optimum on Bounds), Fqg (Shifted Rastri-
gin's Function), Fyg (Shifted Rotated Rastrigin's Func-
tion), Fyo (Shifted Rotated Weierstrass Function), F2
(Shifted Schwefel’s Problem 2.13, F», (Shifted Schwe-
fel's Problem 2.13, F,3 (Shifted Schwefel's Problem
213, Fy4 (Shifted Schwefel's Problem 2.13, F55 (Shifted
Schwefel’s Problem 2.13).
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Figure 9. Comparison between SCA and MSCA with different parameters values on Quartic
function.
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Table 4. Time Complexity of the SCA on Rosenbrock function.

Dimension To Ty Ty = Mean(T>) {(;iomp-l;ji/t?— }
2—TN)lTo
10 0.39927817625823  0.20988767289342  0.57988724772683 0.92667
30 0.39927817625823  0.24738567228916  0.89625433462671 1.6251
50  0.39927817625823  0.27345764267899  0.90256784472897 1.6002
100 0.39927817625824  0.46986606725426 1.12873455627842 1.6501
Table 5. Time Complexity of the SCA on Rosenbrock function.
Dimension To Ty Ty = Mean(T>) {(?—omp;t_eji/t? }
2—TN)lTo
10 0.31672837928782  0.19256673894299  0.37909441607317  0.58892
30 0.31672837928782  0.19875367435536  0.44652395090463 0.78228
50  0.31672837928782  0.21894465785268  0.53537444385587  0.99891
100 0.31672837928782  0.26987782534622  0.70819822944263 1.38391
The results of applying the proposed algorithms on the 10° ' ' ' ' i
25 functions are shown in Figures 10 to 14. Moreover the % —
results of applying other algorithms in comparison with 10°] i —
the proposed algorithm for a particular function are shown =
in Figure 15. Figure 10 to 15 show the error, which is 10
the mean difference between original functions and those § o
estimated by an algorithm versus function evaluations. This g -
performance evaluation is a standard assessment used in 1075 _\_,k
most reported studies.
Most of the mentioned optimization algorithms in this paper 10°20
achieved good results but not as well as the presently &
proposed method (MSCA) since the other algorithms are 102 .

intensively depended on the adjustment of their parameters.
For instance, for the ABC algorithm, we need to change its
parameters (for example, MR, SF, etc.) for each function
to obtain a good result for that function. The obtained
results shown in Figures 1010 to 15 confirm our argument.

5. Discussion

The genetic algorithm implements the law of survival of
the fittest with a focus on the existing solutions in order
to reach a better solution. The genetic algorithm suffers
a lot from too much dependency on such functions as se-
lection, mutation, crossover, etc.,, and on the conditions
of the problem and the initial conditions; a weak selec-
tion of these constraints and parameters has a remarkable
influence on the function of the genetic algorithm (GA).
Despite the existence of methods to improve the GA, it is
still suboptimal (unresponsive, poorly responsive, or weak)
for problems with continuous and discontinuous spaces,
with high dimensions of early convergence, or repeated

@ 05 1 15 2 25 3
Function evaluations 5
x 10

Figure 10. The results of applying the MSCA on F;—F5 (Convergence
of Functions F1—Fs).

interruptions. For instance, when some weak members join
the referenced set and the continuation of examinations in
the sample space is stopped, a most appropriate chromo-
some is selected for reproduction. As a result, the offspring
becomes similar to its parent and thus the chromosomes
become very similar to each other. As a result, before
reaching the optimal solution, early convergence is formed.
The particle swarm optimization (PSO) algorithm has a
very simple implementation, but it also suffers from early
convergence. Although the PSO algorithm has a more
reasonable speed than other optimization algorithms [12],
it cannot optimize the quality of solutions by increasing
the number of iterations. This issue is more visible when
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Figure 11. The results of applying the MSCA on Fe—F;o (Conver-
gence of Functions Fg—F1p).
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Figure 12. The results of applying the MSCA on Fy1—F;5 (Conver-
gence of Functions Fi1—F;s).

examining and optimizing multi-model problems. The rea-
son for its occurrence in g,sPSO is that the particles
become convergent in one specific point, while this point is
located on one line, between the best global position and
the best individual position. Other problems arise from
too much dependency on regulating the PSO algorithm
parameters.

The ant colony optimization (ACO) algorithm has a high
dependency on the pheromone evaporation rate and the
transfer function, which impacts on the quality of the so-
lution. In this algorithm, by implementing restrictions,
efforts have been made to optimize its performance, but the
problem of early convergence, when the dimensions of the
problem are high, has not been solved, both in continuous
and discrete spaces [7].

Error
=)

0 0.5 1 1.5 2 2.5 3
Function evaluations

x 10°

Figure 13. The results of applying the MSCA on Fis—F» (Conver-
gence of Functions Fig—F2).
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Figure 14. The results of applying the MSCA on F—F»5 (Conver-
gence of Functions Fy1—F2s).

The artificial bee colony (ABC) algorithm has more accu-
racy and speed than other optimization algorithms, but the
use of a roulette wheel in selecting the employed bees and
the relation of employed bees and onlooker bees has not
been implemented into a model appropriately. Therefore
this limitation does distinquish this algorithm from other
optimization algorithms. Research to modify the basics of
the ABC algorithm has able to solve its main limitation by
using control of phase and magnitude, and has achieved
reasonable results [13]. It should be mentioned that in our
study the same algorithm has been used for comparison of
proposed methods, but they have been included within the
context as ABC algorithm.

Other optimization algorithms exist such as the Bat al-
gorithm [14], the Firefly algorithm [15], among others. Al-
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Figure 15. The results of applying different algorithms on F,, (Con-
vergence of Function F», for all algorithms).

though these recently developed algorithms have solved
many of the problems arising from the past optimization al-
gorithms, because of their use of relatively more constraints
and conditions, they have more complexity in implemen-
tation. The Bat algorithm has been able to combine and
use the advantages of other optimization algorithms with
echolocation of the bat, but it has given much complex-
ity to the algorithm and high dependency on the initial
conditions and constraints of the problem.

In this paper, we attempted to cover all major problems
extracted from other optimization algorithms and set forth
a new method for optimization. For instance, with the idea
of placing population in one area and using them, we have
prevented in each implementation of the algorithm the
monotony and consequently the early convergence from
occurring in a single iteration. This approach causes a
sort of mutational improvement of the algorithm, while no
additional constraint has been used in implementing it and
the simplicity and flexibility of the algorithm is maintained.
The observation of the presented results is a good evidence
of the abovementioned issues.

6. Conclusion

The optimization algorithms mostly inspired by the natural
evolutions can produce very good solutions in many com-
plex applications where the traditional algorithms normally
fail. However, the complexity of their implementation and
exhaustive time for their convergence has limited their
wide applicability. In this paper, we have proposed a new
optimization algorithm, the Modified Stem Cells Algorithm
(MSCA), which can successfully overcome the existing

limitations in the previously introduced optimization algo-
rithms, including the genetic algorithm (GA), ant colony
algorithm (ACO), particle swarm optimization (PSO) algo-
rithm, and artificial bee colony (ABC) algorithm. We have
evaluated the proposed algorithm on a series of benchmark
functions and the obtained results that, when compared
with other optimization algorithms, have demonstrated the
superior performance of the MSCA.

Abbreviations

Genetic Algorithm GA
Particle Swarm Optimization PSO
Ant Colony Optimization ACO
Artificial Bee Colony Algorithm ABC
Stem Cells Algorithm SCA

Modified Stem Cells Algorithm MSCA

Appendix A

Table A.1. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Sphere function.

Dimensions 10 20 30 40
CA Mean 0.0046 0.0088 0.0167 0.0796
SD 0.004 0.0057 0.0097 0.0356
PSO Mean 6.16E-16 733E-11 3.87E-07 9.22E-06
SD 232E-14 276E-13 3.84E-09 3.78E-09
ACO Mean 0.0083 0.0103 0.0534 0.0893
SD 0.0061 0.0087 0.0102 0.0367
ABC Mean 9.87E-18 1.26E-16 3.77E-16 4.65E-14
SD 421E-16 7.78E-16 8.36E-16 3.81E-13
SCA Mean 8.26E-18 891E-17 0.17E-16 213E-14
SD 278E-16 9.07E-16 0.06E-15 6.01E-13
MSCA Mean 7.17E-19 4.26E-18 6.57E-17 6.14E-16

SD 478E-18 498E-17 7.86E-16 8.21E-14

Table A.2. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Rosenbrock function.

Dimensions 10 20 30 40
GA Mean  2.563 7.865 13.757 23.456
SD 1.763 3.678 9.457 17.642
PSO Mean 0.876 1.342 9.453 17.453
SD 1.124 3.751 7.563 15.674
ACO Mean 5.753 11.456 19.453 27.567
SD 4.436 8.456 16.456 31.456
ABC Mean 1.25E-02 1.76E-00 7.14E+1 216E+3
SD 236E-02 576E-00 1.17E+1 0.68E+2
SCA Mean 1.76E-03 3.36E-02 2.88E-01 1.09E+1
SD 9.25E-03 0.22E-01 2.27E-00 6.23E+1
MSCA Mean 0.06E-03 1.14E-03 4.46E-01 7.66E-00

SD 1.02E-04 7.26E-03 3.77E-03 7.66E-01
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Table A.3. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Ackley function.

Table A.6. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Non-continuous Rastrigin function.

Dimensions 10 20 30 40 Dimensions 10 20 30 40
CA Mean 0.63 0.89 113 3.78 CA Mean  0.165 0.945 3.768 11.435
SD 0.32 0.35 0.37 0.57 SD 0.734 1.674 8.546 14.35
PSO Mean 6.8E-12 46E-07 3.6E-06 3.2E-03 PSO Mean 0.000023 0.000578 0.00124 0.0235
SD 72E-13  6.2E-08 57E-06 6.1E-02 SD 0.000012 0.000342 0.00676 0.0134
ACO Mean 0.28 0.56 0.63 0.97 ACO Mean 0.000017 0.000427 0.00036 0.0016
SD 0.29 0.31 0.42 0.73 SD 0.000009 0.000127 0.00379 0.00231
ABC Mean 0.26E-24 1.72E-19 8.17E-11 6.21E-09 ABC Mean 3.67E-16 1.22E-11 2.84E-08 255E-04
SD 1.35E-22 6.01E-17 6.12E-12 1.65E-09 SD 1.88E-15 276E-13 4.56E-09 1.08E-04
SCA Mean 1.73E-23 3.47E-20 8.1E-14  0.01E-11 SCA Mean 1.28E-16 822E-14 9.82E-11 1.64E-07
SD 478E-22 811E-20 3.62E-13 2.02E-10 SD 0.26E-16 0.74E-14 0.17E-12 0.03E-07
MSCA Mean 0.71E-28 9.23E-21 1.01E-16 1.26E-13 MSCA Mean 2.16E-18 476E-17 8.77E-14 2.67E-11
SD 1.01E-25 256E-19 1.07E-14 1.28E-14 SD 1.66E-17 856E-16 1.23E-11 2.83E-11

Table A.4. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Griewank function.

Dimensions 10 20 30 40
GA Mean  0.069 1.01 1.29 2.79
SD 0.05 0.015 0.123 0.283
PSO Mean 0.0065 0.0014 0.0017 0.024
SD 0.0037 0.0026 0.0048 0.014
ACO Mean 0.036 0.096 0.086 0.097
SD 0.019 0.023 0.028 0.042
ABC Mean 1.02E-03 1.27E-03 1.77E-02 1.34E-01
SD 1.22E-04 1.38E-03 1.29E-02 2.88E-02
SCA Mean 0.38E-05 0.28E-04 0.02E-02 0.14E-01
SD 755E-04 277E-03 1.08E-02 0.08E-02
MSCA Mean 1.17E-06 223E-06 6.11E-05 7.11E-03
SD 256E-05 7.31E-05 1.17E-04 1.27E-04

Table A.5. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Weierstrass function.

Dimensions 10 20 30 40
CA Mean 0.123 0.632 1.352 7.653
SD 0.023 1.865 2.768 4.786
PSO Mean  0.0002 0.0096 0.0167 1.677
SD 0.0034 0.0082 0.0734 0.0962
ACO Mean 0.008 0.028 0.787 1.256
SD 0.001 0.006 0.154 1.234
ABC Mean 0.22E-22 6.92E-19 1.24E-14 6.98E-11
SD 1.06E-21 3.76E-17 7.27E-13 2.67E-09
SCA Mean 3.66E-20 7.02E-18 4.16E-13 1.92E-10
SD 0.03E-19 1.04E-16 8.27E-13 0.07E-08
MSCA Mean 6.14E-29 1.18E-24 1.22E-18 2.66E-16
SD 0.82E-27 1.87E-23 213E-17 4.19E-16
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