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Abstract: In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in
reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm
Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm,
can give solutions to linear and non-linear problems near to the optimum for many applications; however, in
some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an
optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved
cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in
the implementation of this algorithm to obtain improved performance over previous versions. Using a series of
benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other
aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells
Algorithm (MSCA).
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1. Introduction

The meta-heuristic algorithms are mostly derived from thebehavior of biological systems (such as Genetic Algorithm(GA), Particle Swarm Optimization (PSO), Stem CellsAlgorithm (SCA)), or physical systems (such as SimulatedAnnealing (SA)), among others. Some of the main reasonsfor selection and development of these algorithms are their
∗E-mail: mtaherdangkoo@yahoo.com

simplicity in formulation and the good understanding ofthe development of these processes.Optimization algorithms have been mainly inspired bynatural evolution. The most famous one is the geneticalgorithm [1], which is based on the idea of evolution in thenature and looks into a given problem on a fully randombasis. This method is based on biological techniquessuch as genetics and mutation; the search is carried outto find better responses in each generation compared tothe previous one. Among the key features of the geneticalgorithm are its ability to run in parallel and its capabilityfor searching very large and complex spaces [2].
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Another well-known optimization algorithm is ParticleSwarm Optimization (PSO), first proposed by Kennedyand Eberhart [3], and proven useful for continuous anddiscrete functions [4]. In this algorithm each particleas a member of the society uses the experiences of itsprevious particle as well as those of others in order toreach the ultimate goal. This algorithm is able to find theglobal optimum of the function in question in consequentiterations [5].The third optimization algorithm that has been consideredby many researchers is Ant Colony Optimization (ACO)algorithm [6], used to solve the salesman problem. Thisalgorithm was inspired by studies and observations onthe behavior of ants in their colony. Its implementationis based on the behavior of ants when searching foodfor the survival of their colony, by considering the be-havior whereby ants scatter a chemical material calledpheromone as they move, which evaporates and impressesthe others on their move, so that eventually the ants canreach the food source (optimal response) [7]. One of thedisadvantages of this algorithm is its poor criterion foriteration ending, because the process will continue untilreaching the maximum number of ants available to search,lacking improvement. In addition it is very dependent onthe move transfer function and the pheromone evaporationrate. Although these problems have been solved for manyapplications, this has been the reason for it not beingwidely used in the medical engineering field, especiallyin the medical image segment where generally a uniquemeasure function that is consistent with the terms of thisalgorithm cannot be designed.Lastly, the Artificial Bee Colony (ABC) algorithm [8] wasinspired by the social behavior of honey bees in findingfood. In this algorithm, three types of bees (employer,onlooker and scout) are used, but only the employer beeis capable of becoming a scout bee. Employer bees areresponsible for searching a designated space, and theyreturn to the hive and share the gathered information withonlooker bees after storing the location of food sources andits nectar content in its memory. Onlooker bees select anemployer bee that contains the highest amount of nectaraccording to classification of food sources. The employerbee then becomes a scout bee and begins to recruit otherbees. It then moves with recruited bees toward the foodsource in order to drain the nectar. This process willcontinue until the entire space is covered and the optimalresponse is achieved. Having low level of computation andfairly good flexibility are considered as the advantages ofthis algorithm.In this paper, we have extended the performance of theStem Cells Algorithm (SCA) for real parameter optimizationon unimodal and multimodal functions, and have comparedits performance to that of the aforementioned algorithms.

2. Stem cells algorithm
The stem cells algorithm has been introduced as one of thenewest optimization algorithms for optimizing numericalfunctions and data clustering [9, 10]. This algorithm wasintroduced and implemented on the basis of stem cellsbehavior in the human body (at the time of entering intothe body). In general, finding injured and weak organs isthe main goal of this algorithm. Each of these organs isan optimum solution for solving all kinds of optimizationproblems. In order to implement this algorithm, multidi-mensional and self-renewal properties of stem cells areused. A brief introduction of the algorithm is as follows. Aninitial matrix which is composed of the problem variables,namely stem cells properties that are inherent, is formed.For example, we can point to the multidimensional propertyas the ability of a stem cell transforming into the marrowcells, blood cells, etc. The initial matrix is defined as:

SCi = [SCi1, SCi2, . . . , SCiD ]
i = 1, 2, . . . , S (1)

where S represents the total number of cells participatingin the implementation process of the algorithm and D isthe dimension of the problem space.In this algorithm, an initial population is selected from themembers, and then in subsequent iterations new membersare added to the old population by a specific percentagefraction. This specific percentage of increment is deter-mined before the implementation of the algorithm. Hencethe algorithm starts by using only a part of the totalmembers; if a large population was selected early dur-ing the implementation of the optimization algorithm, itwould cause numerous iterations, high time consumptionand occasionally trapping in local minimums.The initial population is selected so that its distributionis uniformly and randomly extended in the problem space.Then a cost function for each cell is defined as:
Cost(SCi) =


1

a+ fi
fi ≥ 01 + |fi| fi > 0 (2)

where a is a positive random number in interval [0,1], butfor more cases with normal complex (for example Dimension(D) < 50), a is a constant with value 1, and fi is the costvalue of the solution SCi. For maximization problems, thecost function can be directly used as a fitness function.Then the cost of each cell is normalized by:
CostN (SC )n) = Max

[
Cost(SCi)]− Cost(SCn) (3)
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where Cost(SCn) is the cost of the nth stem cell,
Max

[
Cost(SCi)] is the maximum cost among stem cellsand CostN (SC )n) is the normalized cost of the nth stemcell.Each cell that has a higher cost is a weaker cell and thusits normalized cost is lower. The ultimate parameter indetermining the best stem cell (optimum solution) is therelative potency (i.e. the potential of each stem cell indifferentiating between different cell types, for examplebone marrow cells and blood cells). It is derived as follow:

Pn = CostN (SCn)∑S
i=1 CostN (SCi) (4)

∑S
i=1 CostN (SCn) is the total cost of stem cells. Fromanother point of view, Pn is the comparative power of the

nth cell. After calculating comparative power of each cell,its value is saved in the memory of each cell. Then eachof these cells shares information saved in its memory andfinally this information is classified in a table from highestto the lowest order.A part of the cells (e.g. one third of them) located atthe upper range of the table are permitted to participatein self-renewal process and they form a portion of theattended population in a next iteration (e.g. 60% of theattended population in a next iteration). The rest of thepopulation is randomly selected from the cells that haveno information from the problem space. The self-renewalprocess is done by the equation below:
SCOptimum(t + 1) = ζ × SCOptimum(t) (5)

where t represents each cycle (iteration) and ζ is a randomnumber in the interval [0,1].For the sake of simplicity in implementing the self-renewalprocess, which occurs similarly and reciprocally, ζ = 0.96is set for similar self-renewal and ζ = 0.01 for mutualself-renewal. Also in some problems where problem spacedimension is high or the problem is highly complex, onecould utilize both self-renewal processes simultaneouslyin order to prevent uniformity in reaching the optimumsolution. When using this algorithm in single variableproblems, the goal is the formation of an organ and thealgorithm would continue until reaching a complete organ.But when the objective is obtaining optimum values of twoor more variables, the goal is to reach to two or morecomplete organs that justify the multidimensional propertyof stem cells.
3. Modified stem cells algorithm
As mentioned in the previous section regarding the mainalgorithm of stem cells, self-renewal process is done either

similarly or mutually. Although this process has someadvantages in numerical functions, this method can leadto difficulties in applying it to multi-objective functionsor data classification. In addition, convergence processslows down and the time to reach the optimum solutionor ideal classification can increase. In this work, we sig-nificantly improved the algorithm’s performance by usingRechenberg’s 1/5 Mutation Rule. Here, we improved theself-renewal process by modifying the Equation (5):
SCOptimum(t + 1) = ζ(t + 1)× SCOptimum(t)
ζ(t + 1) = µ(t + 1)× ζ(t)
µ(t + 1) =


µ(t)× 0.85 ℵ < 1/5
µ(t)/0.85 ℵ > 1/5
µ(t ℵ = 1/5

(6)

where the initial ζ is determined before the process ofalgorithm implementation and is a random number in theinterval [0,1], and ℵ is also a random number in the interval[−µ, µ] and is specified before implementing the algorithm.If the algorithm cannot improve the solution with respect toRechenberg’s 1/5 rule (i.e. the ratio of successful mutationsto all mutations ℵ is less than 1/5), µ(t) is decreased. If
ℵ is greater than 1/5, then µ(t) is increased in order tospeed up the search.In the original SCA, after each self-renewal process and inthe next iteration, the distribution of cells was considereduniform and random in the whole problem space, but in thisnew model, the location of each cell self-renewal is in thetable in which highly informative cells have been locatedon the top. Then between each two cells (available spacebetween two cells in the problem space), a Beta distributionis used instead of uniform distribution, in order to createself-renewal process more randomly. Beta distributionprocess of self-renewal cells is defined as:

Beta Distribution = 1
B(α, β)xα−1(1− x)β−1
a < x < b

B(α, β) = ∫ 1
0 xα−1(1− x)β−1dx

= 2∫ 2π
0 (sinθ)2α−1(cosθ)2β−1dθ

(7)

where a and b are the first and second cells participating inthe distribution process and whose positions are specifiedin the table. α and β are two positive symmetric randomnumbers (α, β > 0).The remaining cells participating in the process of al-gorithm implementation have no information about thesample space and their distribution happens uniformly and
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Figure 1. Stem cell self-renewal process, where the color circles
shows the stem cell and the yellow circle is the best stem
cell in the final iteration when the algorithm convergences
to optima.

randomly. Figure 1 shows an example of self-renewalcharacteristics of stem cells until reaching to the optimumcell [10].The pseudo code of the modified stem cells optimizationalgorithm is defined as follows:

4. Experimental results

4.1. Benchmark functions
In order to prove our claim related to the better perfor-mance of our proposed algorithm than other introducedoptimization algorithms, we have compared the efficiencyand the accuracy of the MSCA using Benchmark functions.For all Benchmark functions, 50 runs were applied withdifferent random seeds for generating the random variables,each run contains 5000 iterations, and the population sizewas set to 100 for all optimization algorithms aforemen-tioned except the MSCA. Note that when the space size

goes up (for example, Dimension (D) > 30) the performanceof the optimization algorithms drop dramatically becausethe algorithms encounter several optimal solutions. In suchcases, selected answer in a considered space randomlyadds the complexity to the subject. Table 1 lists the eightBenchmark functions.
4.2. Settings for algorithms
The number of maximum generations and population sizeare common control parameters of the algorithms. In theexperiments conducted, maximum number of generations forthe dimensions (D) of 10, 20, 30 and 40 are considered tobe 500, 750 and 1000, respectively. Table 2 shows othercontrol parameters of the algorithms and the schemes,along with the values of these control parameters appliedfor GA, PSO, ACO, ABC and SCA and MSCA.
4.3. Comparison
Fifty runs were applied with different random seeds forgenerating the random variables, each containing 5000iterations. Computations were performed in Matlab on acomputer running Macintosh OS, two 2.93 GHz 6-CoreIntel processors, 64 GB Ram, and ATI Radeon HD 5870graphics card. Figures 2 to 8 show the experimental re-sults of applying all the algorithms to seven Benchmarkfunctions with different values of parameters. As can beseen, the MSCA for most parameters has better conver-gence to the minimum of the Benchmark functions thanthe other optimization algorithms. This proves that MSCAis able to avoid becoming trapped in local optima in theproblem space and to achieve the global minimum. In theMSCA, the cells having higher comparative power thanthe other cells are very good for global optimization, andnormal self-renewal process for best selected cells is veryefficient for local optimization. Therefore we obtain bet-ter performance using MSCA in optimizing unimodal andmultimodal functions. For different dimensions (10, 20, 30and 40) the mean and standard derivation (SD) functionvalues of the best solution found by the algorithms (GA,PSO, ACO, ABC, SCA and MSCA) are shown in Tables A.1to A.7 in the Appendix.For comparison between the SCA and the MSCA, differentparameters values of these algorithms were used, which aregiven in Table 3. Figure 9 shows the results when thesealgorithms are run on the Quartic function. The effect ofscalability on the computational complexity of SCA andMSCA for Rosenbrock function as described in [11] hasalso been computed. Code execution time (T0), executiontime of Rosenbrock function for 200,000 evaluations andfor five runs (T1), and mean of the MSCA execution timeon Rosenbrock function for 200,000 evaluations (T̂2) were
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Table 1. Benchmark functions

Function Global Min Search range Initial range Formulae
Sphere 0 [−100, 100] [−100, 50] ∑D

i=1 x2
i

Rosenbrock 0 [−2.04, 2.04] [−2.04, 0] ∑D−1
i=1 [100(xi+1 − x2

i )2 + (xi − 1)2]
Ackley 0 [−32.7, 32.7] [−32.7, 16] 20 + e − 20e( −0.2√ 1

D
∑D
i=1 x2

i

)
− e

1
D
∑D
i=1 cos(2πxi)

Griewank 0 [−600, 600] [−600, 200] 14000 (∑D
i=1(xi − 100)2)− (∏D

i=1 cos ( xi−100√
i

)) + 1
Weierstrass 0 [−0.5, 0.5] [−0.5, 0.2] ∑D

i=1 (∑kmax
k=0 [a2 cos (2πbk (xi + 0.5))])−D∑kmax

k=0 [ak cos(2πbk0.5)],
a = 0.5, b = 3, kmax = 20

Non-continuousRastrigin 0 [−5.12, 5.12] [−5.12, 2] ∑D
i=1 (y2

i − 10 cos(2πyi) + 10)
yi =

xi |xi| < 12
round(2xi)2 |xi| ≥ 12Schwefel 0 [−500, 500] [−500, 200] 418.9829D −∑D

i=1−xi sin (√|xi|)
Quartic 0 [−1.28, 1.28] [−1.28, 0] ∑D

i=1 ix4
i + rand [0, 1]

Table 2. Values of parameters of each of six algorithms.

Algorithm Parameters Value
GA PopulationCrossoverMutation rateNumber of Iterations

1000.950.0011000
PSO

Number of Swarm
φ1 = φ2
Wmin
WmaxNumber of Iterations

10020.70.9500
ACO

PopulationProbability threshold for maximum trailLocal search probabilityEvaporation rateNumber of Iterations
1000.950.010.011000

ABC PopulationNumber of Sites Selected for Neighborhood SearchNumber of Bees Recruited for Best SitesNumber of Iterations
100105500

SCA Population
ζmin
ζmaxNumber of Iterations

500.01 or 0.980.98500
MSCA

Population
ζmin
ζmax
α = βNumber of Iterations

500.01 or 0.980.980.1500
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Figure 2. The results of applying different algorithms on Sphere function.

Figure 3. The results of applying different algorithms on Rosenbrock function.

41



An efficient algorithm for function optimization: modified stem cells algorithm

Figure 4. The results of applying different algorithms on Ackley function.

Figure 5. The results of applying different algorithms on Griewank function.
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Figure 6. The results of applying different algorithms on Weierstrass function.

Figure 7. The results of applying different algorithms on Non-continuous Rastrigin function.
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Figure 8. The results of applying different algorithms on Schwefel function.

Table 3. Parameter values for comparison between SCA and MSCA.Algorithm Parameters and Values Figure
SCA (1) Population = 100

ζmin = 0.01
ζmax = 0.98Number of Iterations = 1000 Fig. 9(a)

SCA (2) Population = 50
ζmin = 0.0236
ζmax = 0.765Number of Iterations = 1000 Fig. 9(b)

SCA (3) Population = 50
ζmin = 0.0683
ζmax = 0.587Number of Iterations = 1000 Fig. 9(c)

MSCA (1)
Population = 50
ζmin = 0.01
ζmax = 0.98
α = β = 0.1Number of Iterations = 500

Fig. 9(a)

MSCA (2)
Population = 100
ζmin = 0.0126
ζmax = 0.628
α = β = 0.17Number of Iterations = 1000

Fig. 9(b)

MSCA (3)
Population = 50
ζmin = 0.0278
ζmax = 0.0179
α = β = 1Number of Iterations = 500

Fig. 9(c)

determined. The complexity of algorithm was computed by{(T̂2 − T1)/T0}. These results are presented in Tables 4and 5.

In order to further evaluate the proposed algorithm (MSCA),we considered the performance of the MSCA using 25functions from Suganthan et al. (2005). These 25 functionsconsist of two categories:• The first one is Unimodal: F1 (Shifted SphereFunction), F2 (Shifted Schwefel’s problem 1.2), F3(Shifted Rotated High Conditioned Elliptic Function),
F4 (Shifted Schwefel’s Problem 1.2 with Noise in Fit-ness), F5 (Schwefel’s Problem 2.6 with global Optimumon Bounds).• The second one is Multimodal: Basic Functions: F6(Shifted Rosenbrock’s Function), F7 (Shifted RotatedGriewank’s Function without Bounds), F8 (ShiftedRotated Ackley’s Function with Global Optimum onBounds), F9 (Shifted Rastrigin’s Function), F10 (ShiftedRotated Rastrigin’s Function), F11 (Shifted RotatedWeierstrass Function), F12 (Shifted Schwefel’s Prob-lem 2.13); Expanded Functions: F13 (Expanded Ex-tended Griewank’s plus Rosenbrock’s Function), F14(Shifted Rotated Expanded Scaffer’s); Hybrid Com-position Functions: F15 (Shifted Rosenbrock’s Func-tion), F16 (Shifted Rotated Griewank’s Function with-out Bounds), F17 (Shifted Rotated Ackley’s Functionwith Global Optimum on Bounds), F18 (Shifted Rastri-gin’s Function), F19 (Shifted Rotated Rastrigin’s Func-tion), F20 (Shifted Rotated Weierstrass Function), F21(Shifted Schwefel’s Problem 2.13, F22 (Shifted Schwe-fel’s Problem 2.13, F23 (Shifted Schwefel’s Problem2.13, F24 (Shifted Schwefel’s Problem 2.13, F25 (ShiftedSchwefel’s Problem 2.13).
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(a)

(b)

(c)
Figure 9. Comparison between SCA and MSCA with different parameters values on Quartic

function.

45



An efficient algorithm for function optimization: modified stem cells algorithm

Table 4. Time Complexity of the SCA on Rosenbrock function.

Dimension T0 T1 T̂2 = Mean(T2) Complexity{(T̂2 − T1)/T0}10 0.39927817625823 0.20988767289342 0.57988724772683 0.9266730 0.39927817625823 0.24738567228916 0.89625433462671 1.625150 0.39927817625823 0.27345764267899 0.90256784472897 1.6002100 0.39927817625824 0.46986606725426 1.12873455627842 1.6501
Table 5. Time Complexity of the SCA on Rosenbrock function.

Dimension T0 T1 T̂2 = Mean(T2) Complexity{(T̂2 − T1)/T0}10 0.31672837928782 0.19256673894299 0.37909441607317 0.5889230 0.31672837928782 0.19875367435536 0.44652395090463 0.7822850 0.31672837928782 0.21894465785268 0.53537444385587 0.99891100 0.31672837928782 0.26987782534622 0.70819822944263 1.38391

The results of applying the proposed algorithms on the25 functions are shown in Figures 10 to 14. Moreover theresults of applying other algorithms in comparison withthe proposed algorithm for a particular function are shownin Figure 15. Figure 10 to 15 show the error, which isthe mean difference between original functions and thoseestimated by an algorithm versus function evaluations. Thisperformance evaluation is a standard assessment used inmost reported studies.Most of the mentioned optimization algorithms in this paperachieved good results but not as well as the presentlyproposed method (MSCA) since the other algorithms areintensively depended on the adjustment of their parameters.For instance, for the ABC algorithm, we need to change itsparameters (for example, MR, SF, etc.) for each functionto obtain a good result for that function. The obtainedresults shown in Figures 1010 to 15 confirm our argument.
5. Discussion
The genetic algorithm implements the law of survival ofthe fittest with a focus on the existing solutions in orderto reach a better solution. The genetic algorithm suffersa lot from too much dependency on such functions as se-lection, mutation, crossover, etc., and on the conditionsof the problem and the initial conditions; a weak selec-tion of these constraints and parameters has a remarkableinfluence on the function of the genetic algorithm (GA).Despite the existence of methods to improve the GA, it isstill suboptimal (unresponsive, poorly responsive, or weak)for problems with continuous and discontinuous spaces,with high dimensions of early convergence, or repeated

Figure 10. The results of applying the MSCA on F1–F5 (Convergence
of Functions F1–F5).

interruptions. For instance, when some weak members jointhe referenced set and the continuation of examinations inthe sample space is stopped, a most appropriate chromo-some is selected for reproduction. As a result, the offspringbecomes similar to its parent and thus the chromosomesbecome very similar to each other. As a result, beforereaching the optimal solution, early convergence is formed.The particle swarm optimization (PSO) algorithm has avery simple implementation, but it also suffers from earlyconvergence. Although the PSO algorithm has a morereasonable speed than other optimization algorithms [12],it cannot optimize the quality of solutions by increasingthe number of iterations. This issue is more visible when
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Figure 11. The results of applying the MSCA on F6–F10 (Conver-
gence of Functions F6–F10).

Figure 12. The results of applying the MSCA on F11–F15 (Conver-
gence of Functions F11–F15).

examining and optimizing multi-model problems. The rea-son for its occurrence in gbestPSO is that the particlesbecome convergent in one specific point, while this point islocated on one line, between the best global position andthe best individual position. Other problems arise fromtoo much dependency on regulating the PSO algorithmparameters.The ant colony optimization (ACO) algorithm has a highdependency on the pheromone evaporation rate and thetransfer function, which impacts on the quality of the so-lution. In this algorithm, by implementing restrictions,efforts have been made to optimize its performance, but theproblem of early convergence, when the dimensions of theproblem are high, has not been solved, both in continuousand discrete spaces [7].

Figure 13. The results of applying the MSCA on F16–F20 (Conver-
gence of Functions F16–F20).

Figure 14. The results of applying the MSCA on F21–F25 (Conver-
gence of Functions F21–F25).

The artificial bee colony (ABC) algorithm has more accu-racy and speed than other optimization algorithms, but theuse of a roulette wheel in selecting the employed bees andthe relation of employed bees and onlooker bees has notbeen implemented into a model appropriately. Thereforethis limitation does distinguish this algorithm from otheroptimization algorithms. Research to modify the basics ofthe ABC algorithm has able to solve its main limitation byusing control of phase and magnitude, and has achievedreasonable results [13]. It should be mentioned that in ourstudy the same algorithm has been used for comparison ofproposed methods, but they have been included within thecontext as ABC algorithm.Other optimization algorithms exist such as the Bat al-gorithm [14], the Firefly algorithm [15], among others. Al-
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Figure 15. The results of applying different algorithms on F22 (Con-
vergence of Function F22 for all algorithms).

though these recently developed algorithms have solvedmany of the problems arising from the past optimization al-gorithms, because of their use of relatively more constraintsand conditions, they have more complexity in implemen-tation. The Bat algorithm has been able to combine anduse the advantages of other optimization algorithms withecholocation of the bat, but it has given much complex-ity to the algorithm and high dependency on the initialconditions and constraints of the problem.In this paper, we attempted to cover all major problemsextracted from other optimization algorithms and set fortha new method for optimization. For instance, with the ideaof placing population in one area and using them, we haveprevented in each implementation of the algorithm themonotony and consequently the early convergence fromoccurring in a single iteration. This approach causes asort of mutational improvement of the algorithm, while noadditional constraint has been used in implementing it andthe simplicity and flexibility of the algorithm is maintained.The observation of the presented results is a good evidenceof the abovementioned issues.
6. Conclusion
The optimization algorithms mostly inspired by the naturalevolutions can produce very good solutions in many com-plex applications where the traditional algorithms normallyfail. However, the complexity of their implementation andexhaustive time for their convergence has limited theirwide applicability. In this paper, we have proposed a newoptimization algorithm, the Modified Stem Cells Algorithm(MSCA), which can successfully overcome the existing

limitations in the previously introduced optimization algo-rithms, including the genetic algorithm (GA), ant colonyalgorithm (ACO), particle swarm optimization (PSO) algo-rithm, and artificial bee colony (ABC) algorithm. We haveevaluated the proposed algorithm on a series of benchmarkfunctions and the obtained results that, when comparedwith other optimization algorithms, have demonstrated thesuperior performance of the MSCA.
Abbreviations
Genetic Algorithm GAParticle Swarm Optimization PSOAnt Colony Optimization ACOArtificial Bee Colony Algorithm ABCStem Cells Algorithm SCAModified Stem Cells Algorithm MSCA
Appendix A

Table A.1. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Sphere function.Dimensions 10 20 30 40

GA Mean 0.0046 0.0088 0.0167 0.0796SD 0.004 0.0057 0.0097 0.0356PSO Mean 6.16E-16 7.33E-11 3.87E-07 9.22E-06SD 2.32E-14 2.76E-13 3.84E-09 3.78E-09ACO Mean 0.0083 0.0103 0.0534 0.0893SD 0.0061 0.0087 0.0102 0.0367ABC Mean 9.87E-18 1.26E-16 3.77E-16 4.65E-14SD 4.21E-16 7.78E-16 8.36E-16 3.81E-13SCA Mean 8.26E-18 8.91E-17 0.17E-16 2.13E-14SD 2.78E-16 9.07E-16 0.06E-15 6.01E-13MSCA Mean 7.17E-19 4.26E-18 6.57E-17 6.14E-16SD 4.78E-18 4.98E-17 7.86E-16 8.21E-14

Table A.2. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Rosenbrock function.Dimensions 10 20 30 40

GA Mean 2.563 7.865 13.757 23.456SD 1.763 3.678 9.457 17.642PSO Mean 0.876 1.342 9.453 17.453SD 1.124 3.751 7.563 15.674ACO Mean 5.753 11.456 19.453 27.567SD 4.436 8.456 16.456 31.456ABC Mean 1.25E-02 1.76E-00 7.14E+1 2.16E+3SD 2.36E-02 5.76E-00 1.17E+1 0.68E+2SCA Mean 1.76E-03 3.36E-02 2.88E-01 1.09E+1SD 9.25E-03 0.22E-01 2.27E-00 6.23E+1MSCA Mean 0.06E-03 1.14E-03 4.46E-01 7.66E-00SD 1.02E-04 7.26E-03 3.77E-03 7.66E-01
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Table A.3. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Ackley function.Dimensions 10 20 30 40

GA Mean 0.63 0.89 1.13 3.78SD 0.32 0.35 0.37 0.57PSO Mean 6.8E-12 4.6E-07 3.6E-06 3.2E-03SD 7.2E-13 6.2E-08 5.7E-06 6.1E-02ACO Mean 0.28 0.56 0.63 0.97SD 0.29 0.31 0.42 0.73ABC Mean 0.26E-24 1.72E-19 8.17E-11 6.21E-09SD 1.35E-22 6.01E-17 6.12E-12 1.65E-09SCA Mean 1.73E-23 3.47E-20 8.1E-14 0.01E-11SD 4.78E-22 8.11E-20 3.62E-13 2.02E-10MSCA Mean 0.71E-28 9.23E-21 1.01E-16 1.26E-13SD 1.01E-25 2.56E-19 1.07E-14 1.28E-14
Table A.4. The results of GA, PSO, ACO, ABC, SCA and MSCA for

Griewank function.Dimensions 10 20 30 40
GA Mean 0.069 1.01 1.29 2.79SD 0.05 0.015 0.123 0.283PSO Mean 0.0065 0.0014 0.0017 0.024SD 0.0037 0.0026 0.0048 0.014ACO Mean 0.036 0.096 0.086 0.097SD 0.019 0.023 0.028 0.042ABC Mean 1.02E-03 1.27E-03 1.77E-02 1.34E-01SD 1.22E-04 1.38E-03 1.29E-02 2.88E-02SCA Mean 0.38E-05 0.28E-04 0.02E-02 0.14E-01SD 7.55E-04 2.77E-03 1.08E-02 0.08E-02MSCA Mean 1.17E-06 2.23E-06 6.11E-05 7.11E-03SD 2.56E-05 7.31E-05 1.17E-04 1.27E-04

Table A.5. The results of GA, PSO, ACO, ABC, SCA and MSCA for
Weierstrass function.Dimensions 10 20 30 40

GA Mean 0.123 0.632 1.352 7.653SD 0.023 1.865 2.768 4.786PSO Mean 0.0002 0.0096 0.0167 1.677SD 0.0034 0.0082 0.0734 0.0962ACO Mean 0.008 0.028 0.787 1.256SD 0.001 0.006 0.154 1.234ABC Mean 0.22E-22 6.92E-19 1.24E-14 6.98E-11SD 1.06E-21 3.76E-17 7.27E-13 2.67E-09SCA Mean 3.66E-20 7.02E-18 4.16E-13 1.92E-10SD 0.03E-19 1.04E-16 8.27E-13 0.07E-08MSCA Mean 6.14E-29 1.18E-24 1.22E-18 2.66E-16SD 0.82E-27 1.87E-23 2.13E-17 4.19E-16
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