

UNTANGLING THE ROLE OF TAU IN ALZHEIMER'S DISEASE: A UNIFYING HYPOTHESIS

Abstract

Recent investigations into the etiology and pathogenesis of Alzheimer's disease (AD) in the past few years have expanded to include previously unexplored and/or disconnected aspects of AD and related conditions at both the cellular and systemic levels of organization. These include how AD-associated abnormalities affect the cell cycle and neuronal differentiation state and how they recruit signal transduction, membrane trafficking and protein transcytosis mechanisms to produce a neurotoxic syndrome capable of spreading itself throughout the brain. The recent expansion of AD research into intercellular and new aspects of cellular degenerative mechanisms is causing a systemic re-evaluation of AD pathogenesis, including the roles played by well-studied elements, such as the generation of A β and tau protein aggregates. It is also changing our view of neurodegenerative diseases as a whole. Here we propose a conceptual framework to account for some of the emerging aspects of the role of tau in AD pathogenesis.

Keywords

- Tauopathy • Secretion • Alzheimer's disease pathogenesis • Tau lesion spread
- Neurodegeneration • Tauopathy models • Tauopathy hypothesis

© Versita Sp. z o.o.

Neha Bhatia,
Garth F. Hall*

Department of Biological Sciences,
University of Massachusetts Lowell,
198 Riverside Street, Lowell, MA 01854, USA

Received 12 April 2013
accepted 16 May 2013

Abbreviations:

AD	- Alzheimer's disease
FAD	- familial Alzheimer's disease
LOAD	- late-onset Alzheimer's disease
APP	- amyloid precursor protein
NFT	- neurofibrillary tangle
PHF	- paired helical filaments
A β	- beta-amyloid peptide
CTE	- chronic traumatic encephalopathy
CNS	- central nervous system
CSF	- cerebrospinal fluid
ROS	- reactive oxygen species
MT	- microtubule
ECF	- extracellular fluid
MTBR	- microtubule binding repeat
MAP	- microtubule associated protein

Introduction / historical perspective

In the quarter century that has passed since the proteins that constitute the defining lesions (senile plaques, SP, and neurofibrillary tangles, NFT) of Alzheimer's disease (AD) were first characterized in detail, we have learned immensely more about the misprocessing of these proteins (amyloid beta, A β , and tau,

respectively) that results in their aggregation into at the cellular and molecular levels of analysis. However, key aspects of the etiology and pathogenesis of AD itself - and particularly the most prevalent late-onset form of AD (late-onset AD, or LOAD) - remain unclear. These uncertainties have if anything increased over time, with more recent studies either calling into question the relevance of both SP and NFT to the neurodegenerative process or demonstrating the potential importance of other AD-associated neurodegenerative changes (e.g. cell cycle re-entry, loss of neuronal polarity) that have little apparent relevance to A β and/or tau aggregation. In this review, we attempt a synthesis between these lines of investigation with previously established views of disease mechanisms in AD that offers a new perspective on the direction of neurodegenerative disease research.

For most of the 100+ years since the publication of the case report of "dementia praecox" by Alois Alzheimer in 1907 [1], AD was considered to be a rare familial condition (FAD) featuring an autosomal dominant inheritance pattern, a midlife onset followed

by rapid cognitive decline and a characteristic neuropathological proliferation of cerebral SP and NFT. During this period AD was studied and its lesions characterized by investigators using traditional clinical [2,3] genetic [4-7] neurohistochemical [8,9] and ultrastructural [10] approaches, with almost nothing being known about its etiology or pathogenesis beyond some indications that AD was associated with damage to cholinergic pathways [11,12]. It was not until the mid 1980s that it became clear that most cases of senile dementia (i.e. "senility") were neurologically indistinguishable from AD, prompting a detailed molecular characterization of the main component proteins of SP (β -amyloid or A β) [13] and NFT (tau) [14-19], which in turn quickly focused attention on the genetics, biogenesis, function and potential neurotoxicity of these agents. This was particularly true of A β and its generation via the proteolytic cleavage of its parent protein (amyloid precursor protein or APP) [20]. By 1991, the demonstration of a direct link between mutations in APP and the FAD syndrome in several families [21-23] led directly to the development of the amyloid cascade hypothesis.

* E-mail: Garth_Hall@uml.edu

The amyloid cascade hypothesis

The amyloid cascade hypothesis (first put forward by Hardy, Selkoe, Bayreuther and colleagues in the early 1990s) was the first modern attempt to define the etiology of FAD in specific terms [24,25]. It was based on several landmark studies of families with autosomally dominant AD traceable to chromosome 21. It accounted for the increased amount and/or toxicity generated by the so-called “framing” mutations in APP [21,23], and was consistent with the long known link between Down’s syndrome (trisomy 21) and AD [4]. By the mid 1990s, the original genetic basis for the amyloid cascade hypothesis (i.e. that the cleavage of APP by β and γ secretases (at the N- and C-termini of A β , respectively) was the cause of at least some forms of familial AD). A central role for A β generation in AD was consistent with early acetylcholine pathway associated damage [26], known genetic and environmental risk factors, including the ApoE4 allele [27,28] and head trauma [29,30]. Furthermore, the toxicity of A β had also been largely supported by results from both cell culture [31,32] and in a transgenic mouse model [33]. The subsequent identification of presenilins 1 and 2 (the most common source of FAD mutations overall) as an element in the γ secretase complex [34] confirmed earlier results and established the value and importance of the amyloid cascade hypothesis to understanding AD. This hypothesis was the basis for the generation of the first AD mouse model (the so-called “Athena mouse”), in which A β was strongly overexpressed in the CNS, resulting in the development of significant plaque pathology closely resembling that seen in AD and Down’s Syndrome brain [33]. The numerous CNS plaques found in Athena mice were accompanied by changes in tau phosphorylation resembling early “pre-tangle” neurofibrillary pathology in humans; these mice also replicated some of the earliest cognitive deficiencies typically seen with human AD. While these findings appeared to be a strong validation of the Amyloid Cascade Hypothesis to many at the time, the failure of other AD features (e.g. widespread neuron loss, the development of NFT) to develop in

these mice was later seen to be evidence that factors in addition to APP misprocessing and plaque formation are required to explain the full spectrum of AD-related changes.

Tau - the amyloid cascade hypothesis is incomplete

The focus on A β pathobiology that was the prevailing state of affairs through the mid-1990s was by no means absolute; much effort at this time was also directed at the characterization of NFT, which by this time had been shown to be somatodendritically localized, hyperphosphorylated, aggregated forms of tau - a cytoskeletal protein hitherto largely associated with axonal microtubules in the CNS [14,15,35-39]. Phosphorylation-regulated binding of tau to microtubules [40] was known to occur via the microtubule-binding region (MTBR), a set 3 or 4 conserved tandem repeat motifs in the tau C-terminal domain [41,42]. In AD, phosphorylated tau aggregates consisting primarily of the MTBR were found to make up “paired helical filaments” (PHF), the key structural component of NFT [43-45]. The best evidence for a central role of tau in AD pathogenesis was the result of a series of studies by Heiko and Eva Braak and colleagues that demonstrated a progressive sequence of neurofibrillary pathology illustrating the spread of NFT in the CNS [18]. This work established a timeline for NFT lesion progression through the CNS in AD that was tightly correlated to the initial presentation and progression of clinical symptoms [46,47]. This “Braak pattern” of NFT development begins in the limbic cortex of the temporal lobe and progresses to association (polymodal) areas of the neocortex, leaving primary sensory and motor areas unaffected until end stage disease has set in. Despite the tight correlation between tau pathology (i.e. NFT distribution) and clinical presentation of AD, interest in the role played by tau in AD pathogenesis was initially limited by 1) the failure to identify mutations in the TAU gene that could be directly linked to FAD and 2) the inability of tau overexpression to cause neurotoxicity in cell culture models [48]. It was not until a) the identification of both exonic and intronic tau mutations as being

responsible for the familial forms of a subset of non-AD neurodegenerative syndromes [49-51] and b) the successful production of cellular [52] and transgenic [53-56] models capable of replicating pathology resembling that of tauopathies *in situ* that general interest in tau as a central agent of AD pathogenesis renewed. These studies showed that tau is itself toxic and thus may be responsible for AD-associated neurodegeneration, thus for the first time tying NFT distribution directly to AD neuropathology. Furthermore, it became clear that mutations in tau induce changes in tau associated with both NFT formation and neurodegenerative disease [54,57]. These included the failure of mutant tau isoforms to bind MT strongly [58,59] and their increased tendency to aggregate [60,61], and become hyperphosphorylated [62]. In addition, tau derived from NFT can sequester normal tau and other MAPs [28,63] hence providing a route to “loss of function” defects in neuronal function. These findings solidified the status of tau aggregates and factors leading to tau aggregate formation as players in AD pathogenesis [65-69]. However, the ability of intronic mutations to induce dominant familial tauopathy syndromes by creating an imbalance between three and four-repeat tau isoforms [70-72] also demonstrated that tau toxicity is dependent on an extremely subtle interplay between the parameters associated with MT:tau binding, tau:tau binding, and tau hyperphosphorylation.

Most evidence before 2002 suggested that tau toxicity was exclusively mediated by the tau C-terminal domain and in particular the MTBR, since this region comprises the “core” of PHF and thus is essential for NFT formation [73,74]. The importance of the MTBR was particularly emphasized by the near-exclusive localization of exonic tauopathy point mutations to the MTBR-coding regions, indicating a central role for this part of tau in the pathogenesis of non-AD tauopathies as well as in AD. However, most studies of tau MTBR function had shown a very tight correlation between aggregation propensity, phosphorylation state, and tau:MT binding affinity, making it difficult to separate the contribution of each of these factors to the cytotoxicity induced by tau aggregation.

Still, a significant interaction between the tau N-terminal projection domain and the plasma membrane and in particular src family kinases had also been identified [75] and shown to be associated to be neurofibrillary pathology in AD [76-79]. Such results served as a reminder that MTBR-mediated tau aggregation, however important, could not be considered in isolation from other *cis*-acting factors that must also be involved in tau-associated neuropathogenesis.

Hints of other links to Alzheimer's disease mechanisms

While demonstrations that mutations in the *APP* and *tau* genes cause familial AD and non-AD tauopathies (respectively) had established central roles for these proteins in tauopathy pathogenesis, a number of other possible players in AD pathobiology had also been identified by the late 1990s that have since proven important in our understanding of the roles played by both A β and tau in neurodegeneration. One of the most surprising of these was the appearance of epitopes hitherto associated with the cell cycle in mature neurons during the earliest stages of neurofibrillary degeneration [80-83]. Other very early (pre-fibrillar) disease-associated changes include lysosomal hypertrophy [84,85] as well as the colocalization of a variety of development-associated regulatory proteins, including GSK3 β , CDK5, MARK kinases, CRMP2, and GAP43 [86-90]. Additional abnormalities associated with pre-fibrillar neurons include evidence for the reactivation of developmental programs normally associated with tau, especially those associated with axonal identity [91,92], and other aspects of axonogenesis [93-96]. Moreover, it emerged that the primary genetic and environmental risk factors for developing LOAD were (respectively) the ApoE4 allele [27], and severe or repeated head trauma [97-99]. The latter was also known to cause non AD neurofibrillary conditions such as *dementia pugilistica* [97,98], which later became associated with other contact sports and battlefield injuries as chronic traumatic encephalopathy (CTE) [99]. Finally, the ability of wild type (WT) tau species to induce degeneration in both cellular and

murine transgenic *in situ* [52,53], but not in cell culture lines had not (and has not since) been satisfactorily explained. This ability appears to imply that tau toxicity is dependent on the full differentiation of certain neuronal characteristics (i.e. fully differentiated synapses and axons and dendrites) that can only be found *in situ* [48,52] or in mature primary neuronal cultures, and offers hints as to how other unexplained aspects of AD cytopathology such as cell cycle re-entry may be related to overall disease cytopathogenesis, as discussed further below. All of these findings contributed to an emerging picture of AD as a condition of complex etiology rather than one based only on misprocessing APP and/or tau.

The new point of departure - tau aggregation/phosphorylation drives toxicity in AD

The treaty is signed (ca. 2004) - tau is downstream of A β

During the past 10-15 years, there has been an important shift in research focus from individual aspects of AD pathogenesis toward a more integrated approach to the study of AD pathogenesis. A prime driver of this change in perspective has been a general acceptance that a) the central etiological event in AD (LOAD as well as FAD) is the generation of β -amyloid peptide from its precursor (APP), and also that b) tau misprocessing serves as the proximate cause of neurotoxicity in nearly all experimental circumstances and is thus very likely to do so in AD as well. This second point was established by demonstrations both *in situ* [55] and in primary neuronal culture [100,101] that the presence of human tau is a necessary and sufficient condition for toxicity induced by A β . While tau overexpression in an *in situ* cellular model had caused clear tau-specific neurodegeneration [52], murine transgenic models that expressed WT human tau at physiological levels caused only minimal somatic tau accumulation with no apparent toxicity [102,103] and mild overexpression (5x) of WT tau produced some tau aggregates in elderly mice [53], which left open the possibility (at least for for some) that tau-induced toxicity might be of limited relevance to human disease. However,

Götz and coworkers showed that cerebral microinjection into WT tau-expressing mice readily induced NFT formation in the vicinity of the injection site [55]. This suggested that A β might be playing a role comparable to that of tauopathy mutations in the exacerbation of toxicity-associated characteristics of tau protein resulting in NFT formation. This was consistent with earlier findings that A β induced tau phosphorylation and MT loss in cell culture [31] in a manner similar to that of tauopathy mutations [51,61,104,105]. An essential role for tau in mediating A β toxicity was directly demonstrated in an experiment by Rapoport and coworkers, who used primary cortical neurons taken from a tau KO mouse [106] to show that A β toxicity was completely dependent on tau expression [100]. Interestingly, the tau KO mouse used in this experiment showed relatively normal CNS development combined with an upregulation of MAP1A, suggesting that the roles played by tau in neurodevelopment (discussed below) are not unique to tau; knockdown experiments directed at tau in primary hippocampal neurons in culture have had similar results [107]. The nature of A β -induced changes to tau includes an increase in caspase and calpain-mediated tau truncation [108-112], which causes increased aggregation of C-terminal (or MTBR)-containing tau fragments [113-116]. Since tau is inherently prone to fibrillization [116] and since the tau proteins comprising PHF and NFT appear to evolve over time from full length to truncated species containing mainly the MTBR domain [117], it seems very likely that A β drives NFT formation via a truncation mediated mechanism. Studies of tau aggregate development transgenic mice [118] and flies [119] offer additional support for the view that much, if not all, A β neurotoxicity is mediated by the presence of either mouse or human tau isoforms. Tau has thus become a bridge between the A β and AD-specific phenotypes with A β as the catalyst for a tau-centered toxicity cascade. This has both unified diverse research foci and formed the basis for the current view of AD pathogenesis [120].

The establishment of tau-induced toxicity as the proximate cause of AD cytotoxicity subsequently resulted in a general increase in

attention given to tau-associated pathological mechanisms in the field. Much of the recent evolution of our current view of tau is due to a re-examination of non-MT associated tau functions in the light of new information that has emerged concerning the nature of tau-induced toxicity. The interaction of the tau N-terminal projection domain with the plasma membrane [75] and non-receptor tyrosine kinases such as fyn and src [76] are examples of such functions. In general, non-MT-associated tau functions can be characterized as involving an alternative association of either MTBR region [94,121,122] or N-terminal domains of tau with subcortical actin [75], actin-associated proteins such as dynein [123-125] and membrane associated proteins involved in signal transduction such as fyn and src [126]. Additional non-MT interactions of tau occur with chaperone proteins such as Pin1 [127] ChIP [128] and HSPc70 [129]. All of these interactions now appear to play some role in tau pathobiology, but their relationships to tau aggregation and NFT formation remain somewhat unclear. Most tau-related research effort is still devoted to characterizing the mechanisms responsible for the hyperphosphorylation and proteolytic cleavage of tau and the correlation of these events with both the dissociation of tau from axonal microtubules and with aggregation itself [66-69,130,131]. It is increasingly clear that all of these events are associated with "pre-tangle" formation in neurons in the early stages of degeneration, and that abnormal tau phosphorylation is tightly associated with aggregate formation and that both aggregation and hyperphosphorylation are themselves exacerbated by the dissociation of tau from MT. However, since the association of tau with MT appears to be extremely dynamic in at least some circumstances [132], it has been difficult to assign a sequence of changes that lead to disease-associated toxicity based on causality. Similarly, the dissociation of tau from MT also makes tau a better substrate for caspases/calpains and thus more likely to undergo proteolytic cleavage into N- and C-terminal fragments, possibly accounting for the progressive proteolytic removal of N- and C-terminal epitopes during the evolution of NFT in human brain [117]. Cleavage has been shown

to favor the hyperphosphorylation of AD-associated sites in the MTBR-flanking regions as well as the oligomerization/aggregation of tau, as has the presence of tauopathy mutations, all of which appear to favor MT phosphorylation. Systematic dissection of the tau C-terminal domain in cell culture, mouse transgenic and *in vitro* models by the Mandelkow group and others has elucidated the molecular nature of tau:tau interactions and identified a 100 amino acid segment encompassing the MTBR as an aggregation-prone tau species responsible for toxicity [115-117,133]. The well-established disruption of the autophagolysosome protein turnover mechanism in the early stages of AD cytopathogenesis [84,85,134-136] may be another consequence of the inability of protein turnover mechanisms to eliminate tau aggregates, leading to toxicity via the formation of reactive oxidative species (ROS). Overall, while tau aggregate formation appears to be central in the generation of tau toxicity, the specific roles of hyperphosphorylation and aggregation have yet to be clarified. In particular, the importance of whether tau is associated with MT or some alternative cellular structure has emerged as a clear point of demarcation between normal and pathological tau processing.

Current issues in our understanding of tauopathy neuropathogenesis

Despite the increasingly detailed characterization of tau aggregate formation and its association with toxicity, there remain several other aspects of tau biology whose contributions to degeneration-associated toxicity remain unresolved. The ability of tau fragments containing only the N-terminal projection domain (and lacking the MTBR) to induce downstream tau toxicity in cell culture models [101,137] suggest that alternative toxicity pathways exist for tau that do not involve the MTBR, and therefore most probably do not involve tau oligomerization. Moreover, N terminal fragment toxicity appears to account for much of the cytotoxicity of extracellularly applied A β in at least some experimental models [101] and act via a receptor-mediated

mechanism [106,109,133,138,139]. Such findings appear to challenge tau aggregate formation as the central mechanism mediating tau toxicity at least in AD, if not in other tauopathies. Other unresolved issues surrounding tau toxicity in neurodegenerative disease include a) the degree to which the abnormal reactivation of developmental functions (e.g. cell cycle regulation, neuronal polarization), b) the mechanism of tau secretion and its relationship to neurodegenerative disease and c) the mechanism of lesion spreading in tauopathy and its role in disease pathogenesis. Other areas of active research interest include the following:

Where in the cell do tangles form, and do tangles matter?

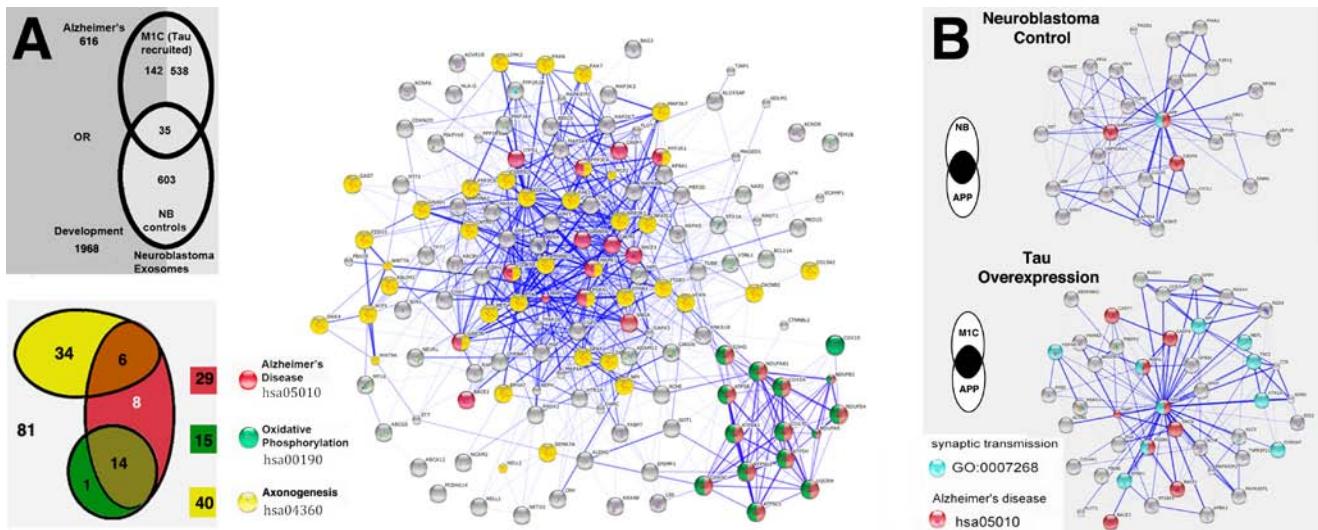
Although it now seems clear that tau is abnormally processed in the adult CNS when it ceases to bind to MT in the "classical" manner, the actual mechanism of tau aggregation into neurofibrillary tangles and where it occurs in the cell remain unclear. While it has generally been assumed that NFT formation occurs in the cytosol, many cellularly relevant mechanisms of tau aggregate formation involve polyanionic membrane components, such as heparan sulfate proteoglycans and fatty acids. This suggests that critical steps in NFT formation might require association with membrane, and might even occur within membrane-bound vesicles, as discussed below. More fundamentally, NFT and other tau aggregates containing lesions have always been the most prominent hallmarks of tauopathy neuropathology, and their development appears to follow clinical disease progression fairly closely [18,46]. Correlative studies suggest that the presence of NFT within neurons leads eventually to MT loss from dendrites [17] neuron death and "ghost tangle" formation [16,18,140]. In the late '90s, an important study by Iqbal and coworkers showed that tau aggregates sequester non-tau MAPs in AD, which could induce cytotoxic changes via the loss of MT function [63]. All of this was consistent with the once universal view that NFT are themselves toxic to the neurons that bear them. However, more recent studies in inducible mouse tau transgenics

have suggested that tangles themselves may be relatively benign. The advent of inducible tauopathy murine models expressing toxic human tau species (e.g. P301L tau) has made it possible to separate NFT formation from pre-tangle changes. Such studies have shown that cognitive changes associated with NFT formation can be at least partially reversed by stopping tau induction after dementia onset, but that the tangles remain present [141,142]. In non-murine tauopathy models such as the fruit fly and lamprey systems, tau aggregate formation occurs, but, as with the inducible mouse models, their presence appears irrelevant to direct measures of toxicity, such as cell death [143-145]. Moreover, the hyperphosphorylation associated with tau aggregation in NFT appears (paradoxically) to have neuroprotective effects in tauopathy fly lines, apparently by making neurons less susceptible to apoptosis [146,147]. Thus, while oligomeric precursors to NFT are now the best characterized likely mediators of tau toxicity in the cytopathogenesis of tauopathies [66-69,131,148-154], it is still unclear whether and to what extent large tau aggregates such as NFT are actually involved in mediating tau toxicity in human neurodegenerative disease.

Whither the cell cycle?

Research directed at elucidating the roles played by apoptotic changes in AD suggests that cell cycle re-entry may be of central importance in the mechanism of neurodegeneration, possibly involving the reactivation of normal developmental functions of both tau and APP. The initial steps of tau misprocessing involve its disassociation from MT and its phosphorylation by a wide variety of ser/thr/tyr kinases. Many of these kinases have also been shown to play important roles in regulating mitotic activity and/or early stages of neuronal differentiation [131,155-158]. The reactivation of genes associated with cell cycle re-entry and early stages of neurodifferentiation [86-90] in the aging brain may account for the appearance of apoptotic elements during the course of neurofibrillary degeneration in AD. That said, the slow time course of NFT formation [159,160] makes it unlikely that the classic

apoptotic cascade is directly responsible for neuronal death in AD. However, the activation of "executioner" caspases and the generation of reactive oxygen species (ROS) associated with mitochondrial damage are centrally involved in both apoptosis and AD-associated neurodegeneration [161-163], suggesting that cell cycle re-entry caused by A β /tau misprocessing in the aging CNS may cause a partial activation of the apoptotic cascade that contributes to long term neurodegeneration.


Does tau aggregate formation require the involvement of membrane and/or membrane proteins?

It has generally been assumed that the formation of tau aggregates occurs directly via oligomerization to granular aggregates or "pre-tangles" in the cytosol [130,146-148] although this process has not been extensively characterized in cellular tauopathy models. However, the links between misprocessed tau and src family kinases, lipid rafts and membrane trafficking [126,145], protein oligomerization with both endosome and exosome formation [163-165] and the recent demonstration of exosome-localized tau [166] complicates our understanding of tau aggregation mechanisms. It is possible that tau oligomerization and the subsequent formation of NFT might also involve the endocytosis of membrane-associated tau that has been oligomerized either via interactions with membrane associated proteoglycans [60,167,168] or other elements [169-171]. Experimental tau aggregate formation *in vitro* can be induced by MTBR-mediated tau:tau interactions or membrane-associated elements such as fatty acids [172,173], heparan sulfate proteoglycans [122,167] and other polyanions such as mRNA [174]. Disease-associated tau interactions with the membrane have also been shown *in vivo* [168], and may involve the tau N-terminus interacting with and being phosphorylated by srk family kinases such as fyn [75-77,175]. This pathway is consistent with demonstrations by LeClerc and coworkers showing that in both tau overexpression and in AD, tau becomes localized to the Golgi despite its lack of an ER-

targeting signal sequence [176,177]. Finally, there is increasing evidence that vulnerable cellular protein turnover pathways (e.g. macroautophagy) are damaged and diverted by an excess of non-MT-associated tau [175,180-182]. Proteomic analysis of a neuroblastoma exosomal-associated proteome consistent with this is presented in Figure 1. Interestingly, recent reports of vesicle-mediated tau transport [178], vesicle associated tau secretion [166,179] and the possibility that AD and other tauopathies develop by interneuronal propagation of aggregated tau species in the brain [183-185] either indicate or assume that tau-membrane interaction plays a central role in disease pathogenesis. All of these indications favor serious consideration of endocytosis-mediated mechanisms as contributors to tau oligomerization and/or the seeding and growth of NFT and other large tau aggregates, as well as to tau secretion and lesion spreading mechanisms (discussed further below).

Mechanisms of lesion spreading in tauopathy – differential vulnerability and interneuronal transfer

Interneuronal aspects of tauopathy have until very recently been considered to be prohibitively complex for a systematic analysis based on cellular mechanisms. However, there has generally been agreement that the highly stereotyped and disease-specific sequences in which specific parts of the brain become involved as the tauopathy develops can only be accounted for by a combination of two factors – differential vulnerability to tauopathy and direct interneuronal transfer of toxic factors associated with tau-induced toxicity. It has been suspected for a number of years that the first neurons to degenerate in AD and non-AD tauopathies may have specific physiologic characteristics that might make them more vulnerable to neurofibrillary degeneration than other neuron types, and that this might at least partly account for the lesion development patterns observed. An example of selective vulnerability of cortical neurons to neurofibrillary changes is the

Figure 1. Proteomic analysis of exosomes in neuroblastoma cells overexpressing 4R0N tau suggests links between tau secretion, AD, autophagy abnormalities and APP misprocessing. A proteome of 669 proteins from exosome samples taken from M1C neuroblastoma cells was identified by mass spectrometric analysis as described [166]. Prescreening was done using a large panel of 616 AD associated proteins [187] and 1968 general neurodevelopmental proteins based on String interactors [188] with axonogenesis and morphogenesis-associated proteins. These included tissue morphogen pathways (wnt, fzd, Ssh, Hox, Notch), growth factor pathways (EGF, FGF, NGF, PDGF, BDNF) and axonal guidance pathways (semaphorins, netrins, ephrins and slit). Panel A: summarizes the results of GO based analysis of this proteome using the online String 9.05 program [187]. Proteins present in this dataset and absent from a control neuroblastoma exosomal dataset (638 proteins) [188] produced a set of 142 proteins unique to the exosomal proteome of M1C cells induced to overexpress 4R0N tau [166]. The Venn diagram (A, bottom) summarizes the GO term characterization of this dataset using much more restrictively defined protein sets. Proteins associated with AD (hsa05010), mitochondria (oxidative phosphorylation – hsa 00190) and axonogenesis (hsa04360), showed highly significant recruitment into this proteome. Panel B: Connectivity analysis of the 142 protein dataset described in A. The strength and degree of relatedness between proteins (identified by gene name) is given by the length and thickness of the blue lines. Note that the AD signal recruited by tau overexpression recruits mitochondrial proteins normally not present in exosomes (red/green hatched proteins) suggesting the diversion of autophagosome contents into exosomes (exophagy) [181]. An entirely separate subset of AD-associated proteins (yellow/red hatch) co-localized significantly with proteins involved in axonogenesis. Panel C: Interestingly, tau overexpression results in the significant enrichment of APP-associated proteins (the top 500 APP interactors identified by String) relative to the control neuroblastoma exosomal proteome ($p < 0.01$, Fisher's Exact test). This was accompanied by a significant increase in the proportion of AD associated (red) and synapse associated (blue) proteins, suggesting that abnormal tau localization to the membrane caused by overexpression [145,179,190,191] potentiates AD-associated misprocessing of APP, possibly in a synapse-associated context.

selective decrease in dendritic spine density seen with age in temporal limbic loci [186]. These changes appear to be correlated with age-related sex hormone level decreases, which could exacerbate early synaptic damage associated with A β accumulation in AD [229]. Similarly, high levels of synaptic and dendritic plasticity may impart vulnerability of certain cortical brain regions to tauopathy, at least in AD, as highly plastic regions such as the hippocampus and neocortical “association” areas appears to be subject to NFT formation early in AD [18,140] while the relatively “hard wired” primary sensory and motor cortices rarely exhibit neurofibrillary degeneration until very late stages [80]. Interestingly, alterations in spine structure and other plasticity-associated changes caused by tau misprocessing [236,237] may well involve the small amount of tau that is normally localized to the postsynaptic region

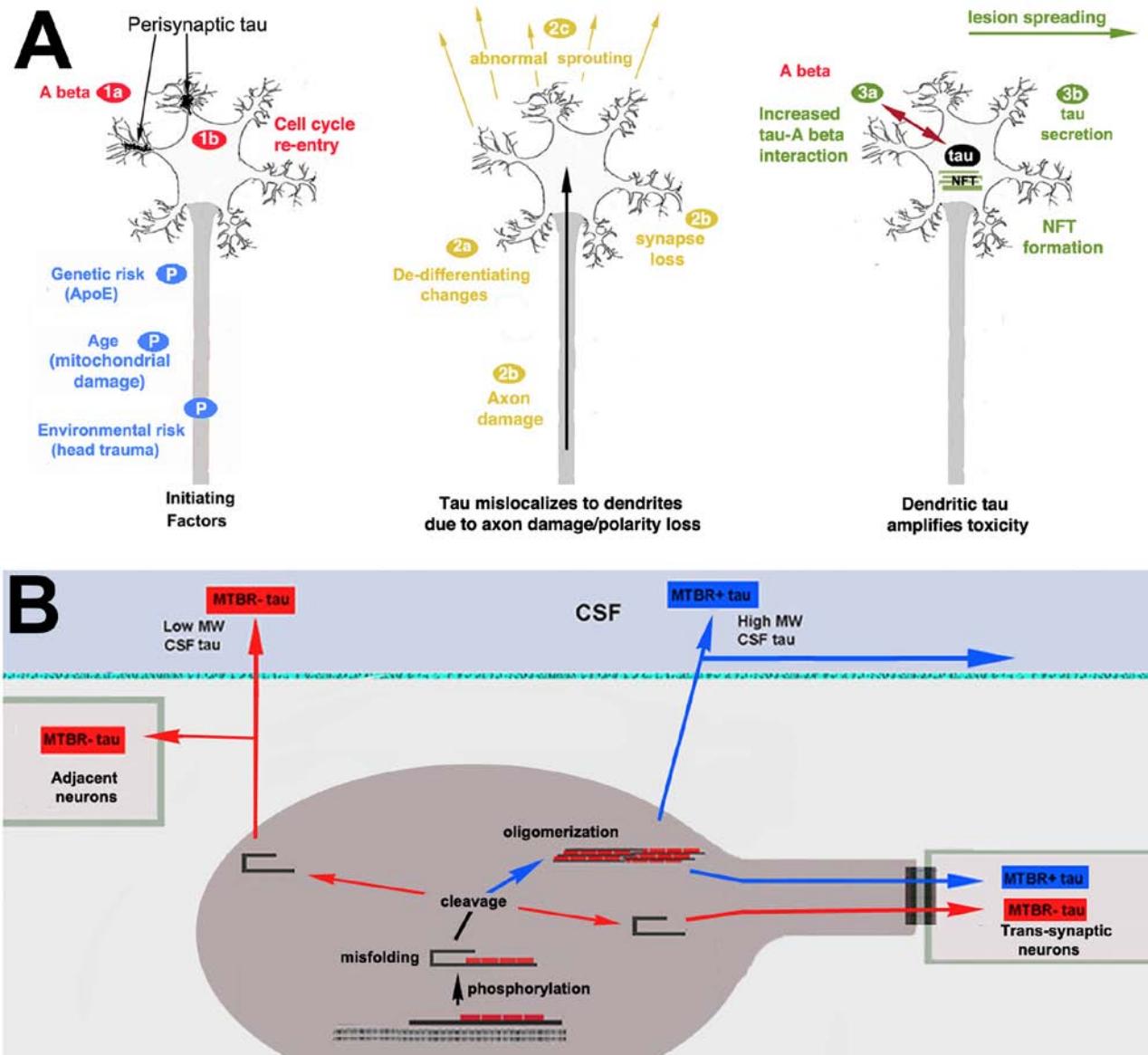
in dendrites, as inducible P301L (rTg4510) mice show transient increases in behavioral plasticity before the onset of P301L tau-induced neurodegeneration [238], a finding that is consistent with the reduced MT binding of P301L tau, which presumably is therefore more likely to associate with perimembranous actin cytoskeleton rather than axonal MT.

While these studies strongly suggest that selective vulnerability of specific brain loci to neurodegeneration probably contributes to tauopathy pathogenesis, a much greater amount of attention has been paid to the possibility that the lesion development pattern seen in AD and non-AD tauopathies is due to the actual physical transfer of toxic tau species from one neuron to another. This issue has been addressed in two somewhat different ways by investigators using different disease models, with some addressing the

mechanisms by which tau may be secreted to and taken up from the extracellular space and others focusing on the possibility that tau (and possibly other aggregation-prone proteins involved in neurodegeneration) may act as “prions”. As it is difficult to trace secreted tau in murine transgenic models, tau secretion mechanisms have been investigated and characterized at the cellular level *in situ* primarily in the lamprey cellular tauopathy model, in which tau overexpression is generated cell-autonomously, resulting in unambiguous secretion [52,143,179,190,191]. More recently, studies of tau secretion have also been pursued in cell culture as well [166,178,209,239]. It now appears that tau can be secreted from neurons *in situ* by multiple cellular pathways [179,192] and that the presence or absence of the MTBR is an important determinant of both the secretion

mechanism [178] and the resulting pattern of extracellular accumulation and transport [193]. In the lamprey model, tau secretion occurs before the onset of degenerative cellular changes [192,193], suggesting that extracellular tau in AD brain and CSF is very likely due to secretion rather than passive release from dead or dying neurons as has been commonly been assumed [166,194]. The propensity of tau to oligomerize may well be a factor in favoring its secretion, since the presence of tauopathy mutations also favor secretion [183,192,193] and uptake [195]. Dimeric and trimeric CSF species have also been observed in early stage AD patients [166], suggesting that oligomerization may occur with secretion. However, the role played by oligomerization in tau secretion (and thus in lesion spreading) is still unclear, since treatment of tau-overexpressing neurons with antiaggregating drugs greatly increases the efficacy of secretion *in situ* [191,196], but oligomerized tau appears to be preferentially taken up from the medium in some cell culture models [195,208]. Tau now appears to be secreted at least in part via the exosome pathway [166] as are other aggregation-prone proteins associated with neurodegenerative disease such as β -amyloid [197], α -synuclein [198] and prion protein [199]. Ongoing proteomic analysis of exosomal proteins recruited by tau into this secretion pathway in our laboratory suggests that tau misprocessing could drive secretion via a mechanism involving elements of synaptic function, APP misprocessing, and the diversion of autophagical lysosome contents into the exosomal secretion pathway (Figure 1).

Is tau a prion?


A major recent focus of interest have been the question of whether tau toxicity is propagated interneuronally via a prion-like mechanism involving a “templated” induction of specific toxic conformations in normal tau proteins in recipient neurons, and thus spreading toxicity and neurofibrillary lesions throughout the brain. While this mechanism has hitherto been considered unique to prion diseases [199-201], the Braak sequence of lesion

progression in AD [18] and similar sequences for other tauopathies [18,202-206] have long hinted at trans-synaptic mechanisms of lesion spreading, and very recently evidence has accumulated in both cellular [194,207-209] and transgenic [183-185,210,211] tauopathy models that supports the existence of tau:tau interactions that result in the transformation of normal tau isoforms into toxic species. Moreover, tau lesion spreading patterns within the brains of mouse tauopathy models [184,185,211,239] and the existence of common molecular characteristics between tau, the prion protein and other aggregation prone proteins including A β [175,200,201] suggests that this mechanism could well be operative in human tauopathy [183,184,213]. There are also a number of parallels between transsynaptic lesion spreading patterns in tauopathy with the protein-mediated interneuronal transfer that is characteristic of prion-based disorders such as transmissible spongiform encephalopathies (e.g. Creutzfeld-Jakob disease, fatal familial insomnia), which certainly suggests that it could be relevant to human neurodegenerative disease [240]. However, it is very difficult to show that such a mechanism can (and more importantly that it *does*) account for neurodegenerative disease pathogenesis, as was evident during the protracted and highly contentious investigations that ultimately vindicated the “prion hypothesis” with respect to the pathogenesis of prion diseases. While demonstrations of tau lesion spreading in models to date have been convincing, it is important to note that such models were specially designed to enhance prion-like tau lesion propagation, and there is not yet any real evidence that tau aggregate propagation in models actually reflects the operation of similar mechanisms in human disease, or even that tau aggregates are themselves toxic (as opposed to aggregation-inducing) *in situ*. Indeed, it is quite possible that the interneuronal transfer of tau protein could induce toxicity without involving aggregation, especially since A β toxicity can be mediated by tau without requiring the presence of the aggregation-prone tau MTBR region. Such an “MTBR minus” propagation mechanism

might involve receptor-mediated calcium dysregulation through the activation of calpains and caspases, which could in turn induce tau lesion formation in the receiving cell [108,109,138,139,213,214]. This type of mechanism would be consistent with reports that tau binds to NMDA and muscarinic acetylcholine receptors, causing changes in intracellular calcium levels [109,138,139,195,214]. It is worth noting in this context that both C and N-terminal tau fragments could possibly mediate neurofibrillary lesion spread in tauopathies via templated misfolding, oligomer-associated secretion, and/or calcium dysregulation mechanisms, respectively [213].

A unifying hypothesis of FAD and LOAD cytopathogenesis centered on tau

A central question emerging from recent investigations of tauopathy pathogenesis is how our now more detailed understanding of “conventional” mechanisms such as tau aggregation and tau phosphorylation can integrate elements such as tau secretion, cell cycle re-entry and neuronal polarity loss into a coherent unitary hypothesis. Another issue to be resolved is the mechanistic relationship that (presumably) exists between familial and sporadic AD and non-AD tauopathies. The traditional route to understanding neurodegenerative disease etiology and pathogenesis has generally been to first investigate familial, early onset variants of these conditions, whose mechanisms tend to be defined in terms of one or a few genes and then to extrapolate the mechanisms identified to sporadic variants of the disease. In the case of AD, it is now clear that the central initiating factor in FAD is an increase in the amount and/or toxicity of A β in vulnerable parts of the brain, and that the major proximate cause of neurodegeneration is the misprocessing of tau protein via interactions with A β . There is accumulating evidence that several other abnormalities (e.g. cell cycle re-entry, polarity loss, and aberrant re-activation of development programs) also play a central role in the pathogenesis of AD. Here we

Figure 2. Hypothesized sequence of cellular events in tauopathy. We propose that tau misprocessing mediates A β initiated changes (AD) or directly induces (non-AD tauopathy) a cascade of toxic changes resulting in neurodegeneration via a hypothetical sequence of events as described. This sequence would account for and integrate A β synaptotoxicity, cell cycle re-entry mechanisms and aggregate formation in the context of both known predisposing genetic and environmental factors in LOAD and the unique distribution of tau in mature cortical neurons, where it resides primarily in the axon but also in perisynaptic zones within dendrites. Panel A: A β based abnormalities serve as the primary initiating factor of tau toxicity in familial AD (left). Age and genetic background-related factors (ApoE allele, tau haplotype) in combination with environmental predisposing factors (P) (traumatic head injury) precipitate the onset of LOAD. The initiating event (1a) involves APP misprocessing to A β in synapses and endosomes, occurring in the context of tau normally present in the postsynaptic density. Both of these are associated with cell cycle re-entry (1b), which sets off de-differentiation-related changes (2a) that damage that preferentially damage terminally differentiated neuronal structures such as axons, dendrites and synapses and compromise the localization of tau to the axon (2b). The failure of tau localization mechanisms that normally route most tau proteins to the axon [214, 215] prompt the reactivation of developmental programs such as the aberrant outgrowth of axon-like processes (2c). Furthermore, abnormal accumulation of phosphorylated, non-MT-associated tau in the soma results in its abnormal transport into dendrites [179], where it interacts with somatodendritic signaling pathways (3). This eventually results in amplified tau-A β toxic interactions (3a) and other toxicity associated events (3b) such as tau secretion and tau aggregate formation. This sequence of events is attended by the progressive accumulation of toxic tau cleavage fragments, oligomers and (possibly) prion-like misfolded tau species. Panel B: A detailed view of the cellular consequences of somatodendritic tau accumulation described in A. Somatodendritic tau misprocessing leading to toxicity, aggregate formation and interneuronal lesion propagation in tauopathy. Non-MT-associated tau becomes phosphorylated at multiple sites and vulnerable to proteolytic cleavage which generates toxic C-terminal (MTBR+) and N terminal (MTBR-) fragments. These are transferred trans-synaptically secreted to the extracellular space, the CSF and the ventricular and meningeal surfaces of the brain, where they are associated with and may mediate the interneuronal spreading of tau pathology [192, 206].

present a hypothetical sequence of events (labeled 1-3 in Figure 2a) that integrates APP misprocessing, tau abnormalities, and ancillary factors in AD pathogenesis, together with mechanisms by which LOAD risk factors (P) could exacerbate this process. A summary of this hypothesis is given in Figure 2.

Predisposing risk factors to the development of LOAD

The most important risk factors for developing LOAD are (presumably) the various abnormalities introduced into vulnerable neurons by the aging process. The best established examples of age-associated neuronal dysfunction include accumulated oxidative damage to key organelles such as mitochondria [161,162] and the accumulation of misfolded/aggregated proteins that have not been cleared by normal cellular mechanisms [134]. Additional genetic factors for LOAD include ApoE allele status [27], and various gene dosage factors related to overall genetic background including the H1 haplotype [217,218] and chromosome 21 abnormalities [219,220]. Such factors include the regulation of tau splicing and the expression levels of key tau kinases (e.g. GSK3 β , CDK5). These may also involve synaptic plasticity which may in turn cause downstream changes in developmental functions that appear to be affected in AD. Major environmental risk factors for LOAD include axonal damage as a consequence of cerebral injuries, typically in conjunction with repeated head trauma seen in contact sports and military action [99,221]. Axonal damage was among the first identified features of LOAD pathology [34] and subsequent studies using axotomy models established a link between the loss of overall neuronal polarity and perisomatic axonal injury [222-225]. We propose that an interplay between predisposing factors such as axon injury or reduced mitochondrial function amplify axonal changes due to tau misprocessing, neuronal de-differentiation and A β generation [226-230]. These factors may then initiate a cascade of events leading to plaque/tangle generation and neurodegeneration.

1 A β generation near dendrites disrupts synaptic function and associated signal transduction

Abnormal or excessive A β production in the vicinity of vulnerable neurons triggers the cascade of events leading to FAD and it is generally been assumed that these factors are exacerbated by vulnerabilities due to aging in LOAD. A large number of cellular and *in situ* studies have established that the localization and accumulation of extracellular A β produces multiple degenerative toxic changes resulting in localized synaptic dystrophy and loss [230-232]. Other perisynaptic effects of A β may include the generation of toxic tau fragments from the small proportion of neuronal tau that is normally associated with somatodendritic post-synaptic elements [233] and appears to play a role in the plasticity mechanisms characteristic to vulnerable neuronal populations, such as pyramidal neurons. The well-established dependence of A β -induced neurotoxicity on the presence of tau suggests that downstream neurodegenerative events appear to require the presence of a small but critical amount of somatodendritic, non-MT-associated tau [234-237], although it remains unclear whether this tau is derived from resident post-synaptic tau or abnormal accumulations of tau that would normally be targeted to the axon. This tau could serve as a primer for A β -induced neurotoxicity. Finally, an ongoing proteometric study in our laboratory shows that tau overexpression is associated with a significant recruitment of APP interactors and synapse associated proteins to the exosomal proteome, raising the possibility that tau abnormalities induced by A β might exacerbate A β production as well (Figure 1b).

2a Synaptic A β /tau interaction induces de-differentiation via cell cycle re-entry and impairs axonal function and identity

Although it is unclear how an initial A β -triggered insult to synaptic integrity ultimately induces NFT formation and cytodegeneration in AD, a variety of factors appear to precede and contribute to the downstream neurofibrillary changes that are

ultimately associated with neuronal death. These include the appearance of apoptotic and mitotic markers in "pre-tangle" neurons [155-157] and the activation of development-associated signal transduction pathways resulting in aberrant cellular changes normally associated with development, such as neuropil thread formation [17,19,241,242]. Tau kinases such as CDK5, GSK3 β and Mark1 normally play critical roles in cell cycle control, establishment of neuronal polarity and axonal outgrowth [243-246], so their roles in tau toxicity may therefore be due to aberrant activation of these same functions during the course of AD pathogenesis [147,247-249]. An unusual aspect of tau toxicity is its apparent dependence on the terminally differentiated neuronal state, as shown by the relative resistance of cultured neurons to tau-induced neurodegeneration [48] when compared to *in situ* tau overexpression. These changes may be exacerbated and even prompted by glia-mediated changes affecting glutamate reuptake and inflammation-mediated changes to microglia induced by A β toxicity [250,251]. One intriguing possibility is that tau toxicity not induces but is also exacerbated by changes associated with cell cycle re-entry. It is tempting to suppose that the neurodegenerative changes that are typically seen in early stages of AD are in fact prompted by a "loss of the differentiated state" set in motion by cell cycle re-entry. This could be expected to cause the loss of certain aspects of the neuronal phenotype, such as synapses and neuronal polarity. Thus apoptosis, cell cycle re-entry, de-differentiation and tau mislocalization could be interrelated events consequent to the initiation of the neurodegenerative cascade in AD.

2b Axonal injury and neuronal polarity loss impairs axonal tau localization

We propose that damage to axons and axonal function by tau misprocessing causes the impairment of tau localization to axonal MT. We suggest that this might occur via a number of mechanisms, but that neuronal de-differentiation and the loss of axonal identity

leading to polarity loss is induced by abortive cell cycle re-entry events and is amplified by dysfunctional interaction of misprocessed tau with axonal MT in AD. This would be further exacerbated by known predisposing factors in LOAD, which include antecedent axonal injury caused by head trauma [225,253-257] and reduced mitochondrial efficiency and localization [257]. Damage to axonal identity could account for the failure of normal tau localization to the axon and the apparent activation of a variety of tau-associated developmental events, such as the growth of axon-like neurites (neuropil threads) [242]. The observations that neuropil threads frequently originate from dendrites [17,19,241] and the aberrant re-activation of development programs associated with neuronal polarization are consistent with a role for neuronal polarity loss in AD pathogenesis [86-90,243]. Tau kinases such as GSK3 β , MARK1, PKA, and Cdk5 play central roles in cell cycle regulation and neuronal polarity and are associated with tau-induced neurodegeneration. Moreover, the activation of these kinases may account for the synergistic relationship between head trauma and AD [99], since head injuries typically are associated with axonal damage and loss as discussed above [225,253-257]. A variety of axonal injury models have shown that both axonal stretch injury and axotomy result in cytoskeletal collapse and may in turn induce a secondary proximal "virtual axotomy" that could account for subsequent somatodendritic tau accumulation. The entry of calcium into stretched or severed axons destabilizes axonal MT, thereby releasing axonal tau and exposing it to a variety of disease-associated modifications (hyperphosphorylation, proteolytic cleavage, and anomalous interactions with AD-associated signal transduction pathways). Another expected consequence of de-differentiation accompanying cell cycle re-entry is the synaptic dysfunction characteristic of non-AD tauopathies as well as AD. Synapse development is the final step in terminal neuronal differentiation, a status reflected by the complete absence of cell line models from the literature; it is investigated only in primary cultures capable of near complete differentiation as neurons [258]. While synaptic

degeneration and loss of neuronal polarity are associated with APP dysfunction as well as tau and thus presumably can occur as a consequence of localized A β toxicity acting via tau [259], it is possible that de-differentiation might potentiate such synaptic injury and might account for it entirely in non-AD tauopathies where abnormal A β deposition is absent.

3a Amplified toxic interactions between A β and accumulating somatodendritic tau drive NFT formation

One of the best established toxic consequences of perisynaptic A β deposition is synaptic dysfunction and loss. This may occur as the result of excitotoxic effects of external A β via synaptic and perisynaptic glutamate receptors, or via endocytotic A β /APP uptake mediated by the activation of fyn or related src family kinases. We propose that somatodendritic tau accumulation in AD results from a number of antecedent changes that may include axonal injury, Ca $^{2+}$ dysregulation, de-differentiation, inhibition of fast axonal transport by abnormal tau interactions with MT [260]. In FAD, this could amplify an initial toxic interaction that occurred between A β and post-synaptic density associated tau by increasing the amount of tau locally available for these pathways, resulting in increased NFT growth and other abnormalities associated with localized dendritic tau accumulation, including MT loss, tau secretion and progressive dendritic degeneration [179].

3b Dendritic tau accumulation leads to tau secretion via multiple mechanisms

Amplified toxic interaction between A β and tau (directly [261] or via intermediates [262,263] very likely occurs in the endosome in the context of A β generation from APP and oligomer formation [175] and the exosome-mediated secretion of membrane proteins [197] and thus may account for the seeding of cellular tau aggregates as well as mediating tau lesion spread [163] especially as association of tau with cellular membranes and membrane elements favors tau oligomerization [171-173]. Both secretion and trans-synaptic tau movement

have been associated with the presence of tauopathy mutations [183,192], suggesting that either the oligomerization or enhanced proteolytic cleavage of tau associated with these mutations result in the formation of more toxic N- and C-terminal fragments, which then may be secreted, possibly via multiple pathways [193]. Both types of fragment may also play a role in tau aggregate formation and lesion transfer. Murine transgenic tauopathy models expressing tauopathic exonic point mutations show somatodendritic tau accumulation and progressive toxicity, supporting the presence of A β -independent synaptotoxicity pathways. Moreover, proteomic analysis of the effect of tau overexpression in neuroblastoma cultures shows increased recruitment of APP and synapse-associated proteins to the proteome of exosomally secreted proteins (Figure 1a). Tau also recruits a significant number of intrinsic mitochondrial proteins to the exosomal proteome (Figure 1b), which might account for both the disruption of autophagy in AD and the presence of autophagy-associated proteins in the granulovacuolar lesions typically seen in AD neuropathology [264].

Conclusion

For the past few years, the consensus view of the role played by tau in neurodegenerative disease is that tau toxicity is induced by disease-related abnormalities that cause the release of tau from MT. It is now generally accepted that tau can disrupt neuronal function both by acquiring toxic properties associated primarily with tau hyperphosphorylation, tau:tau misfolding and oligomerization and tau cleavage and by interfering with normal neuronal functions such as macroautophagy and MT-mediated intracellular transport that may affect key neuronal properties (neuronal polarity), as outlined in Figure 2. Much tau research effort remains devoted to the investigation of mechanisms responsible for tau hyperphosphorylation, proteolytic cleavage and oligomerization/aggregation. This has recently expanded to include what appear to be similar mechanisms underlying synergistic roles played by other aggregation-

prone proteins in driving these changes in tau during neurodegeneration. The discovery of additional binding partners and cellular functions for tau in both normal and disease-associated circumstances, especially involving tau domains outside of the MTBR, has generated the current interest in mechanisms of tau secretion, tau lesion propagation and the long elusive interneuronal aspects of neurodegenerative disease.

It is now clear that tau is far more than an axon-specific MAP, as was once assumed, and that it has a multiplicity of developmental as well as homeostatic functions, not only in neurons but also in other cell types. However, its link to axonal function remains uniquely strong among aggregation-prone proteins and may have great significance to its role in tau-associated disease mechanisms. We propose that the

reactivation of developmental tau functions in mature neurons combined with a failure of terminally differentiated axonal and synaptic functions that exposes non MT-associated somatodendritic tau to dendrite-specific signaling are responsible for tau neurotoxicity (via cleavage, misfolding, oligomerization other modification of tau) and in so doing, facilitates the spreading of tau lesions to other parts of the brain.

References

- [1] Alzheimer A, Über eine eigenartige Erkrankung der Hirnrinde, Allg. Z. Psychiatr, 1907, 64, 146-148
- [2] Lowenberg K, Waggoner R, Familial organic psychosis (Alzheimer's type), Arch. Neurol, 1934, 31, 737-754
- [3] Blessed G, Tomlinson B.E., Roth M, The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects, Br. J. Psychiatry, 1968, 114, 797-811
- [4] Olson M.I., Shaw C.M., Presenile dementia and Alzheimer's disease in mongolism, Brain, 1969, 92, 147-156
- [5] Cook R, Ward B, Austin J, Studies in aging of the brain: IV. Familial Alzheimer's disease: relationship to transmissible dementia, aneuploidy and microtubular defects, Neurology, 1979, 29, 1402-1412
- [6] Buckton K.E., Whalley L.J., Lee M, Christie J.E., Chromosome changes in Alzheimer's presenile dementia, J. Med. Genet., 1983, 20, 46-51
- [7] Bird T.D., Sumi S.M., Nemens E.J., Nochlin D, Schellenberg G, Lampe T.H., et al, Phenotypic heterogeneity in familial Alzheimer's disease: a study of 24 kindreds, Ann. Neurol., 1989, 25, 12-25
- [8] Gambetti P, Autilio-Gambetti L, Perry G, Scheck G, Crane R.C., Antibodies to neurofibrillary tangles of Alzheimer's disease raised from human and animal neurofilament fractions, Lab. Invest., 1983, 49, 430-435
- [9] Hyman B.T., Van Hoesen G.W., Damasio A.R., Barnes C.L., Alzheimer's disease: cell-specific pathology isolates the hippocampal formation, Science, 1984, 225, 1168-1170
- [10] Kidd M., Paired helical filaments in electron microscopy of Alzheimer's disease, Nature, 1963, 197, 192-193
- [11] Whitehouse P.J., Price D.L., Struble R.G., Clark A.W., Coyle J.T., DeLong M.R., Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain, Science, 1982, 215, 1237-1239
- [12] Drachman D.A., Leavitt J, Human memory and the cholinergic system: a relationship to aging?, Arch. Neurol., 1974, 30, 113-121
- [13] Glenner G.G., Wong C.W., Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein, Biochem. Biophys. Res. Commun., 1984, 122, 1131-1135
- [14] Grundke-Iqbali I., Iqbal K., Tung Y.C., Quinlan M., Wisniewski H.M., Binder L.I., Abnormal phosphorylation of the microtubule-
- associated protein tau in Alzheimer cytoskeletal pathology, Proc. Natl. Acad. Sci. USA, 1986, 83, 4913-4917
- [15] Kosik K.S., Joachim C.L., Selkoe D.J., Microtubule associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease, Proc. Natl. Acad. Sci. USA 83, 1986, 4044-4048
- [16] Bancher C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., et al, Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease, Brain Res., 1989, 477, 90-99
- [17] McKee A.C., Kowall N.W., Kosik K.S., Microtubular reorganization and dendritic growth response in Alzheimer's disease, Ann. Neurol., 1989, 26, 652-659
- [18] Braak H., Braak E., Neuropathological staging of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239-259
- [19] Yamaguchi H., Nakazato Y., Shoji M., Ihara Y., Hirai S., Ultrastructure of the neuropil threads in the Alzheimer brain: their dendritic origin and accumulation in the senile plaques, Acta Neuropathol., 1990, 80, 368-374
- [20] St. George-Hyslop P.H., Tanzi R.E., Polinsky R.J., Haines J.L., Nee L., Watkins P.C., et al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21, Science, 1987, 235, 885-890
- [21] Chartier-Harlin M.C., Crawford F., Houlden H., Warren A., Hughes D., Fidani L., et al, Early-onset Alzheimer's disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene, Nature, 1991, 353, 844-846
- [22] Goate A., Chartier-Hardin M.C., Mullan M., Brown J., Crawford F., Fidani L., et al, Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's Disease, Nature, 1991, 349, 704-706
- [23] Murrell J. M., Farlow B., Ghetti B., Benson M.D., A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease, Science, 1991, 254, 97-99
- [24] Selkoe D.J., The molecular pathology of Alzheimer's disease, Neuron, 1991, 6, 487-498
- [25] Hardy J.A., Higgins G.A., Alzheimer's disease: the amyloid cascade hypothesis, Science, 1992, 256, 184-185

[26] Wallace W.C., Bragin V., Robakis N.K., Sambamurti K., VanderPutten D., Merril C.R., et al., Increased biosynthesis of Alzheimer amyloid precursor protein the in cerebral cortex of rats with lesions of the nucleus basalis of Meynert, *Mol. Brain Res.*, 1991, 10, 173–178

[27] Strittmatter W.J., Saunders A.M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G.S., et al., Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease, *Proc. Natl. Acad. Sci. USA*, 1993, 90, 1977–1981

[28] Wisniewski T., Frangione B., Apolipoprotein E: a pathological chaperone protein in patients with cerebral and systemic amyloid, *Neurosci. Lett.*, 1992, 135:235–238

[29] Gentleman S.M., Nash M.J., Sweeting C.J., Graham D.I., Roberts G.W., β -Amyloid precursor protein (β APP) as a marker for axonal injury after head injury, *Neurosci. Lett.*, 1993, 160, 139–144

[30] McKenzie J.E., Gentleman S.M., Roberts G.W., Graham D.I., Royston M.C., Increased numbers of β APP-immunoreactive neurones in the entorhinal cortex after head injury, *Neuroreport*, 1994, 6, 161–164

[31] Yankner B.A., Dawes L.R., Fisher S., Villa-Komaroff L., Oster-Granite M.L., Neve R.L., Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease, *Science*, 1989, 245, 417–420

[32] Busciglio J., Lorenzo A., Yeh J., Yankner B.A., Amyloid fibrils induce tau phosphorylation and loss of microtubule binding, *Neuron*, 1995, 14, 879–888

[33] Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., et al., Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein, *Nature*, 1995, 373, 523–527

[34] Wolfe M.S., Xia W., Ostaszewski B.L., Diehl T.S., Kimberly W.T., Selkoe D.J., Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity, *Nature*, 1999, 398, 513–517

[35] Kowall N.W., Kosik K.S., Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease, *Ann. Neurol.*, 1987, 22, 639–643

[36] Weingarten M.D., Lockwood A.H., Hwo S.Y., Kirschner M.W., A protein factor essential for microtubule assembly, *Proc. Natl. Acad. Sci. USA*, 1975, 72, 1858–1862

[37] Cleveland D.W., Hwo S.Y., Kirschner M.W., Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly, *J. Mol. Biol.*, 1977, 116, 227–247

[38] Greenberg S.G., Davies P., A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis, *Proc. Natl. Acad. Sci. USA*, 1990, 87, 5827–5831

[39] Binder L.I., Frankfurter A., Rebhun L.I., The distribution of tau polypeptides in the mammalian central nervous system, *J. Cell Biol.*, 1985, 101, 1371–1378

[40] Lindwall G., Cole R.D., Phosphorylation affects the ability of tau protein to promote microtubule assembly, *J. Biol. Chem.*, 1984, 259, 5301–5305

[41] Lee G., Cowan N., Kirschner M., The primary structure and heterogeneity of tau protein from mouse brain, *Science*, 1998, 281, 285–288

[42] Goedert M., Wischik C.M., Crowther R.A., Walker J.E., Klug A., Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau, *Proc. Natl. Acad. Sci. USA*, 85, 1998, 4051–4055

[43] Ksieczak-Reding H., Yen S.H., Structural stability of paired helical filaments requires microtubule-binding domains of tau: a model for self-association, *Neuron*, 1991, 6, 717–728

[44] Novak M., Jakes R., Edwards P.C., Milstein C., Wischik C.M., Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51, *Proc. Natl. Acad. Sci. USA*, 1991, 88, 5837–5841

[45] Crowther R.A., Olesen O.F., Jakes R., Goedert M., The microtubule binding repeats of tau protein assemble into filaments like those found in Alzheimer's disease, *FEBS Lett.*, 1992, 309, 199–202

[46] Arriagada P.A., Growdon J.H., Hedley-White E.T., Hyman B.T., Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's Disease, *Neurology*, 1992, 42, 631–639

[47] Armstrong R.A., Myers D., Smith C.U.M., The spatial patterns of plaques and tangles in Alzheimer's disease do not support the 'cascade hypothesis', *Dementia*, 1993, 4, 16–20

[48] Baum L., Seger R., Woodgett J.R., Kawabata S., Maruyama K., Koyama M., Silver J., Saitoh T., Overexpressed tau protein in cultured cells is phosphorylated without formation of PHF: implication of phosphoprotein phosphatase involvement, *Mol. Brain Res.*, 1995, 34, 1–17

[49] Levy-Lahad E., Wasco W., Poorkaj P., Romano D.M., Oshima J., Pettingell W.H., et al., Candidate gene for the chromosome 1 familial Alzheimer's disease locus, *Science*, 1995, 269, 973–977

[50] Sherrington R., Rogo E.I., Liang Y., et al., Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease, *Nature*, 1995, 375, 754–760

[51] Spillantini M.G., Murrell J.R., Goedert M., Farlow M.R., Klug A., Ghetti B., Mutation in the tau gene in familial multiple system tauopathy with presenile dementia, *Proc. Natl. Acad. Sci. USA*, 1998, 95, 7737–7741

[52] Hall G.F., Yao J., Lee G., Tau overexpressed in identified lamprey neurons *in situ* is spatially segregated by phosphorylation state, forms hyperphosphorylated, dense aggregations and induces neurodegeneration, *Proc. Natl. Acad. Sci. USA*, 1997, 94, 4733–4738

[53] Ishihara T., Hong M., Zhang B., Nakagawa Y., Lee M.K., Trojanowski J.Q., et al., Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform, *Neuron*, 1999, 24, 751–762

[54] Spittaels K., Van den Haute C., Van Dorpe J., Bruynseels K., Vandezande K., Laenen I., et al., Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein, *Am. J. Pathol.*, 1999, 155, 2153–2165

[55] Götz J., Chen F., Barmettler R., Nitsch R.M., Tau filament formation in transgenic mice expressing P301L tau, *J. Biol. Chem.*, 2001, 276, 529–534

[56] Lewis J., McGowan E., Rockwood J., Melrose H., Nacharaju P., Van Slegtenhorst M., et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, *Nat. Genet.*, 2000, 25, 402-405

[57] Buee L., Delacourte A., Comparative biochemistry of tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick's disease, *Brain Pathol.*, 1999, 9, 681-693

[58] Hasegawa M., Smith M.J., Goedert M., Tau proteins with FTDP-17 mutations have a reduced ability to promote microtubule assembly, *FEBS Lett.*, 1998, 437, 207-210

[59] Arawaka S., Usami M., Sahara N., Schellenberg G.D., Lee G., Mori H., The tau mutation (val337met) disrupts cytoskeletal networks of microtubules, *Neuroreport*, 2000, 10, 993-997

[60] Goedert M., Jakes R., Crowther R.A., Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments, *FEBS Lett.*, 1999, 450, 306-311

[61] Nacharaju P., Lewis J., Easson C., Yen S., Hackett J., Hutton M., et al., Accelerated filament formation from tau protein with specific FTDP-17 missense mutations, *FEBS Lett.*, 1999, 447, 195-199

[62] Goedert M., Satumtira S., Jakes R., Smith M.J., Kamibayashi C., White C.I.3rd, et al., Reduced binding of protein phosphatase 2A to tau protein with frontotemporal dementia and parkinsonism linked to chromosome 17 mutations, *J. Neurochem.*, 2000, 75, 2155-2162

[63] Alonso A.D., Grundke-Iqbali I., Barra H.S., Iqbal K., Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau, *Proc. Natl. Acad. Sci. USA*, 94, 1997, 298-303

[64] Alonso A.C., Zaidi T., Novak M., Grundke-Iqbali I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments and straight filaments, *Proc. Natl. Acad. Sci. USA*, 2001, 98, 6923-6928

[65] Lee V.M., Goedert M., Trojanowski J.Q., Neurodegenerative tauopathies, *Annu. Rev. Neurosci.*, 2001, 24, 1121-1159

[66] Binder L.I., Guillozet-Bongaarts A.L., Garcia-Sierra F., Berry R.W., Tau, tangles, and Alzheimer's disease, *Biochim. Biophys. Acta*, 2005, 1739, 216-223

[67] Iqbal K.C., Alonso A., Chen S., Chohan M.O., El-Akkad E., Gong C.X., et al., Tau pathology in Alzheimer disease and other tauopathies, *Biochim. Biophys. Acta*, 2005, 1739, 198-210

[68] Avila J., Tau phosphorylation and aggregation in Alzheimer's disease pathology, *FEBS Lett.*, 2006, 580, 2922-2927

[69] Stoothoff W., Johnson G.V., Tau phosphorylation: physiological and pathological consequences, *Biochim. Biophys. Acta*, 2005, 1739, 280-297

[70] Delacourte A., Sergeant N., Wattez A., Gauvreau D., Robitaille Y., Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation, *Ann. Neurol.*, 1998, 43, 193-204

[71] Sergeant N., Wattez A., Delacourte A., Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusive "exon 10" isoforms, *J. Neurochem.*, 1999, 72, 1243-1249

[72] Hutton M., Lewis J., Dickson D., Yen S.H., McGowan E., Analysis of tauopathies with transgenic mice, *Trends Mol. Med.*, 2001, 7, 467-470

[73] Jakes R., Novak M., Davison M., Wischik C.M., Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer's disease, *EMBO J.*, 1991, 10, 2725-2729

[74] Crowther R.A., Olesen O.F., Smith M.J., Jakes R., Goedert M., Assembly of Alzheimer-like filaments from full-length tau protein, *FEBS Lett.*, 1994, 337, 135-138

[75] Brandt R., Leger J., Lee G., Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain, *J. Cell Biol.*, 1995, 131, 1327-1340

[76] Lee G., Newman S.T., Gard D.L., Band H., Panchamoorthy G., Tau interacts with src-family non-receptor tyrosine kinases, *J. Cell Sci.*, 1998, 111, 3167-3177

[77] Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., et al., Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins, *Proc. Natl. Acad. Sci. USA*, 1998, 95, 6448-6453

[78] Lee G., Thangavel R., Sharma V.M., Littersky J.M., Bhaskar K., Fang S.M., et al., Phosphorylation of tau by fyn: implications for Alzheimer's disease, *J. Neurosci.*, 2004, 24, 2304-2312

[79] Ho G.J., Hashimoto M., Adame A., Izu M., Alford M.F., Thal L.J., et al., Altered p59Fyn kinase expression accompanies disease progression in Alzheimer's disease: implications for its functional role, *Neurobiol. Aging*, 2005, 26, 625-635

[80] Arendt T., Holzer M., Grossmann A., Zedlick D., Bruckner M.K., Increased expression and subcellular translocation of the mitogen activated protein kinase kinase and mitogen-activated protein kinase in Alzheimer's disease, *Neuroscience*, 1995, 68, 5-18

[81] Vincent I., Jicha G., Rosado M., Dickson D.W., Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain, *J. Neurosci.*, 1997, 17, 3588-3598

[82] Vincent I., Zheng J., Dickson D.W., Kress Y., Davies P., Mitotic phosphoepitopes precede paired helical filaments in Alzheimer's disease, *Neurobiol. Aging*, 1998, 19, 287-296

[83] Yang Y., Mufson E.J., Herrup K., Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease, *J. Neurosci.*, 2003, 23, 2557-2563

[84] Nixon, R.A., Cataldo A.M., Paskevitch P.A., Hamilton D.J., Wheelock T.R., Kanaley-Andrews L., The lysosomal system in neurons: involvement at multiple stages in Alzheimer's disease pathogenesis, *Ann. NY Acad. Sci.*, 1992, 674, 65-88

[85] Cataldo A.M., Barnett J.L., Berman S.A., Li J., Quarless S., Bursztajn S., et al., Gene expression and cellular content of cathepsin D in Alzheimer's disease brain: evidence for early up-regulation of the endosomal-lysosomal system, *Neuron*, 1995, 14, 671-680

[86] Yasojima K., Kuret J., DeMaggio A.J., McGeer E., McGeer P.L., Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain, *Brain Res.*, 2000, 865, 116-120

[87] Baumann K., Mandelkowa E.M., Biernata J., Piwnica-Worms H., Mandelkow E., Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin dependent kinases Cdk2 and Cdk5, *FEBS Lett.*, 1993, 336, 417-424

[88] Drewes G., Ebneth A., Preuss U., Mandelkow E.M., Mandelkow E., MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption, *Cell*, 1997, 89, 297-308

[89] Yoshida H., Watanabe A., Ihara Y., Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer's disease, *J. Biol. Chem.*, 1998, 273, 9761-9768

[90] de la Monte S.M., Ng S.C., Hsu D.W., Aberrant GAP-43 gene expression in Alzheimer's disease, *Am. J. Pathol.*, 1995, 147, 934-946

[91] Caceres A., Kosik K.S., Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons, *Nature*, 1990, 343, 461-463

[92] Mandell J., Bunker G.A., A spatial gradient of tau protein phosphorylation in nascent axons, *J. Neurosci.*, 1996, 16, 5727-5740

[93] Biernat J., Mandelkow E.M., The development of cell processes induced by tau protein requires phosphorylation of Serine 262 and 356 in the repeat domain and is inhibited by phosphorylation in the proline-rich domains, *Mol. Biol. Cell*, 1999, 10, 727-740

[94] Biernat J., Wu Y.Z., Timm T., Zheng-Fischöfer Q., Mandelkow E., Meijer L., et al., Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity, *Mol. Biol. Cell*, 2002, 13, 4013-4028

[95] Belkadi A., LoPresti P., Truncated tau with the Fyn-binding domain and without the microtubule-binding domain hinders the myelinating capacity of an oligodendrocyte cell line, *J. Neurochem.*, 2008, 107, 351-360

[96] Takei Y., Teng J., Harada A., Hirokawa N., Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes, *J. Cell Biol.*, 2000, 150, 989-1000

[97] Corsellis J.A., Brierley J.B., Observations on the pathology of insidious dementia following head injury, *J. Ment. Sci.*, 1959, 105, 714-720

[98] Corsellis J.A., Bruton C.J., Freeman-Browne D., The aftermath of boxing, *Psychol. Med.*, 1973, 3, 270-303

[99] McKee A.C., Cantu R.C., Nowinski C.J., Hedley-Whyte E.T., Gavett B.E., Budson A.E., et al., Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury, *J. Neuropathol. Exp. Neurol.*, 2009, 68, 709-735

[100] Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to beta-amyloid-induced neurotoxicity, *Proc. Natl. Acad. Sci. USA*, 2002, 99, 6364-6369

[101] King M.E., Kan H., Baas P.W., Erisir A., Glabe C., Bloom G.S., Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid, *J. Cell Biol.*, 2006, 175, 541-546

[102] Götz J., Probst A., Spillatini M.G., Schäfer T., Jakes R., Bürki K., et al., Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform, *EMBO J.*, 1995, 14, 1304-1313

[103] Brion J.P., Tremp G., Octave J.N., Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer's disease, *Am. J. Pathol.*, 1999, 154, 255-270

[104] Hong M., Zhukareva V., Vogelsberg-Ragaglia V., Wszolek Z., Reed L., Miller B.I., et al., Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17, *Science*, 1998, 282, 1914-1917

[105] DeTure M., Ko L.W., Yen S., Nacharaju P., Easson C., Lewis J., et al., Missense tau mutations identified in FTDP-17 have a small effect on tau-microtubule interactions, *Brain Res.*, 2000, 853, 5-14

[106] Harada A., Oguchi K., Okabe S., Kuno J., Terada S., Ohshima T., et al., Altered microtubule organization in small-calibre axons of mice lacking tau protein, *Nature*, 1994, 369, 488-491

[107] Tint I., Slaughter T., Fischer I., Black M.M., Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons, *J. Neurosci.*, 1998, 18, 8660-8673

[108] Amadoro G., Serafino A.L., Barbato C., Ciotti M.T., Sacco A., Calissano P., et al., Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons, *Cell. Death Differ.*, 2004, 11, 217-230

[109] Amadoro G., Ciotti M.T., Costanzi M., Cestari V., Calissano P., Canu N., NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation, *Proc. Natl. Acad. Sci. USA*, 2006, 103, 2892-2897

[110] Corsetti V., Amadoro G., Gentile A., Capsoni S., Ciotti M.T., Cencioni M.T., et al., Identification of a caspase-derived N-terminal tau fragment in cellular and animal Alzheimer's disease models, *Mol. Cell. Neurosci.*, 2008, 38, 381-392

[111] Horowitz P.M., LaPointe N., Guillozet-Bongaarts A.L., Berry R.W., Binder L.I., N-terminal fragments of tau inhibit full-length tau polymerization in vitro, *Biochemistry*, 2006, 45, 12859-12866

[112] Gamblin T.C., Berry R.W., Binder L.I., Tau polymerization: role of the amino terminus, *Biochemistry*, 2003, 42, 2252-2257

[113] Yin H., Kuret J., C-terminal truncation modulates both nucleation and extension phases of tau fibrillization, *FEBS Lett.*, 2006, 580, 211-215

[114] Zilka N., Filipcik P., Koson P., Fialova L., Skrabana R., Zilkova M., et al., Truncated tau from sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo, *FEBS Lett.*, 2006, 580, 3582-3588

[115] Abraha A., Ghoshal N., Gamblin T.C., Cryns V., Berry R.W., Kuret J., et al., C-terminal inhibition of tau assembly in vitro and in Alzheimer's disease, *J. Cell Sci.*, 2000, 113, 3737-3745

[116] Wang Y.P., Biernat J., Pickhardt M., Mandelkow E., Mandelkow E.M., Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model, *Proc. Natl. Acad. Sci. USA*, 2007, 104, 10252-10257

[117] Guillozet-Bongaarts A.L., Garcia-Sierra F., Reynolds M.R., Horowitz P.M., Fu Y., Wang T., et al., Tau truncation during neurofibrillary tangle evolution in Alzheimer's disease, *Neurobiol. Aging*, 2005, 26, 1015-22

[118] Roberson E.D., Scearce-Levie K., Palop J.J., Yan F., Cheng I.H., Wu T., et al., Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model, *Science*, 2007, 316, 750-754

[119] Folwell J., Cowan C.M., Ubhi K.K., Shiab H., Newman T.A., Shepherd D., et al., A β exacerbates the neuronal dysfunction caused by human

tau expression in a *Drosophila* model of Alzheimer's disease, *Exp. Neurol.*, 2009, 223, 401–409

[120] Mudher A., Lovestone S., Alzheimer's disease—do tauists and baptists finally shake hands?, *Trends Neurosci.*, 2002, 25, 22–26

[121] He H.J., Wang X.S., Pan R., Wang D.L., Liu M.N., He R.Q., The proline rich domain of tau plays a role in interactions with actin, *BMC Cell Biol.*, 2009, 10, 81–93

[122] Perez M., Valpuesta J.M., Medina M., Montejo de Garcini E., J. Avila, Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction, *J. Neurochem.*, 1996, 67, 1183–1190

[123] Magnani E., Fan J., Gasparini L., Golding M., Williams M., Schiavo G., et al., Interaction of tau protein with the dynein complex, *EMBO J.*, 2007, 26, 4546–4554

[124] Fulga T.A., Elson-Schwab I., Khurana V., Steinhilb M.L., Spires T.L., Hyman B.T., et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, *Nat. Cell Biol.*, 2007, 9, 139–148

[125] Blard O., Feuillette S., Bou J., Chaumette B., Frebourg T., Campion D., et al., Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in *Drosophila*, *Hum. Mol. Genet.*, 2007, 16, 555–566

[126] Lee G., Tau and src family tyrosine kinases, *Biochim. Biophys. Acta*, 2005, 1739, 323–330

[127] Lu P.J., Wulf G., Zhou X.Z., Davies P., Lu K.P., The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, *Nature*, 1999, 399, 784–788

[128] Dickey C.A., Yue M., Lin W.L., Dickson D.W., Dunmore J.H., Lee W.C., et al., Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species, *J. Neurosci.*, 2006, 26, 6985–6996

[129] Sarkar M., Kuret J., Lee G., Two motifs within the tau microtubule binding domain mediate its association with the hsc70 molecular chaperone, *J. Neurosci. Res.*, 2008, 86, 2763–2773

[130] Makrides V., Shen T.E., Bhatia R., Smith B.L., Thimm, J., Lal, R., et al., Microtubule-dependent oligomerization of tau, Implications for physiological tau function and tauopathies, *J. Biol. Chem.*, 2003, 278, 33298–33304

[131] Wang J.Z., Grundke-Iqbali I., Iqbal K., Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration, *Eur. J. Neurosci.*, 2007, 25, 59–68

[132] Samsonov A., Yu J.Z., Rasenick M., Popov S.V., Tau interaction with microtubules in vivo, *J. Cell Sci.*, 2004, 117, 25, 6129–6141

[133] Mocanu M.M., Nissen A., Eckermann K., Khlistunova I., Biernat J., Drexler D., et al., The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy, *J. Neurosci.*, 2008, 28, 737–748

[134] Nixon, R.A., Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases, *Neurobiol. Aging*, 2005, 26, 373–382

[135] Nixon R.A., Wegiel J., Kumar A., Yu W.H., Peterhoff C., Cataldo A., et al., Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study, *J. Neuropathol. Exp. Neurol.*, 2005, 64, 120–122

[136] Boland B.A., Kumar A., Lee F.M., Platt J., Wegiel J., Yu W.H., et al., Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease, *J. Neurosci.*, 2008, 28, 6926–6937

[137] Park S.Y., Ferreira A., The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration, *J. Neurosci.*, 2005, 25, 5365–5375

[138] Gomez-Ramos A., Diaz-Hernandez M., Cuadros R., Hernandez F., Avila J., Extracellular tau is toxic to neuronal cells, *FEBS Lett.*, 2006, 580, 4842–4850

[139] Gómez-Ramos A., Díaz-Hernández M., Rubio A., Miras-Portugal M.T., Avila J., Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells, *Mol. Cell. Neurosci.*, 2008, 37, 673–681

[140] Braak E., Braak H., Mandelkow E.M., A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads, *Acta Neuropathol.*, 1994, 87, 554–567

[141] Santacruz K., Lewis J., Spires T., Paulson J., Kotilinek L., Ingelsson M., et al., Tau suppression in a neurodegenerative mouse model improves memory function, *Science*, 2005, 309, 476–481

[142] Berger Z., Roder H., Hanna A., Carlson A., Rangachari V., Yue M., et al., Accumulation of pathological tau species and memory loss in a conditional model of tauopathy, *J. Neurosci.*, 2007, 27, 3650–3662

[143] Hall G.F., Chu B., Lee G., Yao J., Human tau filaments induce microtubule and synapse loss in vertebrate central neurons, *J. Cell Sci.*, 2000, 120, 1373–1387

[144] Wittmann C.W., Wszolek M.F., Shulman J.M., Salvaterra P.M., Lewis J., Hutton M., et al., Tauopathy in *Drosophila*: neurodegeneration without neurofibrillary tangles, *Science*, 2001, 293, 5530, 711–714

[145] Lee S., Jung C., Lee G., Hall G.F., Tauopathy mutants P301L, G272V, R406W and V337M accelerate neurodegeneration in the lamprey in situ cellular tauopathy model, *J. Alzheimers Dis.*, 2009, 16, 99–111

[146] Yeh P., Chang C., Phosphorylation alters tau distribution and elongates life span in *Drosophila*, *J. Alzheimers Dis.*, 2010, 21, 543–556

[147] Chatterjee S., Sang T.K., Lawless G.M., Jackson G.R., Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a *Drosophila* model, *Hum. Mol. Genet.*, 2009, 18, 164–177

[148] Maeda S., Sahara N., Saito Y., Murayama M., Yoshiike Y., Kim H., et al., Granular tau oligomers as intermediates of tau filaments, *Biochemistry*, 46, 3856–3861

[149] Maeda S., Sahara N., Saito Y., Murayama S., Ikai A., Takashima A., Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease, *Neurosci. Res.*, 2006, 54, 197–201

[150] Sahara N., Maeda S., Takashima A., Tau oligomerization: a role for tau aggregation intermediates linked to neurodegeneration, *Curr. Alz. Res.*, 2008, 5, 591–598

[151] Bretteville A., Planel E., Tau aggregates: toxic, inert, or protective species?, *J. Alzheimers Dis.*, 2008, 14, 431-436

[152] Patterson K.C., Remmer Y., Fu S., Brooker N., Kanaan L., Vana S., et al., Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease, *J. Biol. Chem.*, 2011, 286, 23063-23076

[153] Iliev A.I., Ganesan S., Bunt G., Wouters F.S., Removal of pattern-breaking sequences in microtubule binding repeats produces instantaneous tau aggregation and toxicity, *J. Biol. Chem.*, 2006, 281, 37195-37204

[154] Lasagna-Reeves C.A., Castillo-Carranza D.L., Guerrero-Muoz M.J., Jackson G.R., Kayed R., Preparation and characterization of neurotoxic tau oligomers, *Biochemistry*, 2010, 49, 10039-10041

[155] Andorfer C., Acker C.M., Kress Y., Hof P.R., Duff K., Davies P., Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms, *J. Neurosci.*, 2005, 225, 5446-5545

[156] Ambegaokar S., Jackson G., Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation, *Hum. Mol. Genet.*, 2011, 20, 4947-4977

[157] Pei J.J., Grundke-Iqbali I., Iqbal K., Bogdanovic N., Winblad B., Cowburn R.F., Accumulation of cyclin-dependent kinase 5 (cdk5) in neurons with early stages of Alzheimer's disease neurofibrillary degeneration, *Brain Res.*, 1998, 797, 267-277

[158] Stone J.G., Siedlak S.L., Tabaton M., Hirano A., Castellani R.J., Santocanale C., et al., The cell cycle regulator phosphorylated retinoblastoma protein is associated with tau pathology in several tauopathies, *J. Neuropathol. Exp. Neurol.*, 2011, 70, 578-587

[159] Morsch R., Simon W., Coleman P.D., Neurons may live for decades with neurofibrillary tangles, *J. Neuropathol. Exp. Neurol.*, 1999, 58, 188-197

[160] Bobinski M., Wegiel J., Tarnawski M., Bobinski M., Reisberg B., de Leon M.J., et al., Relationships between regional neuronal loss and neurofibrillary changes in the hippocampal formation and duration and severity of Alzheimer disease, *J. Neuropathol. Exp. Neurol.*, 1997, 56, 414-420

[161] Müller W., Eckert A., Kurz C., Eckert G., Leuner K., Mitochondrial dysfunction: common final pathway in brain aging and Alzheimer's disease - therapeutic aspects, *Mol. Neurobiol.*, 2010, 41, 159-171

[162] Swerdlow R.H., Khan S.M., A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease, *Med. Hypotheses*, 2004, 63, 8-20

[163] Fang Y., Wu N., Gan X., Yan W., Morrell J. C., Gould, S.J., Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes, *PLoS Biol.*, 2007, 5, e158

[164] Vega I.E., Cui L., Propst J.A., Hutton M.L., Lee G., Yen S.H., Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates, *Mol. Brain Res.*, 2005, 138, 135-144

[165] Sverdlov M., Shahajan A.N., Minshall R.D., Tyrosine phosphorylation-dependence of caveolae-mediated endocytosis, *J. Cell. Mol. Med.*, 2007, 11, 1239-1250

[166] Saman S., Kim W., Raya M., Visnick Y., Miro S., Saman S., et al., Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease, *J. Biol. Chem.*, 2012, 287, 3842-3849

[167] Zehe C., Engling A., Wegehingel S., Schäfer T., Nickel W., Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2, *Proc. Natl. Acad. Sci. USA*, 2006, 103, 15479-15484

[168] Goedert M., Jakes R., Spillantini M.G., Hasegawa M., Smith M.J., Crowther R.A., Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans, *Nature*, 1996, 383, 550-553

[169] Gray E.G., Paula-Barbosa M., Roher A., Alzheimer's disease: paired helical filaments and cytomembranes, *Neuropathol. Appl. Neurobiol.*, 1987, 13, 91-110

[170] Fath T., Eidenmüller J., Brandt R., Tau-mediated cytotoxicity in a pseudohyperphosphorylation model of Alzheimer's disease, *J. Neurosci.*, 2002, 22, 9733-9741

[171] Barré P., Eliezer D., Folding of the repeat domain of tau upon binding to lipid surfaces, *J. Mol. Biol.*, 2006, 362, 312-326

[172] Wilson D.M., Binder L.I., Free fatty acids stimulate the polymerization of tau and amyloid beta peptides, *Am. J. Pathol.*, 1997, 161, 2321-2335

[173] Chirita C.N., Necula M., Kuret J., Anionic micelles and vesicles induce tau fibrillization in vitro, *J. Biol. Chem.*, 2003, 278, 25644-25650

[174] Kampers T., Friedhoff P., Biernat J., Mandelkow E.M., RNA stimulates aggregation of microtubule-associated protein-tau into Alzheimer-like paired helical filaments, *FEBS Lett.*, 1997, 399, 344-349

[175] Hall G.F., What is the common link between protein aggregation and interneuronal lesion propagation in neurodegenerative disease?, In: Chang R. (Ed.) *Neurodegenerative diseases - processes, prevention, protection and monitoring*, InTech, 2011, 1-17

[176] Farah C.A., Perreault S., Liazogli D., Desjardins M., Anton A., Lauzon M., et al., Tau interacts with Golgi membranes and mediates their association with microtubules, *Cell Motil. Cytoskeleton*, 2006, 63, 710-724

[177] Liazogli D., Perreault S., Micheva K.D., Desjardins M., Leclerc N., Fragmentation of the Golgi apparatus induced by overexpression of WT and mutant human tau forms in neurons, *Am. J. Pathol.*, 2005, 166, 1499-1514

[178] Kim W., Lee S., Hall G.F., Secretion of human tau fragments resembling CSF-tau in Alzheimer's disease is modulated by the presence of the exon 2 insert, *FEBS Lett.*, 2010, 584, 3085-3088

[179] Lee S., Kim W., Li Z., Hall G.F., Accumulation of vesicle-associated human tau in distal dendrites drives degeneration and tau secretion in an in situ cellular tauopathy model, *Int. J. Alzheimers Dis.*, 2012, 172837

[180] Hamano T., Gendron T.F., Causevic E., Yen S.H., Lin W.L., Isidoro C., et al., Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression, *Eur. J. Neurosci.*, 2008, 27, 1119-11130

[181] Abrahamsen H., Stenmark H., Protein secretion: unconventional exit by exophagy, *Curr. Biol.*, 2011, 20, R415-R418

[182] Funk K., Kuret J., Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer's disease pathology, *Int. J. Alzheimers Dis.*, 2012, 752894

[183] Clavaguera F., Bolmont T., Crowther R.A., Abramowski D., Frank S., Probst A., et al., Transmission and spreading of tauopathy in transgenic mouse brain, *Nat. Cell Biol.*, 2009, 11, 909-913

[184] Liu L., Drouet V., Wu J.W., Witter M.P., Small S.A., Clell C., et al., Trans-synaptic spread of tau pathology in vivo, *PLoS One*, 2012, 7, e31302

[185] de Calignon A., Polydoro M., Suárez-Calvet M., William C., Adamowicz D.H., Kopeikina K.J., et al., Propagation of tau pathology in a model of early Alzheimer's disease, *Neuron*, 2012, 73, 685-697

[186] Morrison J.H., Hof P.R. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease, *Prog. Brain Res.*, 2002, 136, 467-486

[187] Ko L.W., Rush T., Sahara N., Kersh J.S., Easson C., Deture M., et al., Assembly of filamentous tau aggregates in human neuronal cells, *J. Alzheimers Dis.*, 2004, 6, 605-622

[188] <http://www.alzgene.org/>

[189] Jensen L.J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., et al., STRING 8 – a global view on proteins and their functional interactions in 630 organisms, *Nucleic Acids Res.*, 2009, 37(Database issue), D412-D416

[190] Mathivanan S., Fahner C.J., Reid G.E., Simpson R.J., ExoCarta, 2012, database of exosomal proteins, RNA and lipids, *Nucleic Acids Res.*, 2012, 40(Database issue), D1241-1244

[191] Hall G.F., Lee S., Yao J., Neurofibrillary degeneration can be arrested in an in vivo cellular model of human tauopathy by application of a compound which inhibits tau filament formation in vitro, *J. Mol. Neurosci.*, 2002, 19, 253-260

[192] Kim W., Lee S., Jung C., Ahmed A., Lee G., Hall G.F., Interneuronal transfer of human tau between lamprey central neurons in situ, *J. Alzheimers Dis.*, 2010, 19, 647-664

[193] Le M.N., Kim W., Lee S., McKee A.C., Hall G.F., Multiple mechanisms of extracellular tau spreading in a non-transgenic tauopathy model, *Am. J. Neurodegener. Dis.*, 2012, 1, 316-333

[194] Hall G.F., Saman S., Secretion or death? What is the significance of elevated CSF-tau in early AD?, *Comm. Integr. Biol.*, 2012, 5, 1-4

[195] Frost B., Jacks R.L., Diamond M.I., Propagation of tau misfolding from the outside to the inside of a cell, *J. Biol. Chem.*, 2009, 284, 12845-12852

[196] Honson N.S., Jensen J.R., Abraha A., Hall G.F., Kuret J., Small-molecule mediated neuroprotection in an in situ model of tauopathy, *Neurotox. Res.*, 2009, 15, 274-283

[197] Rajendran L., Honsho M., Zahn T.R., Keller P., Geiger K.D., Verkade P., et al., Alzheimer's disease beta-amyloid peptides are released in association with exosomes, *Proc. Natl. Acad. Sci. USA*, 2006, 103, 11242-11247

[198] Emmanouilidou E., Melachroinou K., Roumeliotis T., Garbis S.D., Ntzouni M., Margaritis L.H., et al., Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, *J. Neurosci.*, 2010, 30, 6838-6851

[199] Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., et al., Cells release prions in association with exosomes, *Proc. Natl. Acad. Sci. USA*, 2004, 101, 9683-9688

[200] Soto C., Estrada L., Protein misfolding and neurodegeneration, *Arch. Neurol.*, 2008, 65, 184-189

[201] Aguzzi A., Sigurdson C., Heikenwaelder M., Molecular mechanisms of prion pathogenesis, *Annu. Rev. Pathol.*, 3, 11-40

[202] Novak P., Prcina M., Kontsekova E., Tauons and prions: infamous cousins?, *J. Alzheimers Dis.*, 2011, 26, 413-430

[203] Su J.H., Deng G., Cotman C.W., Transneuronal degeneration in the spread of Alzheimer's disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation, *Neurobiol. Dis.*, 1997, 4, 365-375

[204] Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of cerebral cortical lesions in patients with corticobasal degeneration, *Neurosci. Lett.*, 1999, 268, 5-8

[205] Armstrong R.A., Cairns N.J., Lantos P.L., Clustering of Pick bodies in Pick's disease, *Neurosci. Lett.*, 1998, 242, 81-84

[206] Armstrong R.A., Cairns N.J., Lantos P.L., What does the study of spatial patterns tell us about the pathogenesis of neurodegenerative disorders?, *Neuropathology*, 2001, 21, 1-12

[207] McKee A.C., Stern R.A., Nowinski C., Stein T., Alvarez V.E., Daneshvar D., et al., The spectrum of disease in chronic traumatic encephalopathy, *Brain*, 2013, 136, 43-64

[208] Guo J.L., Lee V.M.Y., Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles, *J. Biol. Chem.*, 2011, 286, 15317-15331

[209] Kfouri N., Holmes B.B., Jiang H., Holtzman D.M., Diamond M.I., Trans-cellular propagation of tau aggregation by fibrillar species, *J. Biol. Chem.*, 2012, 287, 19440-19451

[210] Wu J.W., Herman M., Liu L., Simoes S., Acker C.M., Figueiroa H., et al., Small misfolded tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons, *J. Biol. Chem.*, 2013, 288, 1856-1870

[211] Iba M., Guo J.L., McBride J.D., Zhang B., Trojanowski J.Q., Lee V.M., Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy, *J. Neurosci.*, 2013, 33, 1024-1037

[212] Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., et al., Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau, *Sci. Rep.*, 2012, 2, 700

[213] Hall G.F., Patuto B.A., Is tau now ready for admission to the prion club?, *Prion*, 2012, 6, 223-233

[214] Canu N., Filesi I., Pristerà A., Ciotti M.T., Biocca S., Altered intracellular distribution of PrPC and impairment of proteasome activity in tau overexpressing cortical neurons, *J. Alzheimers Dis.*, 2011, 27, 603-613

[215] Litman P., Barg J., Rindzonski L., Ginzburg I., Subcellular localization of tau mRNA in differentiating neuronal cell culture: Implications for neuronal polarity, *Neuron*, 1993, 10, 627-638

[216] Aronov S., Aranda G., Behar L., Ginzberg I., Axonal tau mRNA localization coincides with tau protein in living neuronal cells and depends on axonal targeting signal, *J. Neurosci.*, 2001, 21, 6577-6587

[217] Schraen-Maschke S., Dhaenens C.M., Delacourte A., Sablonniere B., Microtubule-associated protein tau gene: a risk factor in human neurodegenerative diseases, *Neurobiol. Dis.*, 2004, 15, 449–460

[218] Caffrey T., Joachim C., Wade-Martins R., Haplotype-specific expression of the N-terminal exons 2 and 3 at the human MAPT locus, *Neurobiol. Aging*, 2008, 29, 1923–1929

[219] Wegiel J., Gong C.X., Hwang Y.W., The role of DYRK1A in neurodegenerative diseases, *FEBS J.*, 2011, 278, 236–245

[220] McNaughton D., et al., Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series, *Neurobiol. Aging*, 2012, 33, 426.e13–e21

[221] Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S., et al., Detection of blast-related traumatic brain injury in U.S. military personnel, *N. Engl. J. Med.*, 2011, 364, 2091–2100

[222] Hall G.F., Poulos A., Cohen M.J., Sprouts emerging from the dendrites of axotomized lamprey central neurons have axonlike ultrastructure, *J. Neurosci.*, 1989, 9, 588–599

[223] Hall G.F., Yao J., Selzer M., Kosik K.S., Cytoskeletal correlates to cell polarity loss following axotomy of lamprey central neurons, *J. Neurocytol.*, 1997, 26, 733–753

[224] Rose P.K., MacDermid V., Joshi M., Neuber-Hess M., Emergence of axons from distal dendrites of adult mammalian neurons following a permanent axotomy, *Eur. J. Neurosci.*, 2001, 13, 1166–1176

[225] Singleton R.H., Zhu J., Stone J.R., Povlishock J.T., Traumatically induced axotomy adjacent to the soma does not result in acute neuronal death, *J. Neurosci.*, 2002, 22, 791–802

[226] Amadoro G., Corsetti V., Stringaro A., Colone M., D'Aguanno S., Meli G., et al., A NH₂ tau fragment targets neuronal mitochondria at AD synapses: possible implications for neurodegeneration, *J. Alzheimers Dis.*, 2010, 21, 445–470

[227] Thies E., Mandelkow E.M., Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1, *J. Neurosci.*, 2007, 27, 2896–2907

[228] Kins S., Crameri A., Evans D.R., Hemmings B.A., Nitsch R.M., Götz J., Reduced protein phosphatase 2A activity induces hyperphosphorylation and altered compartmentalization of tau in transgenic mice, *J. Biol. Chem.*, 2001, 276, 38193–38200

[229] Lazarov O., Lee M., Peterson D.A., Sisodia S.S., Evidence that synaptically released beta-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice, *J. Neurosci.*, 2002, 22, 9785–9793

[230] Klein W.L., Synaptic targeting by Abeta oligomers (ADDLS) as a basis for memory loss in early Alzheimer's disease, *Alzheimers Dement.*, 2006, 2, 43–55

[231] Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., et al., Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo, *Nature*, 2002, 416, 535–539

[232] Tsai J., Grutzendler J., Duff K., Gan W.B., Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches, *Nat. Neurosci.*, 2004, 7, 1181–1183

[233] Boekhoorn K., Terwel D., Biemans B., Borghgraef P., Wiegert O., Ramakers G.J., et al., Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy, *J. Neurosci.*, 2006, 26, 3514–3523

[234] Zempel H., Thies E., Mandelkow E., Mandelkow E.M., Abeta oligomers cause localized Ca²⁺ elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines, *J. Neurosci.*, 2010, 30, 11938–11950

[235] Ittner L.M., Ke Y.D., Delerue F., Bi M., Gladbach A., van Eersel J., et al., Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models, *Cell*, 2010, 142, 387–397

[236] Tackenberg C., Brandt R., Divergent pathways mediate spine alterations and cell death induced by amyloid-beta, wild-type tau, and R406W tau, *J. Neurosci.*, 2009, 29, 14439–14450

[237] Luebke J.I., Weaver C.M., Rocher A.B., Rodriguez A., Crimins J.L., Dickstein D.L., et al., Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models, *Brain Struct. Funct.*, 2010, 214, 181–199

[238] Boekhoorn K., Joels M., Lucassen P.J., Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, *Neurobiol. Dis.*, 24, 1–14, 2006

[239] Hu W.T., Holtzman D.M., Fagan A.M., Shaw L.M., Perrin R., Arnold S.E., et al., Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease, *Neurology*, 2012, 79, 897–905

[240] Clinton L.K., Burton-Jones M., Myczek K., Trojanowski J.Q., LaFerla F.M., Synergistic interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline, *J. Neurosci.*, 2010, 30, 7281–7289

[241] Perry G., Kawai M., Tabaton M., Onorato M., Mulvihill P., Richey P., et al., Neuropil threads of Alzheimer's disease show a marked alteration of the normal cytoskeleton, *J. Neurosci.*, 1991, 11, 1748–1755

[242] Ihara Y., Massive somatodendritic sprouting of cortical neurons in Alzheimer's Disease, *Brain Res.*, 1988, 459, 138–144

[243] Uchida Y., Ohshima T., Sasaki Y., Suzuki H., Yanai S., Yamashita N., et al., Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease, *Genes Cells*, 2005, 10, 165–179

[244] Arimura N., Kaibuchi K., Neuronal polarity: from extracellular signals to intracellular mechanisms, *Nat. Rev. Neurosci.*, 2007, 8, 194–205

[245] Leugers C.J., Lee G., Tau potentiates nerve growth factor-induced mitogen-activated protein kinase signalling and neurite initiation without a requirement for microtubule binding, *J. Biol. Chem.*, 2010, 285, 19125–19134

[246] Cowan C.M., Shepherd D., Mudher A., Insights from Drosophila models of Alzheimer's disease, *Biochem. Soc. Trans.*, 2010, 38, 4, 988–992

[247] Mudher A., Shepherd D., Newman T.A., Mildren P., Jukes J.P., Squire A., et al., GSK-3beta inhibition reverses axonal transport defects and

behavioural phenotypes in *Drosophila*, *Mol. Psychiatry*, 2004, 9, 522–530

[248] Khurana V., Feany M.B., Connecting cell-cycle activation to neurodegeneration in *Drosophila*, *Biochim. Biophys. Acta*, 2007, 1772, 446–456

[249] Hall G.F., The biology and pathobiology of tau protein, In: Kavallaris M. (Ed.), *The cytoskeleton and human disease*, Springer, 2012, 285–313

[250] Tian A.G., Deng W.M., Par-1 and tau regulate the anterior-posterior gradient of microtubules in *Drosophila* oocytes, *Dev. Biol.*, 2009, 327, 458–464

[251] Li S., Mallory M., Alford M., Tanaka S., Masliah E., Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression, *J. Neuropathol. Exp. Neurol.*, 1997, 56, 901–911

[252] Gorlovoy P., Larionov S., Pham T.T.H., Neumann H., Accumulation of tau induced in neurites by microglial proinflammatory mediators, *FASEB J.*, 2009, 23, 2502–2513

[253] Maxwell W.L., McCreath B.J., Graham D.I., Gennarelli T.A., Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury, *J. Neurocytol.*, 1995, 24, 925–42

[254] Jafari S.S., Maxwell W.L., Neilson M., Graham D.I., Axonal cytoskeletal changes after non-disruptive axonal injury, *J. Neurocytol.*, 1997, 26, 207–221

[255] Uryu K., Chen X.H., Martinez D., Browne K.D., Johnson V.E., Graham D.I., et al., Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans, *Exp. Neurol.*, 2007, 208, 185–192

[256] Goldstein L.G., Fisher A., Tagge C., Wojnarowicz M.W., Zhang X.L., Sullivan J.S., et al., Blast exposure induces chronic traumatic encephalopathy and persistent defects in axonal conduction, synaptic plasticity, and hippocampal memory, *Sci. Transl. Med.*, 2012, 4, 134ra60

[257] Iijima-Ando K., Sekiya M., Maruko-Otake A., Otake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer's disease-related tau phosphorylation via PAR-1, *PLoS Genet.*, 2012, 8, e1002918

[258] Craig A.M., Graf E.R., Linhoff M.W., How to build a central synapse: clues from cell culture, *Trends Neurosci.*, 2006, 29, 8–20

[259] Perez M.R., Zheng H., Lex H., Van der Ploeg T., Koo E., The beta-amyloid precursor protein of Alzheimer's disease enhances neuron viability and modulates neuronal polarity, *J. Neurosci.*, 1997, 17, 9407–9414

[260] LaPointe N.E., Morfini G., Pigino G., Gaisina I.N., Kozikowski A.P., Binder L.I., et al., The amino terminus of tau inhibits kinesin dependent axonal transport: implications for filament toxicity, *J. Neurosci. Res.*, 2009, 87, 440–451

[261] Pérez M., Cuadros R., Benítez M.J., Jiménez J.S., Interaction of Alzheimer's disease amyloid β peptide fragment 25–35 with tau protein, and with a tau peptide containing the microtubule binding domain, *J. Alzheimers Dis.*, 2004, 6, 461–467

[262] Rank K.B., Pauley A.M., Bhattacharya K., Wang Z., Evans D.B., Fleck T.J., et al., Direct interaction of soluble human recombinant tau protein with Abeta 1-42 results in tau aggregation and hyperphosphorylation by tau protein kinase II, *FEBS Lett.*, 2002, 514, 263–268

[263] Guo J.T., Arai J., Miklossy J., McGeer P., Tau forms soluble complexes that may promote self aggregation of both into the insoluble forms observed in Alzheimer's disease, *Proc. Natl. Acad. Sci. USA*, 2006, 103, 1953–1958

[264] Funk K.E., Mrak R.E., Kuret J., Granulovacuolar degeneration (GVD) bodies of Alzheimer's disease (AD) resemble late-stage autophagic organelles, *Neuropathol. Appl. Neurobiol.*, 2011, 37, 295–306