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Abstract
Diffusion-based MR imaging is the only non-invasive method for characterising the microstructural organization 
of brain tissue in vivo. Diffusion tensor MRI (DT-MRI) is currently routinely used in both research and clinical 
practice. However, other diffusion approaches are gaining more and more popularity and an increasing number 
of researchers express interest in using them concomitantly with DT-MRI. While non tensor-based methods hold 
great promises for increasing the specificity of diffusion MR imaging, including them in the experimental routine 
inevitably leads to longer experimental times. In most cases, this may preclude the translation of the full protocol 
to clinical practice, especially when these methods are to be used with subjects that are not compatible with 
long scanning sessions (e.g., with elderly and pediatric subjects who have difficulties in maintaining a fixed head 
position during a long imaging session). 
The aim of this review is to guide the end-users on obtaining the maximum from the experimental time allocated 
to collecting diffusion MRI data. This is done by: (i) briefly reviewing non tensor-based approaches; (ii) reviewing 
the optimal protocols for both tensor and non tensor-based imaging; and (iii) drawing the conclusions for 
different experimental times. 

Introduction

Diffusion MR Imaging (D-MRI) is a collection 
of non-invasive imaging techniques able to 
generate in vivo images of the brain, in which 
the contrast reflects the diffusion properties of 
the water molecules within the brain tissue. 

The diffusion tensor MRI (DT-MRI) framework 
[1,2] uses the diffusion tensor to model 
diffusion data. To reconstruct the tensor, a 
collection of diffusion-weighted (DW) images 
are acquired using the same magnitude as the 
diffusion weighting, but applied along different 
spatial orientations. The DW magnitude is 
quantified by the so-called b-value, that takes 
into account the time in which the experiment 
is sensitive to the molecules’ motion (∆), and 
the field gradient strength (g) and duration (δ). 

From the tensor, the mean diffusivity (MD), 
the average diffusivity in the voxel, and the 
fractional anisotropy (FA) which indicates the 
degree of anisotropy of the water molecules, 
are extracted. These are scalar parameters that 
reflect some of the features of the diffusion 
dynamics within a specific voxel. For example, 

white matter (WM) voxels with one prevalent 
fibre orientation exhibit high FA since diffusion 
is less hindered in the direction parallel to the 
fibres than perpendicular to them. 

From the tensor, the direction of greatest 
diffusivity can also be extracted. This is 
interpreted as the main fibre orientation and 
fed into tractography reconstruction algorithms 
[3-8], that delineate the WM fiber pathways by 
merging this information in contiguous voxels. 
In this way, virtual dissection of WM can be 
performed non-invasively. 

Numerous studies have been performed 
documenting the clinical utility of DT-MRI in 
various brain diseases (for a review, see [9]) 
and its ability to track specific patterns in the 
developing [10] as well as in the aging brain [11].

When it comes to interpreting the results, MD 
and FA are both dependent on several aspects 
of the local microstructure. 20 years after its first 
introduction, it is now clear that DT-MRI indices 
reflect the sum of different contributions 
that are impossible to disentangle using the 
diffusion tensor model. For a start, the tensor 
model is inadequate for characterising fibre 

orientation when there is more than one 
fibre population within a voxel, generating 
inaccurate tract reconstructions. The tensor 
is also modulated by the myelination and by 
the axonal properties (density and radius). 
This is why DT-MRI indices are considered 
very sensitive with respect to local changes in 
diffusivity properties, but not specific towards 
the cause of the observed change. 

To overcome these issues, different 
approaches have been introduced over the 
years that use more complex models of the 
diffusion dynamics. From the point of view 
of the data collection, the signal needs to be 
acquired using more gradient orientations than 
DT-MRI, or more than one b-value, or both, so 
that including them in the experimental routine 
inevitably leads to longer experimental times. 

Numerous approaches have been 
proposed in recent years or are currently 
under investigation, with the aim of rapidly 
image the entire brain with high degrees 
of precision in space and time. Although 
the benefit of these approaches have been 
documented, techniques such as multiplexing 
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[12], compressed sensing [13,14], and non 
EPI-based approaches such as PROPELLER 
[15], do not currently feature in clinical scan 
protocols, in which diffusion data is commonly 
acquired with the twice-refocused spin-echo 
EPI sequence [16]. Although this is likely to 
change in the next few years due to hardware 
developments, the scope of this review is to 
guide the end-users to obtain the maximum 
from the experimental time they can allocate 
to collect diffusion MRI data using the "off-the-
shelf" methods that are most widely available 
in labs.

Specifically, non tensor-based approaches to 
diffusion will be reviewed in the next section. 
Then, optimal protocols for both tensor and 
non tensor-based methods will be revised, 
with the aim of defining minimal requirements 
to obtain an acceptable data quality in the 
shortest possible time. The last section will 
combine these requirements to guide the 
diffusion imager to get the most from the 
available experimental time. 

Non tensor-based approaches 
to increase the information of 
D-MRI

Several diffusion methods are available today to 
resolve multiple fiber orientations, all of them 
relying on High Angular Resolution Diffusion 
Imaging, or HARDI, acquisition schemes (i.e., 
they use a large number of unique gradient 
orientations to acquire the data). The simplest 
generalisation of DT-MRI relies on fitting more 
than one tensor to the data, as done in [17,18]. 
More recently, frameworks to recover the fiber 
orientation distribution, i.e. the probability of 
finding fibres with a given orientation in the 
voxel, were introduced. There are two main 
strategies to recover the fiber orientation 
distribution: it can be extracted directly from 
the data using the mathematical properties of 
the diffusion signal, as done in Q-Ball imaging 
[19], Diffusion Spectrum Imaging (DSI) [20] or 
Persistent Angular Structure MRI [21], or by 
deconvolving the idealised response from a 
single fibre population, as done in spherical 
deconvolution-based approaches [22-24]. For 
a detailed review and comparison of these 
approaches, see [25].

To overcome the low specificity of DT-MRI 
indices, the signal can be expressed using 
higher order models with the purpose of 
extracting complementary parameters and 
relating the outcome to some biophysical 
models of the tissue. While the simplest 
generalization of DT-MRI to try to account for 
the possible existence of multiple components 
is a two-tensor model [26], it is not clear what, 
physically, the two tensor components would 
represent, given that biexponential fitting of 
diffusion-weighted signal-attenuation curves 
measured along a single orientation does not 
yield physical values for the intra and extra-
cellular water fractions [27].

An approach that is growing in popularity 
is Diffusional Kurtosis Imaging (DKI) 
[28-30]. In this approach, the deviation from 
the exponential decay is quantified using a 
convenient dimensionless metric called the 
excess kurtosis, which is determined from 
the first three terms of an expansion of the 
logarithm of the NMR signal intensity in powers 
of the b-value. DKI has been largely applied in 
the last years, due to its clinical feasibility and 
to the enhanced sensitivity as compared to DT-
MRI [28,31].

More recently, it has been proposed that 
this intrinsic non mono-exponential behaviour 
(where the tensor model implies an exponential 
decay of the signal as a function of the b-value) 
can be described by the anomalous diffusion 
(AD) framework [32] leading to a stretched-
exponential model for the diffusion signal 
[33-37].

Hybrid approaches can be particularly 
useful for both recovering more than one fibre 
orientation within the voxel and for defining 
more tissue-specific properties. For example, 
the composite hindered and restricted model 
of diffusion, or CHARMED [38,39], explains 
the signal as the contribution of two different 
pools: a hindered extra-axonal compartment 
and one or more intra-axonal compartments, 
whose properties are characterised by a 
model of restricted diffusion perpendicular 
to fibre axis within impermeable cylinders 
[40]. This model provides distinct WM-specific 
parameters, e.g., the axonal density, and was 
recently extended to estimate the axonal 
diameter [41,42].

Optimal acquisition strategies 
for tensor and non tensor-based 
di�usion imaging

D-MRI involves DW data that are currently 
acquired using the twice-refocused spin-
echo EPI sequence, a sequence designed to 
minimise the distortions caused by the rapid 
switching on and off of the gradients [16]. This 
is true for all the D-MRI techniques described 
so far, except for the CHARMED model that is 
implemented for the single-refocused version 
of the same sequence. 

When using such pulse sequences, the 
experimenter normally has to select only two 
of the diffusion-related parameters, i.e., the 
b-value and the gradient orientations, because 
other parameters are selected automatically, 
as a consequence, to maximise the SNR by 
having the shortest echo time (TE) possible. 
Specifically, the gradient strength is always the 
largest that the scanner can provide, in order 
to minimise δ and, thus, the TE. In most cases, 
the optimal choice of ∆/δ is the value that, 
given the target b-value, minimises ∆ in order 
to reduce the TE.

While the b-value has only a moderate 
effect on the total experimental time, the more 
gradient orientations, the more measurements 
required, the longer the experiment duration, 
and thus the optimal requirements in terms 
of number of gradient orientations will be the 
key feature for the purpose of this review. In 
addition, the terms ’gradient orientations’ and 
’measurements’ will be interchangeable in this 
context.

The optimal b-value for DT-MRI in the brain 
falls in the range 750<b<1300 s/mm2, where 
different parameters (i.e., MD, FA and fiber 
orientations) need slightly different b-values 
within this range [43-45]. A b-value around 
1000 s/mm2 is considered to be an optimal 
choice to maximise precision in the key 
parameters extracted from DT-MRI. 

The diffusion tensor has six unknown 
parameters, hence six is the minimum number 
of unique gradient orientations needed 
for tensor reconstruction (plus at least one 
non-DW scan). When time permits, more 
orientations should be acquired, resulting 
in a overdetermined system that permits a 
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more robust tensor estimation. More unique 
orientations are preferred compared to 
multiple repeats of the same orientation to 
maximize the statistical rotational invariance 
on DTI estimates, i.e. the dependence of the 
uncertainty in parameters as a function of 
orientation of the structure with respect to the 
encoding gradients [46,47].

According to published works, 20 or more 
unique orientations are ideal to maximise 
the precision for FA [48], while 30 or more 
unique orientations are needed for obtaining 
robust estimates of the trace and the 
principal eigenvector orientation. In addition, 
the gradient sampling vectors should be 
distributed in space as uniformly as possible 
so as to aim for an average SNR that is as 
uniform as possible, irrespective of the fibre 
orientation [47]. The gradient sampling scheme 
is conventionally visualised as spots lying on 
a sphere, where the radius is proportional to 
the amount of diffusion weighting and the 
different orientations are illustrated as points 
placed where the line intersects the surface of 
the sphere. Lastly, the ratio of measurements 
made with DW to those without should be 
around 8-10:1 [43]. For a comprehensive review 
on optimal acquisition methods for DT-MRI, 
please refer to [49].

Whilst there is an extensive literature on 
optimal schemes for DT-MRI, it is very difficult 
to indicate general guidelines for performing 
non DT-MRI experiments, since the design is 
specific to the different techniques mentioned 
above and very few works have been published 
on this topic. 

A visual summary of the differential 
requirements of the techniques described so 
far is shown in Figure 1. Figure 1 is a 2D pictorial 
representation of the 3D sphere conventionally 

used to visualise the gradient sampling 
scheme. More orientations increase the 
angular resolution; more concentric spheres 
or shells increase the sampling of the b-value 
or gradient space. Some techniques use a 
single shell approach like DT-MRI (Figure  1a), 
i.e., all the gradient orientations have the 
same b-values and can thus be graphically 
represented as lying on the surface of a sphere. 
Others (and definitely all the techniques fitting 
more than one compartment) need more than 
one b-value and thus they are considered multi-
shells techniques. Methods that are focused on 
resolving multiple fiber orientations needs high 
angular resolution (Figure  1b), while methods 
that fit the diffusion signal using multiple 
compartments or expressions more complex 
than the exponential decay need increased 
sampling of the b-value space (Figure  1c and 
1d). The requirements for DSI are different in 
that it needs a cartesian grid sampling scheme, 
since it involves a Fourier transform of the data 
in the gradient space. Hence, both high angular 
resolution and high b-value sampling rate are 
needed (Figure 1e).

DKI analysis implies fitting two tensors to 
the data: the diffusion tensor and the kurtosis 
tensor. While the first one has 6 degrees 
of freedom, the second has 15 degrees of 
freedom, thus at least 22 unique acquisitions 
are needed (including the volume with no DW). 
It can be further shown that there must be, in 
general, at least two distinct b-values, and that 
the maximum b-value should be smaller than 
3000 [30].

Optimal acquisition schemes for DSI were 
investigated in ref. [50]. The optimal maximum 
b-value is 6500 s/mm2  for DSI with 515 
measurements and 4000 s/mm2 for DSI with 
203 measurements. Both schemes provide 

a maximum distinguishable crossing angle 
of 30 degrees. More recently, as a result of 
the introduction of compressed sensing [13], 
DSI was successfully performed using only 
100 diffusion measurements for the b=4000 
scheme [51]. For DSI, the suggestion of having 
the shortest possible ∆ (that leads to ∆~δ) 
should not be followed because being in the 
so-called narrow pulse regime (i.e., ∆>>δ) 
is a prerequisite for performing the Fourier 
transform. Ref [50] suggests ∆=80 and δ=35.

Methods based on spherical deconvolution 
usually need single shell acquisitions. A 
b-value higher than the one employed for 
DT-MRI should be used, given that the angular 
dependency of signal is more pronounced 
at higher b-values [52-54], so generally
b=3000 s/mm2 is used. In methods based on 
spherical deconvolution, the minimum number 
of measurements is given by the maximum order 
of harmonics that are used in the data analysis. 
Simulations show that the signal profile at 
b=3000 s/mm2 only need 28 unique 
measurements, while in vivo data contains 
higher angular frequency components, 
therefore suggesting a minimum of 45 unique 
measurements [55]. However, as pointed 
out in [49], these numbers are only minimal 
requirements. When time allows, more 
measurements should be collected, resulting 
in a overdetermined system that permits a 
more robust fit. To the best of the Author’s 
knowledge, the maximum distinguishable 
angle for crossing fibres as a function of the 
number of unique measurements is still an 
open question. 

For hybrid models based on hindered and 
restricted diffusion, Alexander et al. proposed 
a framework to optimise the sequence 
parameters by keeping the diffusion gradient 

Figure 1.  Five different acquisition schemes illustrated in the text: DT-MRI (a), single shell HARDI (b), CHARMED/ADI (c), Kurtosis (d) and DSI (e). All the schemes have a shell 
structure except the DSI scheme, which employs instead a (undersampled) cartesian grid. 
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orientations fixed and distributed evenly on 
the unit hemisphere [56,57]. Following works 
showed that having more gradient orientations 
in the high b-value shells improves the precision 
and accuracy on the estimated parameters 
[58]. The optimised protocol proposed in [58] 
employs 45 unique measurements.

In methods based on the anomalous 
diffusion framework, a stretched exponential 
decay is fitted to the data, and thus multi-
shell acquisition is required. Since no specific 
optimisation has been made so far for 
anomalous diffusion acquisitions, we assume 
that the multi-shell optimisation performed 
for CHARMED-like acquisition is also valid for 
anomalous diffusion imaging, i.e., from a single 
protocol employing 45 unique measures, one 
can obtain both CHARMED-like parameters and 
anomalous diffusion parameters. This last issue 
requires further validation. 

Get the maximum from the 
experimental time

The acquisition time for a single measurement 
is mainly dictated by the repetition time (TR). 
The minimum TR value is affected by several 
factors, and should always be at least 5 times 
the T1, which will allow the magnetization to 
relax to 99% of its initial value and avoid T1-
weighting effects. In the human brain at 3T, 
TR~1.2s and thus 5*TR~6s [59]. TR depends 
on the number of phase encoding steps, and 
thus on the geometry and on the acquisition 

strategy (i.e., the use of parallel imaging allows 
shorter TR by reducing the number of phase 
encoding steps). Higher spatial resolution and 
larger volumes need a longer TR.

Throughout this section, we will assume 
TR=17s, which is the TR that allows a whole 
brain acquisition at 2.4 mm isotropic resolution 
on a GE Signa 3T (ASSET factor=2). Acquisition 
times for different setups are expected to vary, 
but they can easily be worked out accounting 
for the actual TR. All the calculations in this 
paragraph do not include cardiac gating [60], 
that should be employed when time allows, 
and the non-DW scans, that should be added at 
the beginning of the acquisition. 

In principle, since most of the diffusion 
acquisitions are performed using the same 
pulse sequence, the experimenter may want to 
perform a single experiment by adding up the 
gradient orientations/b-values required by each 
technique he/she is interested in as continuous 
sequence, specifying a single TE/TR and a 
single geometry. This is not recommended 
because combining techniques that need 
different b-values lead to an increased TE (the 
common TE will be dictated by the highest 
b-value), and thus a decrease of the SNR for all 
the acquisitions. Combining acquisitions with 
different TEs is possible if all the DW images are 
divided by the corresponding non-DW scan, 
but not desirable in many cases (e.g., if running 
multi-compartment model fit, the acquisition 
has to have the same TE to weight equally each 
compartment). 

A visual summary of the three proposed 
protocols is reported in Figure 2. 

D-MRI in 45 minutes or more
When long scanning is not an issue and the 
experimenter is interested in having the most 
compete picture obtainable using D-MRI, then 
different protocols should be included. To obtain 
robust maps of MD and FA, the experimenter 
should use a DT-MRI protocol with 30 unique 
gradient orientations and a b-value around 
1000 s/mm2. If the SNR is high enough, so that 
the TE can be increased to include another set 
of 30 measurements with a b-value around 
2000 s/mm2, then a combined DT-MRI and 
DKI can be performed, with 60 measurements 
in total. For tractography reconstruction, 
a HARDI protocol with at least 45 unique 
gradient orientations and a b-value of 3000  s/
mm2 should be included. Alternatively, 
DSI protocol can be applied, implying 
100 measurements with b=4000 s/mm2.
 Higher order model of diffusion (i.e., AD and 
CHARMED) can be estimated using the scheme 
proposed in [58] with 45 unique measurements 
and a maximum b-value of 8750 s/mm2. 
Assuming TR=17s, this will result in a total 
acquisition time of 42 minutes using HARDI or 
58 minutes using DSI.

D-MRI in 30 minutes
If the time available for diffusion scanning is 
around 30 minutes, the HARDI single-shell 
protocol should be preferred over multi-shell 

Figure 2.  Three different acquisition protocols illustrated in the text. Green check means that the acquisition is performed according to the optimal protocol while 
orange indicates the use of a sub-optimal scheme to reduce the acquisition time. Red cross means that it is not possible to acquire the protocol in the allocated 
experimental time. 
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approaches like DSI. One can still allocate time for 
the AD/CHARMED protocol and infer about the 
kurtosis values, remembering that in coherent 
white matter fibers there is a high correlation 
between the axonal density from CHARMED and 
the kurtosis [61]. Assuming TR=17s, this will result 
in a total acquisition time of 34 minutes.

D-MRI in 15 minutes
If the time available for diffusion scanning is 
limited to 15 minutes, one can still measure 
both tensor and non-tensormetrics in the 
brain. An effective way is to use an acquisition 
protocol with 30 orientations at two b-values, 
one around 1000 and the other around 
2000 s/mm2, i.e., a combined DT-MRI and 
DKI protocol. Accepting the trade-off on 
the SNR, both DT-MRI and kurtosis indices 
can be measured. In addition, the shell 
with the largest b-value can be used for 
tractography reconstruction, where 28 unique 
measurements are sufficient to account for 
the angular frequency component up to 
b=3000 s/mm2 in methods based on spherical 
deconvolution. Assuming TR=17s, this will 
result in a total acquisition time of 16 minutes.

Conclusions and perspectives

In this review article, optimal approaches to 
obtain quantitative diffusion imaging of the 
brain are revised, with the purpose of guiding 
the end-users to obtain the maximum from 
the experimental time they can allocate to 
collect diffusion MRI data. As a result, three 
protocols are suggested with different 
demands in terms of experimental time (45, 
30 and 15 minutes), offering a combination of 
conventional and non-conventional diffusion 
imaging. 

A more widespread use of non-tensor 
based techniques is expected to have a 
large impact on the ability to elucidate 
brain morphology in health, development 
and disease. Surgical planning is improved 
when using HARDI-based tractography, by 
increased accuracy in tract reconstruction 
[62]. Kurtosis indices are more sensitive to 
myelin changes than DT-MRI parameters 
[63,64], and can play a role in the diagnosis 
of demyelinating pathologies like multiple 
sclerosis. CHARMED indices have been shown 
to be more sensitive than DT-MRI to micro-

structural changes in short term neuro-
plasticity [65]. Lastly, AD indices are also 
sensitive to local susceptibility differences 
between tissues [66]. This suggests 
possible applications in neurodegenerative 
pathologies involving iron accumulation, 
including Alzheimer’s disease [67]. 

To summarise, diffusion MRI techniques hold 
great promise for increasing the information 
content of brain imaging analyses. This review 
article can help orient the scientific community 
towards a wider applicability and translation of 
these methods. 
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