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THE FUNCTION OF OFFSET
NEURONS IN AUDITORY
INFORMATION PROCESSING

Abstract

Offset neurons which respond to the termination of the sound stimulation may play important roles in
auditory temporal information processing, sound signal recognition, and complex distinction. Two additional
possible mechanisms were reviewed: neural inhibition and the intrinsic conductance property of offset neuron
membranes. The underlying offset response was postulated to be located in the superior paraolivary nucleus of
mice. The biological significance of the offset neurons was discussed as well.
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1. Introduction

The offset responses or neurons were first
demonstrated in the visual system in the 1930s
and were intensively studied thereafter [1-5]. In
the auditory system, offset neurons were first
reported in the bat cochlear nucleus (CN) and
inferior colliculus (IC) [6], then in the auditory
nerve (AN) [7], the CN [8], the medial geniculate
body (MGB) [9] and auditory cortices (AC)
[10,11] of cats, the mouse auditory brain stem
[12,13], the human auditory cortex [14], the
frog AN fibers [15], and the rabbit superior
olivary complexes (SOC) [16]. Even though the
proportion of offset neurons in the auditory
system [17-20] is much lower (< 30%) than in
the visual system, offset neurons are almost
universally recorded with auditory evoked
potential (AEP) recordings, in vivo extracellular
recordings, in vivo intracellular recordings and
in vitro voltage clamp from the peripheral AN
[21] to various nuclei [16,22-24] of the auditory
brain stem pathway and AC [25,26] in different
animal species.

Previous studies observed that there is a
significant asymmetry in the neurophysiological
and perceptual processing of stimulus onsets and
offsets [27-29]. The origins of the asymmetries
of psychophysics and neurophysiology have a
common response threshold mechanism which
adaptively tracks the ongoing level of stimulation
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[30]. For auditory processing and complex
distinction, since sound duration is considered
to be one of the essential information [31], offset
responses encoding the sound termination
may play an important role. As is well known,
onset neurons respond to a stimulus but cannot
distinguish the cessation of one [32]. Auditory
system requires knowledge of the termination
of the tone in order to avoid illusory continuity
of the tone [33]. The reason as to why there are
offset responses has received little attention but
perhaps this is due to difficulty in recording.
Only a small number of offset neurons were
observed in most studies [34-36]. Furthermore,
the failure to record offset responses may be
attributed to barbiturate anesthesia used in
the experiments, since a large number of offset
responses have been reported from awake or
ketamine anesthetized animals [37-40]. Given
the potential functional significance, the offset
response should be further investigated. Until
now we have not seen a review about offset
responses, so it makes sense to review recent
findings about the characters and mechanisms
as well as biological meanings of offset
responses.

2.What is offset response?

In general, acoustic neuronal response to
stimulation can be divided into spontaneous

Na Xu,
Zi-Ying Fu*,
Qi-Cai Chen

School of Life sciences and Hubei Key Lab

of Genetic Regulation and Integrative Biology,
Central China Normal University,

Wuhan, Hubei, China

Received 31 July 2014
accepted 27 August 2014

and evoked responses. Furthermore, evoked
responses may be divided into onset response,
offset response, onset-offset response, and
sustained response, depending on the action
potential (AP) firing triggered by the beginning
or the end of the acoustic stimuli [31]. Different
response patterns could represent distinct
[41],
special local neuronal circuits [42]. Due to the

physiological implications and have
fact that the responses coding the termination
of the sound contain offset and onset-offset
responses, some onset-offset neurons could
be changed into offset responses under some
stimuli conditions [20], so the offset response
that is reviewed also includes the onset-offset
response. Moreover, based on the pattern
of peri-stimulus-time histograms (PSTH), the
offset neurons can be classified into four types:
offset, onset-offset, onset-sustained-offset, and
inhibition-offset (Fig. 1) [31].

Most neurons of the central auditory
that are
[30].
Sometimes the onset response may be

pathway develop responses

dominated by onset responses
represented by a single spike or a burst of
spikes [43,44], which may be shaped by
both adaptive and post-inhibitory onset
responses [43,45]. To some extent, the brevity
of the response is beneficial to ongoing
acoustic streams. It becomes clear that the

onset response is not driven directly by the
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amplitude level of the sound, but by the
transient onset ramp (rate of pressure change,
in the case of linear rise-time pulses) of the
stimulus. This precise temporal characteristic
makes it a hallmark for the induction of
sound, but it cannot detect the termination
of the sound. Considering that the successful
the
preservation of timing information [46], the

auditory scene analysis requires

offset response could be a candidate.

3. Factors influencing the offset
response

Despite the potential functional significance of
offset responses, they have received relatively
little attention compared with onset neurons,
partially due to their small numbers (< 30%)
[17-20]. More prominent offset responses
obtained from A1 of animals reported recently
that they were either awake [38,39,44] or were
anesthetized with ketamine or halothane
[37,47]. According to Zurita et al. [10], offset
neurons under pentobarbital anesthesia
were less evident than under nitrous oxide
anesthesia, which could be a reason why
few offset neurons were recorded using in
vivo single-unit extracellular recording under
pentobarbital anesthesia [34]. Another reason
may be that offset neurons are site-specific, the
onset-offset neurons are located only within
the dorsoposterior division of the central
nucleus of the IC (ICc) [19,48,49], and offset
neuron clusters are always segregated from
onset neuron clusters and form offset sheets
in various divisions of the MGB [20,24]. Besides
the above-mentioned causes, rise-fall time,
intensity, frequency, as well as duration of the
sound stimulation were found to be influencing

factors.

3.1 Rise-fall time

The offset of auditory brainstem response (ABR)
strikingly decrease, eventually disappearing, as
the fall time was prolonged from 0.2 to 2 ms
[48]. Henry [13] and Van Kampen et al. [50] also
showed that offset responses were sensitive to
both rise and fall time. There is a possibility that
short fall time may make the rebound offset
more synchronous, hence facilitating the offset
responses [51].
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Figure 1. Schematic diagram illustrating four response patterns of offset neurons. A-D, the four response patterns
of offset neurons under stimulation conditions of three durations; the bars of different length below

every response indicate the tone duration.

3.2 Stimulus intensity dependence

The stimulus intensity can effectively influence
the discharge patterns of auditory neurons.
Studies about offset neurons generally show
that they have significantly higher thresholds
than the onset neurons, meaning they will
not evoke offset responses if the stimulus
intensities are below the thresholds of offset
neurons, although the onset response may
be present. This tendency is applied to bats
such as Rhinolophus megaphyllus, Rhinolophus
philippinensis, Hipposideros diadema, Taphazous
georgianu [52], Aseuiscus tricuspidatus [48],
guinea pigs [24], rats [51], mice [31], as well
as humans [53], but independent of recording
methods. Using AEP recording, compared with
the amplitude of onset response increasing
monotonically with intensity elevation, the
amplitude of offset ABR
maximum [48], sometimes will reduce with

goes through a

further increase of stimulus intensity [54],
while the number of action potentials (APs)

continuously increases with sound intensity
increasing in the superior paraolivary nucleus
(SPON) of mice using single-unit recording
[40], this discrepancy may be induced by the
recording methods or the difference between
nuclei because the ABR amplitude depend on
the synchronization of neuron population and
some neurons may change their discharge
patterns with intensity changing. He [20] also
demonstrated that most of the onset-offset
neurons in MGB of guinea pig changed to
either onset or offset response as the stimulus
changes.

Our lab also recorded one neuron with onset-
offset response to constant frequency (CF)
stimulus in the IC of Hipposideros armiger [35];
it is also of interest that when stimulated with
constant frequency - frequency modulation
(CF-FM) sounds, we observed two types of
responders, single-on (SO) and double-on
(DO) responders [35,55-57]. The DO neurons,
generating responses to the onset of CF and
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FM components, respectively, are different
Some SO

neurons could change to DO neurons as sound

from the onset-offset neurons.

intensity and duration increased. It is even
more intriguing what the response pattern of
the neuron that elicited onset-offset response
to CF stimulus will be when stimulated with CF-
FM sounds (a promising new line of research on
this issue is under way in our lab).

In practice, considering the two factors we
have referred to in Part 3.1 and 3.2 and the
notion that onset responses were sensitive to
the onset ramp [30], we think that the offset (and
onset) ramp, but not the fall time and plateau
level of the stimulus, is the effective parameter
influencing the offset response. Further studies
are needed to confirm or refute this claim.

3.3 Frequency selectivity to sound
stimulus

In bats, the prominent offset responses were
sensitive to the narrow frequency near the
dominant CF [48,52,58-61]. In early studies
of Grinnell [48,58], the best frequency (BF) of
offset response in some CF-FM bats vary due
to their distinct dominant frequency. Suga and
colleagues [21,49,62] mentioned that offset
responses are tuned between 58 and 62 kHz,
and onset-offset neurons in Pteronotus parnelli
have BF below 63 kHz [19,63]. Compared with
BFs of the onset neurons, BFs of the offset
neurons in Rhinolophus megaphyllus and
Rhinolophus philippinensis were lower, while
BFs of those offset neurons in Hipposideros
diadem and Taphozous georgianus were higher
[52]. Henry [13] showed that offset responses
had two peaks with one at a frequency above
the onset BF and another below the onset BF.
Scholl et al. [64] also demonstrated that offset
responses in rats typically tuned 1-2 octaves
above onset response, which is in accordance
with reports that cortical onset responses are
complementary tuning with offset response in
awake primates [25,39]. However, the frequency
tuning of onset and offset neurons showed
the diversity when tested in cats who were
awake [38]. This unconformity phenomenon
could attribute to species difference or distinct
anesthesia used in the experiment, and we can
also see that the offset responses are selectively
tuned to a specific frequency range.

3.4 Sound duration

Although it was not specifically stated in
previous studies, some of the duration-tuned
neurons in the bat IC looked like offset neurons
[65,66], and our study on Horseshoe bat IC
found that long-pass neurons showed offset
response [34]. What is more, some duration-
tuned neurons in the midbrain of the mouse
and the chinchilla are offset neurons [67,68],
it was found that the offset neurons in the
auditory cortex also had duration selectivity
[11], while all the offset neurons in the auditory
thalamus of guinea pigs are long-duration-
selective [20
the sound stimulus of the high intensity, short

]. A previous study showed that

rise-fall time and long duration could facilitate
offset responses [51]. Our recently unpublished
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data also showed that offset responses were
sensitive to long duration, high intensity, as
well as specific frequency (Fig. 2).

4.The possible neural
mechanism of offset response

In the visual system, these offset responses
or neurons are thought to arise from push-
pull synaptic interactions between opponent
bright- and dark-sensitive (i.e. onset and offset)
pathways that originate in retinal bipolar cells
and remain anatomically segregated until they
converge onto visual cortical neurons [69-71].
While in the auditory system, which does not
show opponent processing, the mechanisms
underlying offset responses that have been

CF4

CF3

e e e

Figure 2. The effect of sound duration, intensity and frequency on the offset response of auditory evoked potential
elicited by CF, (30 kHz), CF, (60 kHz) and CF, (90 kHz) prepared according to recorded echolocation
signal emitted by Pratt’s leaf-nosed bat, Hipposideros pratti. A, Responses to 3 sound durations (2, 5 and
15 ms) of CF, stimulus at 88 dB sound pressure level (SPL); B, Responses to 3 sound intensities (88, 81
and 72 dB SPL) of CF, stimulus with 15-ms duration; C, Responses to CF,, CF, and CF, under stimulation
condition of same intensity (88 dB SPL) and same duration (15 ms). The arrows above recorded traces
indicate offset responses. Bars of different length below recorded traces represent respective sound
duration. Right angle at the top right corner of recorded CF -trace in panel C represents time (ms) and
amplitude (uV) scales of the auditory response (our recent unpublished data).
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studied extensively in many auditory nuclei
are controversial. At first, the offset responses
found in CF-FM bats have been considered
to be a rebound from neural inhibition [59],
or a rebound excitation following non-
neural suppression in the cochlea [48,72],
or associated with a mechanical transient
occurring in the inner ear [49,73,74]. Offset
responses may have been widely accepted to
arise from post-inhibitory rebound [30,51,75].
Until now, the two postulated mechanisms,
i.e. the neural inhibition and the intrinsic
conductance property of offset neuron
membranes, from the studies on mice SPON
are more acceptable explanations and they
have been validated in SPON of mice [31,40].
SPON is one of the prominent cell groups
which comprise the periolivary nuclei of the
SOC that receive predominantly contralateral
excitatory input from octopus and multipolar
cells of cochlear nuclear complex [76,77] and
a substantial, tonotopical inhibitory input from
the ipsilateral medial nucleus of the trapezoid

body (MNTB) [78,79].

4.1 Neural inhibition

Neural inhibition plays an important role
in shaping the discharge pattern of offset
neurons.When the inhibition accepted by offset
neurons was discontinued, the offset response
would change [80,81]. Therefore, we postulate
a model which interprets this phenomenon
(Fig. 3A). When an early inhibition and a late
excitation evoked by a sound stimulus arrived
in a convergent fashion to offset neurons, an
interaction between them was generated,
which induced hyperpolarization of a short
duration and depressed the great mass of
excitation. After the inhibition ended, the
residual part of the excitation burst APs,
i.e. offset response. A previous study has
demonstrated that the offset firing is mediated
by a glycinergic receptor. The glycinergic
inhibition from MNTB to SPON may be stronger
than the excitatory synaptic projection from
CN, and it makes firing impossible during the
duration of the sound [81]. However, more
details of offset response still need further
study through intracellular or patch clamp
recording.

4.2 Intrinsic conductance properties
of offset neuron membranes

Releasing from MNTB inhibition is unlikely to
be the sole mechanism underlying the offset
response due to the fact that the medial
superior olive (MSO) and lateral superior olive
(LSO) of SOC also receive inhibitory synaptic
input from MNTB, although they rarely exhibit
offset discharge [82,83]. Koop-Scheinpflug
et al. [40] demonstrated that offset firing
is an intrinsic property of SPON neurons,
attributed to a large electrochemical chloride
gradient combined with a hyperpolarization-
activated cation current (1), and a low-voltage-
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activated Transient-type Calcium current (I ),
using sound-evoked single-unit recordings
in vivo and voltage clamp in vitro. |, unlike
most other voltage-gated ion channels
activated by depolarization (such as K*, Na*),
is activated by membrane hyperpolarization
from a hyperpolarization-activated and cyclic
nucleotide-gated channel (HCN) with four
subunits (HCN1-4) in mammals [84-86]. The
immunolabeling studies showed that HCN1
and HCN2 were largely expressed in SPON
cell bodies, while HCN3 and HCN4 were
nearly absent. Once activated, a mixed inward

current of K* and Na* reduces input resistance

Figure 3. Schematic diagram of two possible mechanisms underlying the offset response. A, Showing the
formation of offset response (upper trace, output) through the interaction between a late excitatory
(a, middle trace) and an early inhibitory (b, lower trace) inputs to the offset neuron elicited by
sound stimulus. The bar (bottom) represents sound stimulus. B, Upper illustration of cell membrane
summarizes various ions (K*, ClI, Na*, Ca*'), transporter (b), receptor-gated (a) and voltage-gated (c-
e) channels involved in shaping offset response. Middle trace represents the changes of recorded
membrane potential corresponding to a, b, ¢, d and e in the upper illustration. The bar (bottom)
represents the sound stimulus. See text for details.
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and hence accelerates the membrane time
constant. Sound activates glycinergic inhibitory
projections to the SPON and membrane-
associated immunoreactivity of the K*-CI- co-
transporter (KCC2) which is found in every
SPON already at times when glycine was still
depolarizing [87]. By outwardly extruding
chloride, KCC2 makes an extremely negative
chloride reversal potential (E.) possible, and
therefore a large IPSPs in SPON. The large IPSPs
activate the |, producing the inward current
and remove steady-state inactivation of Na,
and | . Upon termination of the sound, |,
was active over several tenths of milliseconds
within a limited voltage range, during which
the membrane voltage reaches the threshold
of spike firing, and fast depolarization is
generated to give precise offset firing (Fig. 3B).

The above two models seem to explain the
SPON offset or inhibition-offset types classified
in part 2, but what about the other two types?
Some neurons of the CN exhibit onset-offset
responses to sound stimuli, the giant cells in
the deep layer of the dorsal cochlear nucleus
(DCN) make excitatory projections to the
contralateral IC [88]. Furthermore, the giant
cells share some features with offset neurons of
the IC, which may be the source for ascending
synaptic inputs to elicit offset responses
[68,89]. Given that cells within the ventral
nucleus of the lateral lemniscus (VNLL) respond
to tones with a single precise onset response
[90,91], and that SPON and VNLL neurons
are respectively GABAergic and glycinergic,
and both provide inhibition to the ipsilateral
IC [92,93], the convergent inputs from SPON
and VNLL to IC may explain the onset-offset
responses with IPSPs both at the onset and
offset of the tone in the auditory midbrain
[94-96]. These speculations might suggest
that offset neurons (except onset-sustained-
offset type) that arise de novo in some auditory
nuclei maintain their original function, while
some inherit ascending synaptic information
[31], which also suggest that onset and offset
responses may be encoded by distinct acoustic
channels. This speculation is consistent with
the study by He [20] for onset and offset
pathway segregation in the auditory thalamus.
He confirmed anatomically that onset cells are
found mainly in the core of the ventral division

of MGB (MGBvV), whereas offset neurons form
clusters at MBGv periphery and could also be
found within other divisions of MGB. Scholl
et al. [64] also demonstrated that onset and
offset responses in rat AC are driven by largely
non-overlapping sets of synaptic inputs, which
may be attributed to the distinct projections
from both MGBv and neighboring nuclei to A1
[97]. Due to the fact that similar onset and offset
neurons segregate in the retina and lateral
geniculate nucleus, they resemble simple and
complex cells in the visual cortex [70]. In the
auditory cortex, there are also simple cells
with discrete onset/offset-response areas and
complex neurons with mixed onset/offset-
response areas [98]. However, the underlying
mechanism of the onset-sustained-offset type
neurons has been not well understood.
Because the sound duration in different
distinct
and there are

animal species represents

neurobiological meanings,

various patterns (i.e. offset, onset-offset,

onset-sustained-offset and inhibition-offset
types) representing the offset response, the
different explanations to the mechanisms
underlying the offset response in the central
auditory pathway may also be necessary
[65,99,100]. However, a general role of offset
responses is found in the encoding of sound
termination. In this view, several offset neurons
with diverse characteristics may collaborate to
represent specific sound duration and sound
characteristics.

4.3 Local neuronal circuits shaping
the offset response

Given that the local neuronal circuits may shape
the special discharge patterns [42], the four
types of offset response patterns we referred to
above (see part 2, and part 4.2) and may have
several specific neuronal circuits. Combined
with the
forming the offset response, the offset response

diverse and likely mechanisms

pattern may be elicited by direct excitatory
synaptic inputs at the end of the sound; the
post-inhibitory rebound [95,101,102] (or the
intrinsic conductance property) (Fig. 4A) or the
interaction between late excitatory (input a in
Fig. 4B) and early inhibitory (input b in Fig. 4B)
inputs may induce inhibition-offset pattern;
while the early excitatory input (input a in
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Fig. 4Q), the late inhibitory input (input b in
Fig. 4C) with the post-inhibitory rebound (or the
intrinsic conductance property) may shape the
onset-offset response pattern; and by analogy
we also speculate the possible neuronal circuit
for the onset-sustained-offset response pattern
(Fig. 4D), i.e. the early excitatory input (input
a), combined with the late excitatory (input b)
and inhibitory (input c) inputs. Note that Fig. 4
represents only one of the possible neuronal
circuits shaping the offset response pattern
shown in Fig. 1. There may also exist other
neuronal circuits shaping the offset response
patterns that are currently unknown.

5. Possible biological
significance of offset neurons

5.1 Duration selectivity and duration

tuning
Actually, biologically important sounds
including communication sounds among

and within animal species, echolocation
calls emitted by bats and human speech
sound etc, which are typical complex sounds
characterized by some parameters such as
temporal, frequency, and intensity. Duration,
one of the temporal features, is a simple but
important one in signal recognition and feature
detection. For example, in the basic sound
parameters such as the frequency, amplitude or
intensity and duration of vocal sound of bats,
the duration is only one unchanged parameter
in echo, so it is called “tag sound character”[61].
Previous extensive studies on sound duration
show that most neurons in the auditory
nucleus above IC responded maximally to
a specific or a range of durations, which are
called duration-selective neurons such as
short-pass, band-pass and long-pass and their
responsive range to sound frequency is called
duration tuning [99,103-106]. Despite these
studies [66,103] nothing was specifically stated
regarding the duration-selective neurons
being relevant with offset response. Some of
the duration-selective neurons in the bat IC
looked like offset neurons. In addition, almost
all of offset neurons in the auditory thalamus
of the guinea pigs are long duration-selective
[20] and this phenomenon was also observed
in recent studies [38,96,107]. In conclusion, the
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Figure 4. Schematic diagrams of local neuronal circuits shaping the offset response pattern. A, at the end of the sound, the inhibitory input depending on stimulus duration
and being sustained during the sound end with an excitatory rebound, which elicits the offset response. B, the interaction between late excitatory (input a) and
early inhibitory (input b) inputs to the offset neuron is shown. C, the early excitatory (input a) provide the chance for the neuron to fire to sound stimulus onset,
while the late inhibitory (input b) input suppress the discharge until the sound termination, the postinhibitory rebound spiking. D, the early excitatory (input a)
input, combined with the late excitatory (input b) and inhibitory (input c) inputs may explain the onset-sustained-offset response pattern. The square frame at top
right corner of the local neuronal circuits shows the neuronal response pattern shaped by the interaction of multiple synaptic inputs. The bar at the bottom of the

square frame indicates sound stimulus. RN: recorded neuron; —: direction of excitatory conduction; — : excitatory synapse; = : inhibitory synapse.

factors influencing offset firing described in
part 3 and intrinsic properties of offset neurons
described in part 4.2 collectively provide an
insight for our understanding of the function
of offset responses in duration tuning. For
example, owing to the fact that activation of |,
conductance and deactivation of steady-state
|, need some time, the long duration will more
easily produce the offset responses in SPON
[40,64]. However, a short-duration sound with
higher intensity may activate more |, current
in a shorter time and can also elicit an offset
response. In this way, offset responses encode
the special sound information carried by sound
signal. Some onset-offset cells are also found
in the auditory midbrain [93,96], which may be
attributed to the convergent projections from
VNLL onset encoding and SPN offset responses
to IC.

5.2 Gap detection
The gap, or
detectable between closely spaced sounds

silent period, which s

or components of sounds, is a vital sound
character for sound communication of animals

and human speech perception [81,108-110].
If the gap is undetectably close between
sounds, it will generate the masking effect
[55,111]. Offset responses are considered
to play the role in gap detection, and gap
detection not only depends on gap duration
but also especially on pre-gap duration (i.e.
sound duration before gap initiation) [112].
For instance, a 3-ms gap behind a 100-ms pre-
gap is successfully detected by the neuron,
while the same 3-ms gap behind 50-ms pre-
gap is difficult to be detected by the neuron
[40].This is the reason that a pre-gap of shorter
duration is not enough to generate a greater
inhibitory temporal summation, a greater IPSP
may activate hyperpolarization-dependent
I, (@ complex Na*-K* channel) and elicit an
offset response. In addition, it is perhaps that
the pre-gap of too short duration is difficult to
satisfy the need of offset response latency so
that offset response latency lasts to or enters
into post-gap, i.e. the sound following gap,
and induces the offset response depressed
by IPSP evoked by post-gap [40] (also see part
4.2).

5.3 Noise rejection

Since the sound duration of animals have
species-specific meanings, the offset response
encoding the cessation of the sound may
have special biological meanings in different
animal species. As we can track back to the
previous reports, the offset neurons in the
auditory system were first demonstrated in
the bat [6], and further studies found that
those offset neurons mainly focused in long
CF-FM bats which showed sharply frequency
tuned with high Q-10 dB values in the neurons
[48,49,58,59,62,72,73,113-116]. The prominent
offset responses were sharply tuned in a
narrow frequency range near the dominant
frequency [48,52]. It appears to be correlated
with the complex living conditions and foraging
strategies of CF-FM bats. In highly cluttered
narrow spaces, they must be able to discriminate
the difference between echoes from targets
and highly overlapping background sounds.
The auditory system of these CF-FM bats in
auditory structures and functions has adapted
to their living surroundings: high duty cycle
with a long CF component followed by a short
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FM component [117], a specialized auditory
fovea where frequencies around the dominant
frequency, i.e. the CF of the second harmonic
of the echo-locating signal, are highly over-
represented [35,52,60], as well as Doppler
shift compensation (DSC) that maintain the
CF component of echoes within the sensitive
auditory fovea [118,119]. Behavioral studies
have showed that mustached bats and some
horseshoe bats are adept at attacking fluttering
targets [120,121], which induce the echo to
generate frequency and amplitude shifts called
glints [117,122], but the echo duration does
not change and becomes a “tag” recognizing
the echo from the target [61]. The bats can gain
much information about the prey from the
glints, which in turn allows them to be selective
of their prey [123-126]. Because of the highly
acoustical attenuation of ultrasound in the air,
the amplitude of the glints is relatively stable
[122], while the echoes from the background
reaching to the bats’ears are ongoing amplitude
modulated, most of onset-offset neurons
were unresponsive to sinusoidal amplitude-
modulated tone bursts (SAM), this might
represent a clutter rejection mechanism for
CF-FM bats focusing on dominant glints, which
may make onset-offset neurons candidate for
selectively responding to frequency modulation

embedded in ongoing amplitude modulated
background echoes [19]. Behavioral studies
also demonstrated frequency shifts caused
by prey fluttering are robust during capturing
flight [117,122], while the bats exhibited DSC
for echoes returning from stationary objects
ahead of them, but not for echoes from targets
[19,117,119]. Evidence that the offset response
of cortical auditory evoked potential (CAEP)
recorded from scalp of young adults with
normal hearing were sensitive to not only
signal-to-noise ratio, but also absolute signal
level in background noise [127], also suggesting
offset responses encoding behaviorally relevant
signal level in noise may induce noise rejection.

In summary, offset responses are important
cues relevant to perceptual grouping and
auditory scene analysis [128]. Besides what
we refer to above, it also reported that offset
(or onset-offset) neurons are correlated with
the motion of a sound source [129,130], the
detection of interaural phase disparity [131,132],
recognition of bats’ communication calls [96], as
well as the acoustic startle reflex [133].

6. Prospect

Although the response pattern is the basic
property of auditory neurons, it may make
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the auditory neurons have more functions in
auditory information processing. Therefore,
studies on the mechanism underlying offset
response and the relation between offset
and onset-offset response patterns and
animal behaviors would have the important
significance. To further understand the
synaptic mechanism of offset responses in
different auditory nuclei, the experimental
methods used in the future studies would
be more in vivo intracellular recording,
in vivo patch clamp recording and behavioral
training combined with molecular-biological
examinations etc. we believe that more new
knowledge about this response pattern
and its physiological functions in frequency
forward and

tuning, amplitude tuning,

backward masking etc would be obtained.
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