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The �rst associations from the conjunction of 
“electricity” and “brain stimulation” are probably 
negative for most people. Indeed, most of the 
public, are aware of electroconvulsive therapy 
(ECT), often referred to as “electroshock”, and its 
deleterious effects on cognition (e.g., amnesia) 
[1]. However, in the new millennium a burst of 
studies using transcranial electric stimulation 
(TES) have demonstrated that the delivery of a 
low current of electricity to well-defined brain 
regions can positively a�ect human mental 
health and well-being in areas such as pain 
[2], migraines [3] and psychiatric illnesses [4]. 
The aim of the current paper is to introduce 
TES methods within the framework of 
cognitive enhancement, a topic with important 
implications for translational neuroscience. I 
further discuss recent advancements, as well as 
the application of TES in different domains and 
in different populations, and I end by raising 
some ideas for future directions that are likely 
to have a high potential for future use. 

The most widely-known method of non-
invasive brain stimulation is transcranial 
magnetic stimulation (TMS). In TMS a magnetic 
coil is placed above the scalp and delivers 
magnetic pulses in order to induce action 
potentials in brain region beneath the coil as 

well as connected brain regions [5-9]. Although 
TMS has been shown to be a powerful tool 
to modulate human performance, mostly by 
causing ‘virtual’ impairment [10], I focus here 
on TES for several reasons. Despite the utility 
of TMS, relative to TMS, TES is more portable, 
painless, inexpensive, safer, and potentially 
has greater long-term efficacy. In addition, 
TES allows much better control for placebo 
treatment (sham stimulation). Namely, in 
contrast to TMS, in most of the cases subjects 
cannot di�erentiate between sham stimulation 
and real TES [11]. This is a fundamental issue in 
experiments that use single- or double-blind 
design.

The recent results obtained from TES 
experiments offer exciting possibilities for 
the enhancement and treatment of normal or 
impaired abilities, respectively [12-14]. These 
characteristics increase the likelihood of future 
use of TES with different populations, outside 
of the clinic and laboratory, in the home, office, 
and in educational institutes. 

Meet the TES family

In contrast to some misconceptions, some of 
which are encouraged by the popular media 

(http://www.guardian.co.uk/science/2012/
j u n / 0 3 / e l e c t r i c a l - b r a i n - s t i m u l a t i o n -
treatments), it is not a ‘shocking’ family. In TES, 
weak electrical currents, usually in the order of 
1-2 mA, are applied to the head via electrodes. 
The electrodes, most frequently at the size of 25-
35cm2, are placed on the scalp above the area 
that the experimenter is interested in affecting. 
When the current is applied constantly over a 
short duration (~20 min) it passes painlessly 
through the scalp and skull and alters 
spontaneous neural activity [15]. In what 
follows I will describe three different forms of 
stimulation that di�er according to the pattern 
of the current: transcranial direction current 
stimulation (TDCS), transcranial random noise 
stimulation (TRNS), and transcranial alternating 
current stimulation (TACS). 

Transcranial direction current 
stimulation (TDCS)

TDCS, the most well-known and most 
frequently used type of TES, involves the 
application of a constant current. Studies on 
animals and humans have found that the 
induced changes in tissue excitability vary with 
current polarity. Anodal stimulation occurs 
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where the current exits the electrode and 
enters the brain, whereas cathodal stimulation 
occurs where the current exits the brain and 
re-enters the electrode. Anodal stimulation 
pushes neural resting membrane potentials 
closer to the activation threshold and therefore 
increases tissue excitability [16-18]. The reverse 
polarity, cathodal stimulation, inhibits cell firing 
and decreases excitability [16-18]. Most of the 
studies so far found that anodal stimulation 
improved human performance, while cathodal 
stimulation impaired human performance 
[14,19]. However, some exceptions to that, in 
which no e�ect for cathodal stimulation or the 
opposite pattern (i.e., enhancement rather than 
impairment), were reported [20-22]. Jacobson 
et al. [14] have attributed these inconsistencies 
to several possible mechanisms. The first 
suggests that the e�ect of brain stimulation 
depends on the initial neuronal activation state 
(state-dependency). In this case, if the area 
is active in a given task, and TDCS is applied 
to this region, it will have a differential effect 
on active neurons that are involved in the 
given cognitive function vs. neurons that are 
not involved. In such case anodal stimulation 
might lead to cognitive enhancement, 
probably by recruiting additional neurons 
that by default are not involved in the given 
cognitive function. In contrast, cathodal 
stimulation will not be e�ective as the neurons 
are already activated in the give cognitive task. 
The second explanation is the presence of 
bilateral interactions that support contralateral 
compensation. For example, in the case of 
language, cathodal stimulation to Broca’s area 
will not lead to performance impairment, as the 
contralateral brain region will compensate for 
the reduction in the stimulated brain region’s 
excitability. However, these explanations are 
incomplete at the moment, as it seems that the 
lack of a cathodal e�ect is presented mainly in 
some domains (e.g., language), but not other 
domains that are also subserved by bilateral 
brain regions (e.g., executive functions) 
[14]. The third explanation, which has been 
originally suggested by Antal et al [20], is that 
cathodal stimulation might act as a source to 
reduce neuronal noise. Again, it is currently 
puzzling why such effect would be observed 
in one task, but not others, and why this is 

the case only with cathodal but not anodal 
stimulation [but see ref 21]. Notably, other 
possible explanations exist, such as variability 
of strategies that the subject is adapting, and 
task difficulties (e.g., anodal stimulation is likely 
to change the performance of a difficult task, 
while the e�ect of cathodal stimulation might 
be less apparent due to a floor effect).

These changes induced by TDCS outlast 
the stimulation period by ~1 hour after one 
stimulation session [23]. The long-lasting effects 
of TDCS are protein synthesis-dependent 
and are accompanied by several mechanisms 
including the modi�cations of intracellular 
cAMP and calcium levels [24], brain-derived 
neurotrophic factor [25], and activation of 
adenosine A1 receptors [26] and therefore share 
some features with long-term potentiation 
and long-term depression [27]. Experiments 
in humans have found that following TDCS 
there are changes in the local concentration of 
neurotransmitters GABA and glutamate [28-30], 
important synaptic mechanisms implementing 
learning and memory [27,29,31], as well as 
brain activation as assessed by functional 
magnetic resonance imaging [e.g., 29,32-34], 
and electroencephalography [e.g., 35]. While 
studies have found that the effect of TDCS is 
locally [32], others have suggested that it affects 
more distributed networks, rather than only 
the stimulated brain region [34]. While, most 
of the TES research has been done using TDCS, 
it is unclear at the moment what parameters 
will provide the most optimal combination of 
results. Factors such as electrode size and type, 
scalp placement, current intensity, optimal 
stimulation time, and subject’s anatomy have 
been investigated to some degree [13,36-38], 
but a large scale, systematic study is required to 
delineate the role played by these parameters, 
the interactions between them, and optimize 
current protocols. 

Transcranial random noise 
stimulation (TRNS)

TRNS is a young form of TES, first employed 
experimentally in 2008 [39], which involves the 
application of alternating currents at di�erent 
frequencies to the scalp. The technique is 
preferred over TDCS for its higher cutaneous 

perception threshold [40], making it easier 
to maintain experimental blinds, and for its 
oscillatory rather than direct current, which 
ensures application is polarity (i.e. anodal and 
cathodal)-independent [41]. TRNS typically 
involves the generation of ‘samples’ at a rate 
of several hundred times per second. These 
samples are randomly assigned current 
amplitudes, which are normally distributed 
around a direct-current component of 0 (i.e., 
normally distributed with a mean of 0mA). The 
random �uctuation of these sample currents 
between positive and negative amplitudes 
generates the electrical ‘noise’ that cortical 
regions of interest are exposed to. 

Whereas the mechanisms of TRNS action are 
less known than TDCS, this technique has been 
shown enhance cortical excitability. Terney 
and colleagues increased corticoexcitability 
by 20-50% while stimulating the primary 
motor cortex (M1) with TRNS for 10 minutes, 
and observed an associated improvement 
in the acquisition and early consolidation 
of implicit motor learning as tested with a 
variation on the serial-reaction time task [39]. 
The group expanded on these findings in an 
attempt to de�ne a duration threshold for 
the production of corticoexcitatory effects. 
They showed that TRNS stimulation lasting 
just 5 minutes was capable of signi�cantly 
increasing M1 corticoexcitability [42]. Further 
work has extended the findings with TRNS to 
other domains including perceptual learning 
[43], and arithmetic learning [44]. The effect of 
TRNS has been suggested to be facilitatory at 
both electrodes. In addition, it has been shown 
that compared to anodal TDCS, high-frequency 
TRNS (100 to 640 Hz) yields even more powerful 
results [43]. 

Transcranial alternating current 
stimulation (TACS)

While in TRNS alternating currents at random 
frequencies are applied to the scalp, TACS 
utilizes alternating current in a given frequency 
range (e.g., alpha (8-14 Hz), beta (14-22 Hz) 
[45,46]. The most used form of TACS is to 
a�ect intrinsic cortical oscillations by applying 
external electrical frequencies using sinusoidal 
waves (the intensity constantly varies as a 
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function of time). For example, in the visual 
cortex, alpha activity is dominant during eyes-
closed or in dark resting conditions. In contrast, 
higher ranges, such as beta, are dominant in 
the light. When TACS in the alpha range has 
been applied to the occipital cortex during 
dark conditions, it led to the experience of 
phosphenes, the phenomenology of seeing 
light without light actually entering the eye. 
Similar effects have been observed when 
TACS in the beta range was applied in light 
conditions [45].

However, it should be noted that other forms 
of TACS are also possible such as using pulses 
of unidirectional current in rectangular waves. 
In such cases, the intensity will be increased 
rapidly to the desired amplitude, will be held at 
the peak without any change (as in TDCS), and 
will drop rapidly to zero [46]. 

As in TRNS, the underlying mechanisms for 
TACS are unclear at the moment. However, the 
application of an alternating current at a certain 
frequency band to affect intrinsic cortical 
oscillations is promising, given the range of 
perceptual [45,47], motor [48], and cognitive 
phenomena (e.g., learning and memory [49], 
feature binding [50]) that might be attributed 
to changes in brain oscillatory activity [51]. 
However, it is unclear at the moment whether 
the application of TACS in these domains 
will enhance cognitive performance or will 
impair cognitive performance. Moreover, in 
contrast to the high cutaneous perception 
threshold for TRNS [40], TACS have a lower 
cutaneous perception threshold that might 
lead to a distinction between real and sham 
stimulation. However, applying different ranges 
of frequencies as a control to stimulation in a 
more optimal frequency band can allow a 
further control in this case [e.g., 45].

Cognitive enhancement in 
healthy subjects and neurological 
patients

There are several ways to enhance cognitive 
abilities, whether for restorative purposes 
or taking individuals ‘beyond the norm’, 
with pharmacological interventions, such 
as Methylphenidate (Ritalin), Atomoxetine 
(Strattera), and Modafinil (Provigil) [52], being 

the most frequently used. However, these drugs 
lead to di�use e�ects at the brain level and 
their effect is usually for a short-term period. 
This in turn might increase user-dependency 
and addiction [52,53]. In this respect TES has 
important advantages as it seems to maximally 
a�ect the brain region beneath the electrode 
[54], and it has been shown to have effects 
that can last from up to a few months or a 
year [22,55,56]. I will now discuss the effects 
of TES on human cognition with a focus on 
the populations that have been studied most 
extensively: healthy adults (cf Table 1), and 
neurological patients (e.g., stroke patients, 
Alzheimer patients, cf Table 2). It is beyond 
the scope of this paper a documentation of 
all the studies that have yielded cognitive 
improvement. Rather, I will provide examples 
for studies that have reported positive results, 
in different cognitive domains, to demonstrate 
the applicability of TES to different aspects of 
human behaviour and cognition. 

The effect of TES can be broadly divided 
into two categories: 1) offline TES, when 
stimulation has been applied before or after 
task performance; 2) online TES, in which 
stimulation has been applied concurrently 
during task performance. Stimulation and task 
performance may be completed in a single 
session or over multiple sessions. Results so far 
have indicated that the timing of stimulation 

in respect to task performance may have 
important e�ects [57], which might depend on 
the targeted behaviour. For example, whereas 
online TES seems to yield the most robust 
results for learning [13,57], offline TES seems to 
yield a more powerful results when applied in 
studies that examined the motor system [for a 
review see 58].

To assess the improvement induced by TES, 
in most cases, performance is compared to 
performance under sham stimulation. Sham 
stimulation consists of the stimulation of the 
same regions as in TES, but for a briefer period, 
such as 15-30 seconds. This stimulation does 
not alter neuronal excitability [25], but leads 
to similar sensations over the scalp following 
habituation of this ‘tingling’ sensation [11,40]. 
Thus, it is for the most part indistinguishable 
from real stimulation.

Whereas the early use of TES focused on 
vision- or motor-related effects, in recent years 
studies from di�erent labs have shown the 
potential of TES to improve different human 
abilities including working memory, attention, 
language, mathematics, and decision-making 
(see Table 1 and Figure 1). A recent meta-
analysis [14], noted that in cognitive studies in 
the domains of attention/perception, language, 
memory, and executive functions, the mean 
effect size for anodal stimulation was 0.49, which 
indicates a medium-to-large effect size.

Figure 1.  A) Top-view of the international 10-20 EEG reference system. B) Depiction of the findings from Table 1 
according to the 10-20 international EEG reference system. Some of the findings did not fall in the exact 
location and were estimated based on the description in these studies. Some of the circles have been 
inflated in order to emphasize the abundance of findings in the respective location. Abbreviation: 
A=Attention; L=Language; M=Motor; Me=Memory; N=Numerical; V=Vision.
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While most of the results found quantitative 
differences, such as improved reaction times 
[21,22,29,32,55,59,70-72,104,106,109-111], or 
accuracy level [21,22,43,55,60,69,73,104,107,10
8,112], qualitative performance differences that 
indicate a more advanced mental age have been 
noted. For example, after 6 days of learning new 
symbols that indicate numerical information, 
participants who received anodal stimulation to 
the right parietal lobe and cathodal stimulation 
to the left parietal lobe, showed a pattern of 
performance that matched numerate adults, 
while those who received sham stimulation 
or stimulation in the opposite con�guration 
showed a performance that mirrored those with 
more rudimentary numerical skills, indicating 
that TDCS could lead to faster mastery of the 
learned material [59].

As shown in Table 1, some of the studies 
have observed long-term effects from TES, 
while some have not examined the longevity of 
TES, which would be desired from translational 
neuroscience perspective. Few studies that 
have examined long-term effects have revealed 
performance that lasts 3 months [motor skill 
acquisition, ref 55], 6 months [numerical 
cognition, ref 56], and 1 year [executive planning, 
ref 22]. Further details regarding the different 
cognitive domains/task that were used, as well 
as the di�erent parameters in each study and a 
summary of results are presented in Table 1.

In addition, different studies used different 
electrode sizes, durations of stimulation, 
and in some cases di�erent stimulation sites 
to enhance similar cognitive abilities (e.g., 
working memory). As a result, in some fields, 
especially those that relate to high-level 
cognitive functions, as opposed to motor 
functions, there is no clear consensus of the 
optimal protocol that needs to be applied in 
order to enhance cognitive functions [59]. This 
caveat should be resolved in order for TES to be 
applied for cognitive enhancement outside of a 
laboratory setting.

Cognitive enhancement in healthy adults, 
has important implications for basic science, 
and also provides a proof of principle for the 
potential of TES to enhance cognitive abilities. 
However, to demonstrate the potential of 
TES as a useful tool for rehabilitation studies, 
researchers have combined TES and cognitive 

training in patients (Table 2). These studies 
include, but are not limited to, memorization 
of words [60], repeated naming of objects 
presented in a picture [32], or reading practice 
[61].

There are important open questions, such 
as when one would need to apply TES in order 
to improve the performance of neurological 
patients. Another question concerns the 
stimulation site. In some studies stimulation 
was applied to the contralesional brain region 
[e.g., 62,63], while in other studies stimulation 
was applied to the perilesional or lesional brain 
area [e.g., 64-66]. It is assumed that TES worked 
in these cases by: 1) reducing the activation in 
the intact brain structure that inhibits residual 
functions in the nondamaged tissue nearby the 
damaged brain region. This could be attributed 
to rivalry between both hemispheres such as 
in the case of visuospatial attention [66]. In 
such cases, cathodal TDCS during cognitive 
training should lead to improved performance 
[66]; 2) Compensation by the homologue 
(contralesional) brain region [63]. This can be 
achieved by anodal TDCS during cognitive 
training/rehabilitation [63]. 3) Facilitation of 
the perilesional brain region using anodal TDCS 
to improve residual output by the damaged 
hemisphere [e.g., 64,65]. However, it should 
be noted that this is not the case in all the 
studies and one study has found that cathodal 
TDCS to the damaged brain region improved 
subsequent performance of the impaired 
cognitive ability [67].  

Currently, it is not clear what the best 
approach is, and this might depend different 
factors such as the impaired mental faculty, 
the time elapsed post stroke, which might have 
led to more substantial brain reorganisation, 
including alternation in interhemispheric 
relationships, and on the neurological damage. 
Therefore, the right approach should be 
decided on a patient to patient basis. For 
example, in some patients the neurological 
damage might be so substantial leaving 
little or no intact brain tissue in the region 
involved in the impaired cognitive function, 
therefore suggesting that stimulation of the 
contralesional brain region might be the best 
way forward [62]. However, we should note that 
another montage that includes bihemispheric 

TES, in which anodal TDCS increases excitability 
of ipsilesional brain regions and cathodal TDCS 
reduces excitability of the contralesional brain 
region has also been used [68], although such a 
montage is currently not employed frequently 
in the cognitive domain.

As indicated by Table 1-2, stimulation 
does not need to span over many days, and 
even short training periods (e.g., 20 min) can 
signi�cantly improve cognitive performance 
[32,60,69-72]. However, it is unclear if the neural 
mechanisms behind single-session effects and 
multi-sessions effects are the same. In addition, 
the longevity of single-session and multi-
session effects might differ. However, so far this 
has been examined neither at the behavioural 
nor at the neural level. Such a line of research 
is needed, as researchers are becoming more 
interested in using TES to improve training 
and skill acquisition in order to provide 
optimised scaffolding for a better and long-
lasting performance afterwards, as opposed 
to using TES as a device to improve cognitive 
performance during everyday life. 

Other topics that are at the moment also 
less clear but have important implication for 
the translational impact of TES are the effect of 
TES as a function of individual differences and 
the mental cost(s) posed by TES. Few studies 
examined the issue of individual differences, 
whether at the behavioural or at the genetic 
level, on the effect of TES [73-75], and different 
neuronal parameters, such as regional cortical 
excitability and metabolite concentrations are 
likely to contribute to individual differences. 
It is clear that a better understanding of the 
interaction between individual di�erences and 
TES is important to improve its efficacy.

As for mental cost(s), while so far most 
studies have focused their attention on possible 
physical (e.g., itching) and neurological (e.g., 
headache) side effects of TES [40,76], the 
possibility of cognitive side effects due to TES, 
as well as their persistence, have received little 
attention [77]. Most of the studies so far have 
used mainly a single task and assessed the 
modulation of task performance as a function 
of stimulation to the target brain area, sham 
stimulation, and in some cases control regions. 
The inclusion of additional tasks might be 
vital to unravel the potential costs that TES 
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might have on human cognition. Cognitive 
side e�ects might not occur for every type of 
TES, and this might depend on the stimulated 
brain region, and other parameters such as 
duration, intensity, and type of stimulation. 
However, such studies are paramount in order 
to assess not only the positive e�ects that 
TES clearly has on human behaviour, but also 
the potential side effects, and how these can 
be avoided by further optimisation of TES 
protocols. Therefore, while the issue of mental 
cost(s) is theoretical at this stage, I suggest 
that future TES studies should not only focus 
on the issue of cognitive enhancement as has 
been done thus far. Rather, researchers should 
devise the best stimulation parameters that 
will allow cognitive enhancement, without, or 
when unavoidable, with a tolerable, mental 
cost. To some degree this issue is comparable 
to investigations on drugs intake and the 
monitoring of their potential side effects. In 
theory, this mental cost might be due to a shift 
of metabolic consumption and neurochemical 
modulation in the brain caused by TDCS [25], 
which changes the respective involvement of 
different brain areas.

In sum, the current results indicate the 
exciting potential of TES for cognitive 
enhancement. This advancement, as any other 
field of research, generates new questions that 
will need to be addressed in order to allow a 
translation from the lab to the real world.

Future directions

The field of TES is moving fast. More labs are 
incorporating TES as part of their techniques, 
especially as the method is relatively 
inexpensive and easy to implement. In 
addition, biomedical companies are entering 
into this new emerging field. In this section, I 
will discuss a few directions for future research 
that I think are of substantive importance. 
These are the inclusion of healthy aging 
on the one end, and children with atypical 
development on the other end, and the 
application of TES in sports.

Studies on healthy elderly
Although the study of healthy elderly 
populations is increasing, including the 

application of non-invasive brain stimulation to 
induce plastic changes [for a review see 78], TES 
is currently applied in a very limited fashion. 
A search in Pubmed revealed only 12 studies 
that included the terms “TDCS” and “aging”; of 
these, only 4 results were experimental papers 
on healthy elderly samples [79-82]. Similar 
results are obtained when “aging” is replaced by 
“elderly”. No relevant results were found where 
TDCS was replaced by TRNS or TACS. While 
this does not indicate that these references 
are the only available studies in the field (see 
for example ref 32), it illustrates a great void in 
the current literature. Aside from furthering our 
knowledge of the aging brain in comparison to 
younger groups [80], there are also translational 
implications for this research. The healthy 
elderly are a group that can benefit from TES, 
as indicated by the limited research findings, 
and this bene�t may be even more substantial 
the older the person is [82]. If it will appear that 
TES can improve skill acquisition in elderly, as 
it has been shown in young adults [13,44], it 
will provide a route to improve life quality for 
the increasing number of elderly who due to 
increasing life expectancy have more time for 
leisure activity, and need to develop new skills 
in their generation (e.g., computer use). 

Studies on children
The lack of studies on children with atypical 
development is even more substantial. 
However, it has a better rationale than not 
studying the elderly. Specifically, at the 
moment it is unclear what effects TES might 
have on the developing brain. On the one hand, 
it might improve atypical cognitive abilities, 
such as dyslexia, dyscalculia, dysgraphia, and 
attentional de�cits [83]. On the other hand, 
it might change the balance or coordination 
between brain regions and elicit impairments in 
another cognitive domain, or no improvement 
in the pre-existing impaired ability.

Some issues pertaining to the application 
of TES to minors are relatively familiar from 
other contexts [84], such as the need to 
obtain valid consent either from a competent 
adolescent or from the parent/guardian. 
However, a crucial issue is the possible effect 
on brain development and the degree to 
which enhancing some capacities may lead 

to a deterioration of other capacities. To date, 
most research on cognitive enhancement 
using TES has focused on improving average or 
impaired abilities. However, such enhancement 
may come at a cost in some cases [85], and this 
possibility has not received much attention in 
TES studies [86]. Highly-developed capacities in 
certain cognitive domains in some individuals 
are accompanied by reduced functioning in 
others [87]. However, as discussed earlier the 
potential cognitive side effects of TES, are at the 
moment unclear.

If TES does enhance some abilities at a cost 
to others, then one will need to weigh its costs 
and benefits. This could mean that TES might in 
the future become mandatory as a treatment 
for developmental disorders. Obviously, this 
raises neuroethical issues that will have to be 
resolved in collaboration with ethicists [77].

One of the applications in this respect is in 
the field of education, such as difficulties with 
literacy and numeracy. Previous studies on 
adults (Tables 1-2) have shown the potential of 
TES to improve some components that relate 
to these cognitive abilities. However, due to the 
nature of these cognitive skills it is not possible 
to assess the safety of TES in these domains 
via standard pre-clinical experimental routes 
(e.g., animal models). As the mature brain and 
the developing brain di�er in anatomy and 
function [88-90], data on the effect of TES on 
the adult brain may not reveal possible side 
effects of stimulating a developing brain, and 
might provide little information on efficacy. 
Further, the atypically developing brain 
may respond di�erently from the typically 
developing brain. Thus, it seems impossible 
to gather adequate data on efficacy and side 
e�ects without testing the speci�c target 
population. In addition, whereas TES seems to 
be safe in adults when proper protocols are 
followed, it remains unclear whether adverse 
effects, which do not seem to appear in adults, 
might occur in younger participants.

It could be argued that in light of this lack of 
understanding, scientists should not proceed 
to examine the potential use of TES in children. 
The issues that I raise in this section are indeed 
difficult to address. However, I believe that 
failing to address these issues would deprive 
a large population of children of potentially 
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improved psychological abilities, which will 
have adverse individual and social implications 
[91].

Sports
As a potential enhancement in healthy subjects, 
TES raises issues familiar to ethicists from 
discussions of pharmacological interventions 
[77]. Without delving into a long discussion 
on the neuroethical implications of using 
TES for cognitive and physical enhancement 
[52,77,92], TES could possibly be used to 
improve performance in sports and thus raises 
ethical questions akin to those surrounding 
doping in sport [93]. TES has a unique feature 
that makes this issue more pressing: unlike most 
pharmaceutical enhancements, currently it is 
not possible to detect that TES has been used 
to enhance an individual’s cognitive or non-
cognitive abilities. For example, in professional 
sport, blood and urine samples are routinely 
used to establish whether performance 
enhancers have been used. A previous study 
has indicated that TES can increase muscle 
endurance and decrease muscle fatigue in 
normal subjects [94]. The potential usage of TES 
by professional athletes who use TES to decrease 
muscle fatigue might have an important 
advantage especially when there is increased 
load on their muscles in sporting activities (e.g., 
Tour de France, Football World Cup). Similarly, 
TES has been shown to improve motion 

perception [20], an important ability in a wide 
variety of sports such as football, basketball, 
and baseball. For example, a goalkeeper who 
receives stimulation to area MT+ (also known 
as visual area V5), an extrastriate cortical area 
known to mediate motion processing [95,96], 
might exhibit improved performance and make 
fewer mistakes. 

Another aspect is the application of TES to 
improve mental preparation before the game. 
Currently, this is moderated mostly by sport 
psychologists. However, some have suggested 
that TES might be used to generate that feeling 
of e�ortless concentration that characterises 
outstanding performance [97].

Although this section is at the moment rather 
speculative (just like the suggestion that we 
could use TES to enhance cognitive functions 
was in the previous millennia), and we cannot 
yet be con�dent that the �ndings cited above 
have ecological validity, they provide a potential 
�eld of research and possible use that basic and 
translational scientists as well as policy makers 
should be aware of and which I anticipate will 
receive considerable attention in the future.

Conclusions

TES has been shown to improve a plethora 
of cognitive abilities in both healthy adults 
and adults with neurological impairments. 
However, compared to other non-invasive 

stimulation methods, such as TMS, it is 
less studied, less known to the scientists 
(albeit it has recently received increased 
attention from the media), and its operating 
mechanisms are less clear. TES has important 
characteristics that make it attractive for the 
purpose of cognitive enhancement, and due 
to parameters such as portability, comfort, low 
financial burden, safety, long-term efficacy, 
and the relative ease of use, it has strong 
potential to be used as part of a therapeutic 
intervention or for taking individuals 
‘beyond the norm’. Although research so far 
is promising, future studies should expand 
the current research vertically (optimising 
parameters, and TES-cognitive training 
combination, neural mechanisms for TES), and 
horizontally (individual differences, cognitive 
side effects, and TES effects on the healthy 
elderly and atypically developing children). 
Successful research in these domains will have 
positive impact on translational neuroscience 
and, in turn, on public well-being.
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