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CIRCUMFERENTIAL PRESSURE'’S
INHIBITORY EFFECTS
ON SOLEUS H-REFLEX

Abstract
Background: Circumferential pressure (CP) applied to the lower leg reduces soleus motor neuron reflex excitability
(MNRE); however, the mechanism of control is unknown. Aim: To investigate the effect that CP has on disynaptic
reciprocal inhibition (DSRI) and on la presynaptic inhibition (laPl) of the soleus H-reflex in healthy subjects.
Methods: DSRI of soleus motoneurons and presynaptic control of soleus group la afferents were measured
before, during and after CP was applied to the calf. Pressure was set to 40-45 mmHg. DSRI was evaluated by
observing changes in the H-reflex amplitude after a conditioning stimulus was applied to the common peroneal
nerve. laPl was assessed using two separate protocols involving conditioning of the soleus H-reflex: femoral
nerve facilitation (FNS) (heteronymous) and D1 and D2 inhibition (homonymous). A change in DSRI and laPl was
determined by comparing the H saurer Hoostpressure phases to the H e pressure phase of the conditioned H-reflexes.
Results: A mean 12% decrease in FNS was observed during CP (p < 0.05). D1 and D2 inhibition decreased
slightly. CP did not affect DSRI. Conclusion: The results show that CP applied to the calf significantly increased
heteronymous soleus laPl, but affected homonymous laPI less. It was concluded the CP does increase laPl of
soleus motoneurons but only modestly. The change was not large enough to explain the dramatic inhibition that
occurs in the (unconditioned) H-reflex amplitude when CP is applied. Therefore, laPl is not the primary inhibitory
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mechanism that CP uses to lower MNRE.
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Background

Circumferential (CP)

and its effects on muscle activity in both the

pressure application
upper and lower limbs has been extensively
studied [1-8]. Initial investigations examined
the effect CP had on soleus monosynaptic
reflexes in subjects without neurological
deficits and compared them to subjects with
cerebral vascular accidents [2,6]. A significant
decrease in the soleus H-reflex amplitude and
the soleus stretch reflex occurred throughout
the pressure application. In a related study
involving subjects with complete traumatic
spinal cord injuries (SCl), CP around the calf
resulted in a similar soleus H-reflex inhibition
[7]. From these results it was suggested that
the mechanism responsible for the decrease in
H-reflex amplitude was spinal in origin [7].
Many spinal cord mechanisms may account
for the decrease in H-reflex amplitudes
during pressure application [1-5,9-12]. Tissue
ischemia and decreases in nerve conduction
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velocity were shown not to be involved [5,6].
Investigations on presynaptic inhibition of la
afferents have not been formally conducted;
however, results from an investigation on
F-waves suggest that it may have a role [1].
Studies
control system that may be partly mediated

have described a spinal cord
through a la presynaptic inhibitory mechanism
[13-20]. Hultborn et al. and Guissard et al.
observed soleus H-reflex amplitude depression
after passive dorsiflexion of the ankle and
hypothesized the inhibition was the result of la
afferent activation [15,21]. Other investigators
described H-reflex inhibition evoked by la,
group lland Ib afferents after muscle contraction
[13,16].Cutaneous inputs have also been shown
to effect transmission in presynaptic inhibitory
pathways [22-24]. It is therefore hypothesized
that the decrease in motoneuron reflex
excitability (MNRE) observed during CP may use
a similar mechanism.

Movement, the fundamental component of

behavior, is produced when skeletal muscles
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contract and relax in a regulated manner. Every
movement, no matter how simple, is controlled
by the precise firing pattern of motoneurons
populations within the motoneuron pool
(excluding the contributions from muscle’s
viscoelastic properties). The processes that
influence motoneuron behavior (excitability)
therefore are important. This is especially true
for clinicians who are continually looking for
ways to intervene with the motor system to
treat neuromuscular disorders.

The purpose of this investigation was to
determine the effect that CP has on pre-synaptic
inhibition of the soleus H-reflex in healthy
subjects. Disynaptic reciprocal inhibition (DSRI)
was also assessed to determine if CP had any
affect on the la inhibitory interneuron exerted
at a postsynaptic level. It was hypothesized
that CP will cause a decrease in H-reflex
amplitude mediated through a presynaptic
inhibitory mechanism. The results of this
study will increase our understanding of the
physiological mechanisms that regulate muscle
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activity and may also provide evidence to the
extent in which sensory afferents affect the
excitability of the lower limb's spinal reflex arc.

Subjects and methods

Subjects

Thirty-eight subjects (26 women, 12 men)
volunteered for this study. The subjects
had no history of neurological disease or
lower extremity musculoskeletal disorders,
and ranged in age from 19 to 65 years old
(mean=30.3, SD=10.0). Subjects were asked
to refrain from caffeine, aspirin, alcohol, and
exercise 12 hours prior to data acquisition as
these factors have been shown to alter MNRE
[25]. All subjects signed informed consent
forms approved by the University of Rhode
Review Board before

Island Institutional

participating in this study.

Electromyography (EMG)

To prepare for EMG electrode placement the
skin of the subject’s dominant lower limb was
shaved and cleaned with alcohol. Coupling gel
was used on all surface electrodes to ensure
proper conductance. Two 10 mm disc-recording
electrodes were placed 3 cm apart on the
posterior lower leg, inferior to the gastrocnemius
muscle belly, and in alignment with the Achilles
tendon. Two more sets of 10 mm disc recording
electrodes were placed 3 cm apart on the skin
over the tibialis anterior (TA) and vastus lateralis
muscle bellies to monitor their activity during
the study. A 5x5 cm metal plate acted as the
ground and was fixed to the anterior lateral calf,
between the fibular head and lateral malleolus.
EMG activity was amplified 1000x and recorded
using a bandwidth of 10-10,000 Hz. Data was
digitized at a sample frequency of 10K using the
Powerlab ADInstruments Chart 4 Windows Data
Acquisition and Analysis software and was stored
on a computer’s hard drive for future analysis. The
EMG's amplifier had an input impedance of 1MQ
(<47pf), a common-mode rejection ratio of 96 dB
at 50 Hz and a signal to noise ratio of <1 pV rm.s.
(root mean sqare of voltage amplitude).

Soleus H-reflex
Surface electrodes were used for both

stimulation of the tibial nerve and recording

H-reflex data. The H-reflex was elicited by a
2.5 cm monopolar stimulating ball electrode
placed on the skin over the tibial nerve in the
popliteal fossa. A 10 x10 cm sponge reference
electrode was fixed to the distal anterior thigh.

The H-reflex was evoked using a rectangular
1ms pulse at 0.17 Hz (1 pulse every 6 seconds).
)

and the maximal H-reflex (H__ ) were measured

The size of the maximal motor response (M__
at the beginning and randomly throughout
the experiment. Three criteria were used
to determine proper electrode placement:
1) the H-reflex was evoked at a lower intensity
than the soleus M-wave, 2) the least amount
of intensity was required to elicit a maximum
H-reflex and 3) the soleus M-wave and H-reflex
displayed a similar wave configuration. The
stimulus strength was then adjusted to give
an unconditioned H-reflex that also evoked
a small M-wave and this H-reflex was used as
) [26,271].
The H-unconditioned reflex was approximately
25% M__ . H, . ionea Was randomly monitored

throughout the experiment. If a deviation

the experimental control (H

unconditioned

in amplitude occurred (£1 SD), H ..
was readjusted back to initial baseline values
(Hypsenne)[28]-

Pressure

A 16-21 cm air splint was applied to the lower
leg depending upon leg length proximal to
the recording electrodes and distal to the
fibular head. This location allowed room for
the conditioning electrode to be placed on
the skin over the Common Peroneal Nerve
(CPN). Caution was also taken not to compress
the CPN by the air- splint. Prior to starting the
experiment the air splint was inflated and then
passively deflated. This procedure allowed the
pressure cuff to conform to the subject’slegand
minimized recording electrode displacement
during data acquisition. During the pressure
phase of the experiment, the air splint was
inflated to 40.0 - 45.0 mmHg with the aid of a
pressure transducer that monitored backflow
from the splint. To decrease the chance of
ischemia:

1. The subject’s blood pressure was taken
before the beginning of data recording. If
diastolic pressure was below 45 mmHg, the
experiment was terminated.
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2. Skin color distal to the splint was closely
monitored during the pressure phase of the
experiment.

3. Pressure values were continually monitored
and adjusted during the experiment to
maintain pressures that remained within a 40-
45 mmHg window.

4. M-waves were monitored throughout the
experiment to ensure reflex configuration did
not change.

Design

The subjects were seated comfortably in
a reclined chair with their dominant lower
extremity positioned in 60° of hip flexion,
20° of knee flexion, and 20° of ankle plantar
flexion. The subject’s ankle was placed in
an adjustable ankle rest and a moveable
footrest supported the foot. To diminish any
descending influence on spinal motoneurons
during the experiment, subjects were
instructed to remain still and quiet during
testing. In addition, EMG activity from soleus,
tibialis anterior and quadriceps muscles were
monitored to assure no ongoing muscle
activity occurred during the experiment.
Figure 1 illustrates the general experimental
setup.

The experiment consisted of three-test
phases: pre-pressure, pressure, and post-
pressure. Within each phase conditioned
and unconditioned reflexes were elicited.

Unconditioned H-reflexes were randomly

elicited throughout the experiments to

maintain consistency within the experiment.
Any change in its amplitude resulted in

immediate adjustment of H back to

unconditioned

baseline”

The pre-pressure phase consisted of eliciting

and recording H reflexes. The air splint

conditioned

was then inflated and maintained at the desired
pressure. The increase in pressure caused
H to decrease substantially in every

unconditioned

subject. It was therefore necessary to readjust
back to H . After one minute of

unconditiioned baseline

inflation, a second set of H reflexes were

conditioned

elicited and recorded. The air splint was then
passively deflated and H
readjusted back to H

delay, another post-pressure H

was again

unconditioned

After a one-minute

baseline’

reflex set

conditioned

of recordings were taken.
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Experimental techniques used to

assess inhibition

Presynaptic inhibition was examined using
two separate protocols: 1) the technique of
heteronymous la facilitation of the femoral
nerve (FN) terminating on the soleus motor
neurons described by Hultborn [15] and 2)
common peroneal nerve (CPN) stimulation
(D1 and D2 inhibition) described by Lundbye-
Jensen and Nielsen [29] and Mizuno et al. [30]
(Figures 2a and 2b). In general, D1 and D2
inhibition measures presynaptic inhibition
elicited by peripheral nerve stimulation while
FN facilitation is a reflection of the amount
of ongoing presynaptic inhibition of FN la
afferents [29]. Disynaptic reciprocal inhibition
initially described by Crone et al. [31] was
also assessed to evaluate the effect that the
antagonist muscle nerves have on the soleus la
inhibitory interneurons (Figure 2c).

Conditioning femoral nerve
simulation (FNS) of the soleus H-reflex
FNS was applied to the skin over the femoral
nerve in the femoral triangle using a 10 mm

Presynaptic
inhibition

O 3 t{a’-‘\.“

!

i
Conditioning #
stimulus </

{1
/ Hereflex
L7 stimulus

Figure 2a. Heteronymous la presynaptic inhibition of
la afferents elicited by a condition stimulus
to the femoral nerve. Figure illustrates
the spinal circuit during which femoral
nerve stimulation at 1.1x motor threshold
intensity delivered after tibial nerve
stimulation elicits monosynaptic excitation
of the soleus motoneurons. The mean
ratio’s between H_ ... /M __  relative
to the H o /M., reflex amplitude
were compared among the experiment
phases. A decrease in the meanH_ ./
M_.. would indicate an increase in la
presynaptic inhibition.
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Figure 1. Experimental set-up. EMG monitoring electrodes and wiring schematic are not shown for the tibialis

anterior muscle.
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Figure 2b. Homonymous presynaptic inhibition of
la afferents elicited by a conditioning
stimulus to the common peroneal
nerve. Figure illustrates the spinal circuit
during which a 1.1x motor threshold
conditioning stimulus was applied at
interstimulus intervals of 10 ms and 25
ms for D1 inhibition and at 50 ms, 75 ms
and 100 ms for D2 inhibition. The level
of homonymous presynapitc inhibition
was measured by calculating the change
in the mean ratio's between H_ .../
M ., relative tothe U = /M __ reflex
amplitude among the experiment phases.
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Figure 2c. Disynaptic Reciprocal inhibition (DSRI).
Figure illustrates the spinal circuit of DSRI
exerted on ankle plantar flexors following a
1ms common peroneal nerve conditioning
stimulus at 1.1x motor threshold. DSRI
involves the la inhibitory interneuron
that is exerted at a postsynaptic level.
Conditioning stimuli were given at 1, 3
and 10ms before tibial nerve stimulation
eliciting the H-reflex. DSRI was measured
by calculating the change in the mean
ratio’s between H_ .. /M __  relative
to the U /M, reflex amplitude
among the experiment phases.
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monopolar surface electrode. A 3x3 cm anodal
sponge fixed to the posterior proximal thigh
served as the reference electrode. A bipolar
recording electrode (10 mm discs) was placed
on the skin over the belly of the vastus lateralis
muscle 6-8 cm proximal and lateral to the
patella to monitor myoelectric activity from the
quadriceps muscle.

FNS consisted of a 1 ms rectangular pulse
given at a frequency of 0.17 Hz. Stimulus
strength was adjusted to 1.1 x the quadriceps
motor threshold (MT) and the afferent volley
was used as the conditioning stimulus that
facilitated H
between a conditioning-test interval of -3.0

nconditioneg THIS facilitation occurred
to -7.5 ms. The negative conditioning-test
interstimulus intervals designate that the
conditioning simulation was applied after
the test stimulation. The delay was adjusted
according to the height of the subject until
the H-reflex was consistently larger than

unconditionear @5 Observed on the digital storage
oscilloscope. Hultborn et al. [15] have shown
that during the first 0.5 ms the heteronymous
la facilitation is only mediated through a
monosynaptic pathway and not contaminated
by other input. la presynaptic inhibition was
measured by calculating the change in the
mean ratio’s betweenH__ . /M__ relative to
the H

unconditioned

/M reflex amplitudes among
the experimental phases. Twenty-fiveH_ ..

reflexes were elicited and averaged in each
/M

conditioned max

phase. A decrease in the mean H
would indicate an increase in la presynaptic
inhibition.

Before reaching any conclusions that a
change in H-reflex facilitation was due to on-
going presynaptic inhibition of la afferents
mediating the conditioning volley, a change
in the reflex recruitment gain must be ruled
out [32]. To ensure that any effects were not
due to these changes D1 and D2 inhibition
was also analyzed. FNS and D1/D2 inhibition
provide autonomous information concerning
presynaptic inhibition and they assist in
excluding changes in recruitment gain as a
cause for changes in H-reflex size [33,34]. In

(1 SD) in its amplitude or configuration
resulted in data omission.

CPN conditioning stimulus of the
Soleus H-reflex

A bipolar electrode (10 mm disks) was placed
on the skin of the fibular head over the CPN.
This stimulus was used as a conditioning
and D2
presynaptic inhibition of the soleus muscle.

stimulus to evoke reciprocal, D1

The optimal stimulation site was selected
based on the following criteria: the Tibialis
Anterior (TA) motor threshold was lower than
that of the peroneal muscles and at increased
levels of stimulation intensities, ankle eversion
and peroneal muscle activity were absent.
Stimulation to the CPN was delivered with
a 1ms constant current pulse at 1.1 x TA
MT. H-reflexes were then elicited following
conditioning stimulation to the CPN at eight
predetermined interstimulus delays. The delays
were setat 1, 3,5 10, 25, 50, 75 and 100 ms and
randomly delivered. For each interstimulus
delay, peak to peak amplitudes of 5 H/M__
ratios were averaged and expressed as a
percent of Hunconditioned/ Mmax.

Throughout all phases of this experiment
amplitudes were randomly checked

unconditioned
to ensure it remained unchanged. If H "
unconditioned

amplitude increased or decreased, tibial nerve
stimulation intensity was adjusted back to

original H value [28].

baseline

"i:‘_"‘f‘_"i._/\ }L_ -
|

H-unconditioned
baseline

625 uv

il

— /\ k _H_/\\Jflr\__ —_—A

H-conditioned
pre-pressure

H-unconditioned
pressure

H-conditioned
pressure
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Statistical analysis
The StigmaStat version 2.0 statistical software
program was used for all data analysis. H ...
reflex amplitudes were averaged for the pre-
pressure phase and for each of the two test-
phases (pressure and post-pressure). Peak-to-
peak amplitudes were then measured.
Friedman repeated measures analysis of
variance on ranks tests were used to analyze
the change from pre-pressure values in the

average H reflex amplitudes during

conditioned
and after pressure application. Parametric
testing was not performed because the data
was not normally distributed. Dunnett’s
multiple comparison tests were used when
significant F values were found. The level
of significance for all post hoc tests was

designated p<0.05.
Results

Statistical analysis was performed on 19 of the
38 initial subjects, ranging in age from 22-34
years old (mean=26.8, SD=3.4). Inclusion criteria
were: 1) Subject had a consistent facilitation
of H

unconditioned

2) No change in soleus, TA and/or quadriceps

with the conditioning stimulus,

M-wave configurations, and 3) a consistent
Hnconditioned that could be re-established before,
during and after pressure application. Figure 3
shows a typical H-reflex from a representative

subject.

.\\J'r\_‘__ —_— __J\ | —
!

H-unconditioned
pressure
adjusted to baseline

| —
Peak-to-peak

\ { H-amplitude

H-conditioned
post-pressure

addition, all experiments were performed in a Figure 3. Demonstration of the H-reflex peak-to-peak amplitude changes for heteronymous la presynaptic

inhibition that takes place throughout the experiment in a typical subject. Note the pre-pressure
H-reflex facilitation from baseline levels that results from femoral nerve stimulation and the inhibition
that occurs in the conditioned H-reflex during CP when compared to pre-pressure values. Each line
represents an average of 20 recordings.

reclined position at rest [35] and the M-wave
amplitude was closely monitored throughout
the experiment [26]. Any observable change
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Nineteen subjects were omitted from the  measurements that were observed at CPN D1 and D2 inhibition for all the interstimulus
analysis because they failed to meet inclusion  conditioning interstimulus intervals of 1, 3, 5, intervals tested in this experiment. However,
criteria. When CP was applied, H,  io..q 10,25 40 75 and 100 ms. As can be seen from  only the 100 ms interval reached significance
amplitude dropped dramatically in every the figure, CP caused a slight mean increase in  (p<0.05). Post-pressure values recorded at
subject (55% mean decrease; SD 27.45).

To accommodate for this significant drop,

uncondiioned Was increased to restore it to initial 20
Hpeine l€vels [28]. The re-establishment of

uncondiioned PYOVEd  challenging and was the @

. s . . =
primary criteria for excluding subjects from o o JBaseine
the study (n=11). The other eight subject’s g
data were omitted due to changes in reflex %
configurations of the M wave, H-reflex or both di}‘
when the air splint was inflated. a

E .20 4

When compared to pre-pressure values, a L
significant (p = 0.013) mean decrease of 12.5% E
was observed in FNS during CP application £

[
(Figure 4). This decrease in the H_ . reflex g b
amplitude is believed to be due to an increase S
in la Presynaptic Inhibition (laPl) [15]. Figure 5 LS 1
. . . . *

shows the individual data from the 19 subjects p<0.05
whose date were analyzed. As can be seen from 60

the figure, 15 subjects exhibited an increase
in 1aPI during the pressure phase. Subjects 2,
5 and 13 Showed‘ anA m(frease in the H°°“di“°".ed Figure 4. Mean percent change (n = 19) intheH_ .. reflex during CP after FNS. A mean 12.5% decrease was
reflex amplitude, indicating large decreases in observed. Standard deviations are also shown. Decreases inthe H_ .. reflexamplitudes representan

1aPI of 98%, 44%, and 28% respectively. Subject increasein laPl. (0% =H_ .. . pre-pressure values) == pressure, mm = post-pressure

19 was the only one who did not show any
changein laPl. If the three subjects who showed 100

decreases in laPl were treated as outliers and
had their results excluded from data analysis,
laPl would have had a mean increase of
26% when compared to pre-pressure levels. 50 4

Because their H values dramatically

unconditioned

decreased similarly to the other 16 subjects

when CP was initially applied, it was considered
the decrease in FNS observed was an accurate
representation of their response and therefore
their data were included in the analysis.
Post-pressure data was not significantly

50 A
different from pre-pressure levels. Most subjects

% Change in |aP| from pre-pressure values
o
L

showed a decrease in laPl toward baseline
pre-pressure levels. Individual responses

however varied. For example, five subjects -100

T T T T T T T T T

showed a phase reversal demonstrating a 0 2 4 6 8 10 12 14 16 18 20

substantial decrease in laPl above baseline . )
Individual subjects

levels (subjects 3, 6, 8, 14, 19) and in one subject
(subject 18) laPl increased beyond pressure

levels (Figure 5). Figure 5. Heteronmous la presynaptic inhibition individual subject data showing the percent change in the

. X H o naitioneq Feflex amplitudes during and after pressure inhibition when compared to pre-pressure values.

Figure 6 illustrates the DSRI, D1 and D2 Note: subjects 2, 5, and 13 exhibited a decrease in presynaptic inhibition as shown by an increase in

inhibition between pressure and pre-pressure the H ... reflex amplitudes. Each bar represents an average of 20 recordings. (0% = H__ ..., Pre-
pressure). = = pressure, EE = post-pressure
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one minute after pressure release returned
to baseline pre-pressure levels in all subjects
(p>0.05). This rapid return to pre-pressure levels
is likely due to CP’s short-lasting effect [6,7].

Discussion

The main finding of this study showed that
CP to the calf significantly decreased soleus
H-reflex heteronymous la facilitation when
compared to pre-pressure values. Two distinct
methods involving conditioning the soleus
H-reflex, FNS and D1/D2 inhibition were used
to assess presynaptic inhibition. FNS reflects
the level of ongoing presynaptic inhibition of
the la afferents onto motoneurons while D1/
D2 inhibition gives an indication of presynaptic
inhibition elicited by peripheral nerve
stimulation. Additionally, the two techniques
provide autonomous information about
presynaptic inhibition that help in determining
if changes in the recruitment gain within the
soleus motoneuron pool is responsible for
any of the observable changes in H-reflex
amplitude [32]. For example, a change in the
level of presynaptic inhibition should induce
similar changes in the amplitude of the
conditioned H-reflexes recorded with the two
methods as long as the conditioning stimulus
elicits a monosynaptic excitatory postsynaptic
potential of constant size in primary afferent
depolarization interneurons (PAD) or motor
neurons. Thus, an increase in presynaptic
inhibition would result in a decrease in the
amplitude of the conditioned H-reflex for both
D1/D2 inhibition and FNS. Since this was the
case, it was believed that CP caused a true
increase in presynaptic inhibition and not a
decrease in reflex gain.

Previous studies investigating CP around
the calf suggested that muscle stretch is a
likely cause [5-7]. The compressive forces
created by the air splint would seemingly
cause a minimal amount of stretch to all of the
muscle fibers beneath the splint. Studies have
shown that small amplitude passive stretches
to the soleus causes significant reductions
in alpha MNRE [36,37]. Guissard et al. further
showed that this decrease in MNRE following
small passive stretch was due to an increase

in la presynaptic inhibition [21]. If muscle

Translational Neuroscience
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Figure 6. Mean percent ratio change (n = 19) in the H
peroneal nerve at interstimulus intervals of 1, 3, 5, 10, 25, 50, 75, 100 ms. Interstimulus intervals
represent Disynaptic Reciprocal Inhibition (1, 3, 5), D1 (10, 25) and D2 inhibition (50, 75, 100 ms)
respectively. Interstimulus interval at 100 ms was the only significant interstimulus interval (p<0.05).

SDs are also shown.

stretch is the novel stimulus that initiates the
increase in laPl, group Il muscle afferents are
likely responsible. They have been shown to
discharge as long as muscle stretch is sustained
[38,39], to have a low threshold of activation
[38], to inhibit extensor muscles [40,41], and
to generate primary afferent depolarization by
the activation of GABAergic interneurons [42].

that
stretch and pressure

Cutaneous receptors specifically
(Merkel

Ruffini receptors) also have been indicated in

sense and
increasing laPl during pressure [23,43]. These
receptors are stimulated by lightly stretching
the skin [44], continue to discharge for the
entire duration of stimulus [45], and may
also have a role in modulating presynaptic
inhibition of la afferents [23,42,43]. How much
they function in inhibiting MNRE through a
presynaptic mechanism is unknown. Further
research is needed to assess the effect of these
cutaneous receptors on MNRE when CP is
applied to a limb.

Descending input onto spinal motoneurons
from cortical and brain stem areas may also
have contributed to the lowering of H-reflex

conditioned

reflexes following stimulation to the common

amplitudes observed in this study. It is well
known that these descending pathways
converge onto dorsal horn neurons and have
a gating and filtering affect on PAD through
a presynaptic mechanism [46-48]. Recent
studies have shown that short-latency afferent
inhibition is mediated though a spinal rather
than a cortical circuit in the lower extremity
[49,50]. This aspect coupled with the finding
that CP significantly decreased the soleus
H-reflex in people with complete traumatic
spinal cord injury [7] strongly suggests that any
influence from supraspinal systems would be
negligible.

Air splint inflation dramatically decreased
the unconditioned H-reflex amplitude in every
subject tested in this investigation. Sometimes
(n=11), the extent of the inhibition was so
significant that H-baseline levels could not be
re-established. For CP to inhibit the H-reflex to
this level, a greater than 12.5% increase in laPI
would be necessary. In addition, three subjects
displayed decreases in laPl during pressure,
yet their unconditioned H-reflex was strongly

inhibited. If 1aPl was the sole mechanism of
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neuronal control during CP application, all
subjects would have shown inhibition of the
conditioned H-reflex and to a much greater
extent. Thus, the increase in laPl observed in
this study cannot fully explain the dramatic
decrease in the unconditioned H-reflex during
the application of CP.

Itis a difficult task to hypothesize what other
spinal mechanisms may participate in lowering
MNRE besides la inhibition.
Previous studies show that tissue ischemia
[6-8]
properties of the reflex arc are not responsible

presynaptic

and changes to the input/output
[5]. b non-reciprocal inhibition is unlikely
involved because the soleus tendon receptors
are not sensitive enough to detect the forces
produced by the minimal passive stretch
created by the air splint [51,52]. Finally, CP
did not affect DSRI. These findings imply that
another mechanism, possibly musculo-skeletal
in origin, may be involved.

Leukel et al. [5] conducted a study that
investigated the effect pressure applied around
the calf had on spinal cord reflexes similar
to the methods used in this study. The only
difference was that pressures of 240-250 mmHg
were used compared with the 40-45 mmHg
used in our study. Leukel et al. [5] showed a
significant H-reflex depression similar to what
we observed. Since CP did not cause any
change in the input/output properties of the
reflex arc, they hypothesized, that the viscous-
elastic components of the musculo-tendonous
junction distal to the cuff were responsible for
the decrease in reflex amplitude. They argued
that the inflated cuff “clamps” the muscle
thereby preventing the underlying tissue from
naturally moving. It was further shown that this
damping effect occurs only when the muscle
tensions were low. The decrease in H-reflex
amplitude observed in this study may have
been mediated through a similar mechanism
caused by air splint compression. Whether the
low pressures used in this study were sufficient
to induce the mechanical change necessary to
affect H-reflex amplitude still requires further
investigation.

Finally, little attention has been given to the
effects that group lll and IV muscle afferents have

on the motoneuron pool. Usually these afferents
are concerned with relaying information to the
central nervous system regarding the metabolic
stateand mechanical activity ofexercisingmuscle
[53-55]. Substantial evidence exists, however,
that group Ill and IV muscle afferents also
play an important role in regulating spinal
motoneuron excitability [56-60]. The discharge
properties of these afferents were shown to
affect the motoneurons in a flexor-reflex pattern
of excitation; increasing excitability of ipsilateral
flexors and inhibition of ipsilateral extensors
[59].1t is quite possible that CP may elicit group
Il and IV afferents that inhibit the soleus muscle
that
pressure application [59] and muscle stretch
[59,60] activate these afferents. Whether CP
reaches the critical level to elicit these afferents
further
research. It does, however, provide an additional

motoneurons. Evidence demonstrates

remains speculative and requires
explanation for the dramatic decrease observed
in the soleus H-reflex amplitude during CP

application to the calf.

Clinical implications

Results from previous pressure studies applied
by an air splint to the calf showed that MNRE
decreasedinall subjects and patients tested [6,7].
Due to these results, these authors advocate
using CP in treating hypertonia resulting from
upper motor neuron syndrome. It is always
an arduous task for therapists to choose a
therapeutic modality that is efficacious without
knowing how it works. The results of this study
were unable to detect fully how CP lowers MNRE
except that la presynapticinhibition plays a small
role. Clinicians therefore should be aware of the
many spinal and peripheral mechanisms that
CP may use in modulating MNRE and routinely
monitor their treatment effects to assure if the
functional outcomes in their patients are what
was expected. This is especially true when muscle
contraction and movement are a condition
[3,51.

Summary

The
dramatically decreased

unconditioned H-reflex amplitude

in every subject

: . v
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during pressure application.  Previous
research conducted on people with complete
traumatic spinal cord injury has suggested
that this decrease in H-reflex amplitude was
spinal in origin [7]. In an attempt to elucidate
the spinal mechanism that is responsible
for this inhibition, two segmental inhibitory
mechanisms were investigated: disynaptic
reciprocal inhibition and la presynaptic
inhibition. Results showed that la presynaptic
inhibition increased in 79% of our subjects
but only modestly. No change was seen in
DSRI. It was concluded that laPI contributed
to the H-reflex inhibition during CP but
could not account for the total observed
reflex inhibition. Additional mechanism(s)
of control must also be involved [1]. The
possible mechanisms that may participate

are discussed.
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H-Reflex - Hoffmann Reflex
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