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THE ROLE OF NEUROTROPHINS
IN MAJOR DEPRESSIVE DISORDER

Abstract

Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior.
Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies,
and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle
alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single
nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting,
impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as
well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density,
in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the
plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we
review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling
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Overview of neurotrophins
Neurotrophins are a family of secreted
growth factors that regulate survival, growth,
differentiation and maintenance of neurons in
both CNS and PNS [1-3]. Four neurotrophins,
nerve growth factors (NGF) [4], brain-derived
neurotrophic factor (BDNF) [5], neurotrophin-3
(NT-3) [6] and neurotrophin-4/5 (NT-4/5) [7]
have been identified and their function in the
nervous system has been widely explored. The
various effects of different neurotrophins on
neurons can be attributed to their selective
binding to two classes of receptors, the
Trk family of receptor tyrosine kinases and
the p75 neurotrophin receptor (p75NTR).
Specifically, NGF binds to TrkA, BDNF and
NT-4/5 bind to TrkB, NT-3 to TrkC and all four
interact with p75NTR [8].
Recent studies have further revealed that

neurotrophins

immature pro-neurotrophins, which have not
been proteolytically processed, and mature
neurotrophins bind to different receptors. For
example, pro-BDNF selectively binds p75NTR
with the aid of sortilin to induce apoptosis [9],
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targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects.
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long-term depression (LTD) [10], and reduce
dendritic complexity and spine density [11] in
the hippocampus.The binding of neurotrophins
to their cognate receptors activates different
intracellular signaling cascades, including the
Ras/ERK (MAPK) pathway, the PLCy pathway
and the PI3K/Akt pathway [12], which mediate
both unique and overlapping functions of
neurotrophins in the CNS and PNS [13]. Thus
there are multiple levels by which neurotrophin
actions can be modulated to impact depression
and the response to antidepressants, including
regulation of their synthesis, secretion, and
signaling, all of which are discussed below.

Is BDNF a biomarker of human
depression?

Recognition by Duman and colleagues [14]
that antidepressant treatment was associated
with in the
hippocampus led to further investigation of the

increased BDNF expression

role that neurotrophins play in depression and
in the response to antidepressant treatment,
both in human subjects and animal models of

depression. Analysis of postmortem human
brain tissues has revealed reduced BDNF
mRNA and protein levels in hippocampus,
prefrontal cortex and amygdala of depressed
patients and suicide subjects [15-17]. Moreover,
antidepressant treatments were found to
increase BDNF protein levels in different areas
of hippocampus [18].

Given the limitations of human postmortem
studies, BDNF levels in blood samples have
been widely studied. Reduced levels of mature
BDNF, but not its precursor proBDNF, were
reported in sera and plasma from depressed
patients [19-22], and this reduction of BDNF
was normalized by antidepressant treatment
[23-25]. In addition, reduced BDNF content
in platelets and decreased BDNF mRNA
expression in peripheral blood lymphocytes
and mononuclear cells were also reported in
depressed patients [26-28]. Reduced BDNF
levels in both serum and plasma have also
been found in depressed patients who have
attempted suicide, compared to non-suicidal
depressed patients or healthy controls, and in
subjects with depressive episodes of longer




duration or recurrent episodes of depression
[29,30]. The association of lower serum BDNF
levels with depressive personality traits in
healthy human subjects suggests a possible
link between BDNF levels and the susceptibility
[31].
Circulating BDNF may therefore be a potential

of healthy humans to depression
biomarker for major depression, and although
this could reinforce the relevance of identifying
therapeutic targets in the peripheral circulation,
recent studies demonstrate a positive
correlation between BDNF levels in blood and
hippocampus [32]. Further investigation of
the mechanistic importance of CNS BDNF in
depression and antidepressant efficacy, and
the determination of its site of action within the
brain, have relied on the animal studies that are

discussed below.

Does  depressive behavior
regulate BDNF expression in
animal models of depression?

Previous studies have shown that many
stressors including immobilization, electrical
foot shock, restraint, forced swimming,
social deprivation and chronic social defeat
down-regulate  BDNF mRNA and protein
levels in different brain regions, in particular
hippocampus [33-39]. This reduction in BDNF
expression is associated with the development
of depressive-like behavior. What are the
underlying mechanisms that control BDNF
levels in depressed and antidepressant-treated
animals? Stress-induced down-regulation of
BDNF splice variant mRNAs in hippocampus
was found to be associated with increased
histone methylation of the respective BDNF
[40].

reversed this down-regulation by promoting

promoters Antidepressant treatment

histone acetylation at these promoters,
indicating that stress and antidepressants exert
their effects on BDNF expression at least in part
via chromatin modification.

However, a number of reports demonstrate
opposing changes or no change in BDNF
expression in animal models of depression
and antidepressant efficacy [41,42]. Moreover,
many studies have shown that both acute
and chronic stress increase BDNF mRNA and

protein levels in hippocampus [43-47], evoking
speculation that increased BDNF levels after
stress might serve as a protective mechanism
to offset the destructive effects of stress on the
hippocampus. Alternatively, these discrepant
findings could have resulted from the use of
different stressors to induce behavior, or the
different procedures used to quantify BDNF
levels [48]. Age might also influence BDNF
levels following stress, as social defeat up-
regulates hippocampal BDNF mRNA expression
in adolescent but not adult rats [49].

In other brain regions, increased BDNF
mRNA levels were detected in medial prefrontal
cortex and amygdala within 2 hours of the last
social defeat episode [50], in agreement with
previous studies showing that BDNF mRNA
levels were initially induced in these regions
but were reduced 24 hours later [37]. Berton
et al. [51] reported increased BDNF expression
in nucleus accumbens (NAc) following social
defeat, correlating this increase of BDNF mRNA
and protein in NAc to the development of
susceptibility to depression. Taken together,
these human and animal studies demonstrate
depression-associated and  region-specific
changes in BDNF protein and mRNA levels.
Manipulation of BDNF expression in animal
with should
therefore provide into potential

models regional specificity
insight
mechanisms that underlie major depressive
disorder in humans, and these studies are

described below.

What role does BDNF play in
antidepressant treatment?

Altered levels of BDNF are correlated with
depression, and antidepressant treatments
exert their effects by reversing this alteration
[52-54]. Many studies have demonstrated
that almost all antidepressant treatments
or activities, including electroconvulsive
therapy, antidepressant drugs, exercise and
environmental enrichment up-regulate BDNF
mRNA and protein expression in specific brain
regions and blood, and reverse depressive-
like behavior [14,55-60]. The necessity of
having normal BDNF function to permit

antidepressants to act was demonstrated
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by the observed attenuated actions of
antidepressant in the forced swim test (FST)
after deletion of BDNF in the forebrain [61].
Consistent with these results, BDNF*~ germline
knockout mice showed an impaired response
to fluoxetine treatment [62], further supporting
the role that BDNF plays in antidepressant
actions. Other than their inductive effects
on BDNF expression, antidepressant drugs
are also able to initiate BDNF signaling by
promoting the activation of TrkB receptors and
the phosphorylation of cyclic AMP response
element binding (CREB) protein in rodent
brain [63,64]. However, and of considerable
interest, BDNF is not necessarily involved in
antidepressant drug-induced activation of TrkB
receptors [65], suggesting that antidepressants
can regulate alternative signaling pathways
that increase TrkB phosphorylation.

Antidepressant and pro-
depressant effects of BDNF:
location, location, location.

Altered BDNF expression impacts behavior and
antidepressant responses, but the region within
the brain and the neurons and circuits involved
define whether BDNF acts in a prodepressant or
antidepressant manner. For example, localized
ablation of BDNF in the ventrotegmental area
(VTA), the brain region believed to be the
source of NAc BDNF protein, mimicked the
effects of antidepressant treatment, resulting
in attenuated depressive-like behavior [51],
while intra-VTA infusion of BDNF produced
depressive-like behavior [66]. On the other
hand, bilateral infusion of BDNF into the
hippocampal dentate gyrus of rats reversed
the depressive-like behaviors shown in the
learned helplessness (LH) and FST paradigms
with a similar efficacy to antidepressant drugs
[67], and intracerebroventricular BDNF infusion
induced sustained antidepressant-like effects
[68].
of BDNF in the hippocampus, which also

Similarly, transgenic overexpression
protected dendrites in the CA3 region from
atrophy [69], decreased immobility in the FST,
and virally-mediated BDNF overexpression in
adult rat hippocampus reversed anhedonia

and reduced immobility in the FST [70]. Thus
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the antidepressant or pro-depressant effects
of modulating BDNF expression are very much
dependent on CNS location. Antidepressant-
like effects of peripherally-administered BDNF
have also been observed, including dose-
dependent reduction in immobility in the
FST and latency to drink in novelty-induced
hypophagia (NIH) [71]. BDNF
administration further rescued the anhedonia

Peripheral

induced by chronic unpredictable stress,
facilitated the survival of immature neurons in
the dentate gyrus and prefrontal cortex, and
induced BDNF protein and mRNA expression in
hippocampus, suggesting a possible function
of peripheral BDNF in the pathogenesis of
depression, in addition to its role as a potential
biomarker.

Behavioral effects of BDNF

downregulation

Because of the severely impaired coordination

and short life span of BDNF germline
[72], BDNF*
heterozygous mice have been studied, and
these did not

behaviors in the FST, learned helplessness (LH),

homozygous knockout mice

show any depressive-like

tail suspension test (TST) or sucrose preference
test (SPT) [63,73-75]. Interpretation of these
early efforts was complicated by subsequent
discoveries of additional functional roles for
BDNF in pain pathways, including reduced pain
sensitivity in BDNF*~ mice [73], which could
have impacted the LH paradigm. However,
recent studies indicate that BDNF*" mice have
a pro-depressive phenotype: male BDNF*~ mice
showed increased immobility in the FST after
exposure to mild stress, suggesting higher
vulnerability of BDNF deficient mice to stress [76].
Moreover, Magarinos et al. observed retracted
dendritic arborization in the CA3 region and
reduced hippocampal volume in unstressed
BDNF* mice, similar to the phenotypes of
stressed wild type mice [77]. Behavioral sequelae
of global BDNF reduction may therefore reflect
the summation of antidepressant-like effects of
BDNF in the hippocampus and prefrontal cortex,
and pro-depressive effects of BDNF in the VTA
[51,78], consistent with the region- and circuit-
specific role of this neurotrophin.

In order to circumvent the embryonic
lethality and developmental abnormalities
caused by targeted deletion of Bdnf in the
germline, and to study gene function in
specific tissues or regions, BDNF conditional
knockout mice have been generated. Forebrain
deletion of BDNF resulted in decreased sucrose
preference and longer immobility time in
FST in female mice compared to wild type
littermates, while male conditional knockout
mice are indistinguishable from wild types,
suggesting a gender difference in vulnerability
to depressive-like behavior that was not
applicable to antidepressant responses, as
both male and female conditional knockout
mice failed to attenuate their depressive-like
behavior following desipramine treatment [79].
However, BDNF conditional knockout in the
dentate gyrus did attenuate antidepressant
efficacy [80]. Lastly, mice with conditional
knockout of BDNF in the VTA have been
reported to show reduced social avoidance
in the social interaction test following social
defeat [51], reinforcing region-specific effects
of BDNF on depressive behavior.

BDNF knockdown by RNA interference in
dorsal dentate gyrus resulted in depressive-
like behaviors in the SPT, FST, and home-cage
locomotion as well as impaired neuronal
differentiation [81]. Interestingly, the same
group reported that BDNF knockdown in VTA
leads to decreased immobility time in the
FST and increased sucrose preference [78],
consistent with previous reports demonstrating
that conditional deletion of BDNF in VTA
induced antidepressant-like effects [51].

Defects in regulated BDNF
secretion and depression: the
BDNF Val66Met polymorphism

The Val66Met BDNF polymorphism is the most
widely studied variation in the BDNF gene
and has been correlated with BDNF function,
hippocampal activity, and depression. This
(SNP) at
nucleotide 196, leading to substitution of

single nucleotide polymorphism

methionine (Met) for valine (Val) at codon
66, interferes with BDNF protein sorting and
secretion, and BDNF mRNA trafficking to
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dendrites [82-84]. Abnormal memory and
hippocampal function have been observed
in human subjects carrying the Met-allele
[82,85]. Many studies also suggest a pro-
depressive role of the BDNF Met-allele, which
has been correlated with smaller volumes of
[86l,
amygdala, and frontal gyrus [87], but higher

the hippocampus parahippocampus,
BDNF levels in serum [88]. However, reduced
hippocampal volume was not only observed in
depressed patients, but also in healthy subjects
[89], and no effect on hippocampal volume and
BDNF levels in both plasma and serum by the
Val66Met SNP have also been reported [90-92],
suggesting a complex phenotype.

In addition, depressed patients carrying the
Met-allele (BDNFY2"™Met and BDNFMetMet) are more
likely to suffer from suicidal ideation and to
attempt suicide [93]. Met-allele carriers exposed to
greater early life stress had smaller hippocampal
volume and higher syndromal depression, while
the experience of early life stress in BDNFV"al
homozygotes had no effect on depression [94].
BDNFY@Met and BDNFYet™et sybjects also respond
better to antidepressant treatment compared to
BDNF¥@"homozygotes [95,96].

Study of the BDNF Val66Met polymorphism
in rodent models has facilitated mechanistic
understanding of this sorting and secretory
defect. BDNFMe™et mice were more resilient
to chronic social defeat stress than BDNF¥Val
[97], which may be attributed to reduced
BDNF levels in NAc. BDNF"e'™et rodents fail
to respond to ketamine administration,
having impaired synaptogenesis and longer
immobility time in the FST [98]. Compared to
BDNF"?"Val mice, BDNFVeMet mice also had lower
basal BDNF protein levels as well as impaired
NMDA-receptor dependent LTP and LTD,
and decreased survival of newly generated
neurons in hippocampus, which could not
be reversed by fluoxetine administration
[99,100]. Recent studies further demonstrate
that ~ BDNFVa/Met
depressive- and anxiety-like behaviors and

mice have increased
impaired working memory following restraint
stress, and show antidepressant responses to
acute administration of desipramine but not
fluoxetine, perhaps suggesting more effective
treatment options for depressed patients with

this genetic variant [101]. Thus a relatively




subtle deficit in BDNF sorting and secretion
can lead to profound behavioral modification
and altered responses to antidepressants,
alcohol and drugs of abuse [102,103], perhaps
reflecting in part altered neural plasticity in
response to both adverse and rewarding life
events [104].

Modulation of  depressive
behavior and antidepressant
efficacy by BDNF/TrkB signaling

Mice with reduced BDNF/TrkB activation are
resistant to antidepressant treatment [63].
Moreover, conditional forebrain TrkB knockout

Hippocampal Neuron
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mice manifest decreased spine densities and
increased spine length on apical and basal
dendrites in the CA1 region [105], as well as
decreased neurogenesis in hippocampus and
impaired behavioral improvements induced
by chronic antidepressant administration or
by exercise [106]. Conversely, transgenic mice
with over-expressed catalytic TrkB receptors
in brain showed decreased immobility in the
FST [107]. These findings are consistent with
the important role of BDNF/TrkB signaling in

depression and antidepressant efficacy.
Binding of BDNF to TrkB activates different
intracellular signaling cascades, including the
Ras/ERK (MAPK), PLCy and PI3K/Akt pathways
[12] (see Figure 1), each of which have been

BDNF
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linked to depression. Reduced levels of different
effectors of the Ras/ERK (MAPK) pathway were
reported in postmortem hippocampus and
frontal cortex of depressed and suicide subjects
[108,109]. Consistent with postmortem studies,
animal studies showed that inhibition of ERK
signaling in hippocampus and prefrontal
cortex was sufficient to induce depressive-like
behaviors [110], and activation of ERK signaling
the
antidepressant-like effects of intrahippocampal

in hippocampus was necessary for

BDNF infusion [67]. Moreover, chronic mild
stress-induced reduction of ERK signaling in
hippocampus and prefrontal cortex could
be rescued by fluoxetine administration
[111,112]. Consistent with the importance of

BDNF
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Induction of Spinogenesis/Synaptogenesis/Neurogenesis

Antidepressant Effects

Figure 1. Hippocampal BDNF/TrkB signaling pathways that modulate depressive behavior and antidepressant responses. Binding of BDNF to TrkB activates different
intracellular signaling cascades, including the PI3K/Akt, Ras/ERK (MAPK) and PLCY pathways [12]. Phosphorylation of Y490 of TrkB leads to recruitment of adaptor
proteins such as Shc, Grb2 and Gab1 and subsequent activation of the PI3K/Akt pathway [192] and Rho family of GTPases (RhoA, Rac, Cdc42), which positively
regulate actin polymerization through downstream signaling including ROCK/PAK, LimK and Cofilin [151-153]. Another downstream effector of the PI3K/Akt
pathway is GSK-3, whose activity is negatively regulated by Akt-mediated phosphorylation [193]. One of the downstream targets of GSK-3 is B-catenin, which
can be translocated into the nucleus to promote gene expression. The mTOR pathway, which facilitates local translation and the rapid antidepressant effects
of ketamine, is also regulated by PI3K/Akt signaling [122]. Activation of PI3K/Akt signaling is believed to positively modulate spinogenesis, synaptogenesis and
neurogenesis, thus inducing antidepressant effects. In addition to inductive effects on gene expression, the Ras/ERK (MAPK) pathway also acts through Rho family
of GTPases, mTOR signaling, and synapsin to induce spinogenesis, synaptogenesis and neurogenesis (not shown) [122,153,154]. Phosphorylation of Y816 of TrkB
recruits PLCY [194], inducing the hydrolysis of PIP2 to IP3 and DAG. IP3 regulates calcium release and CAMK activation, while DAG activates PKC. Both IP3/CAMK
and DAG/PKC signaling regulate synaptic plasticity [195], however their roles in depression remain largely unknown.
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ERK signaling in depression and antidepressant
efficacy, hippocampal overexpression of MAPK
Phosphatase-1 (MKP-1), a negative regulator of
the MAPK pathway, induced depressive behavior,
while local deletion of MKP-1 in hippocampus
led to a resilient response to stress [113]. And as
noted previously, the effects of BDNF signaling
pathways on depression and antidepressant
efficacy are location-dependent: chronic
unpredictable stress promoted ERK signaling in
VTA [114], while viral-mediated overexpression
of ERK2 in VTA increased susceptibility to stress
and ERK2 blockade in VTA produced resilience
[114].

Studies of PI3K/Akt signaling in the brain
provide further evidence for its modulation of
depressive behavior, but a simple, region-specific
pattern of signaling pathway contributions
to depression does not emerge. Reduced Akt
signaling has been found in hippocampus and
prefrontal cortex of depressed and suicide
subjects [115,116], and in animals, chronic
social defeat stress and chronic unpredictable
stress reduced Akt phosphorylation in the VTA
[117,118], while viral-mediated blockade of
Akt signaling in VTA increased susceptibility to
social defeat-induced depressive behavior [118].
Recently, decreased Akt phosphorylation was
also observed in basolateral amygdala following
FST[119], suggesting that a generalized decrease
in Akt signaling is associated with depression,
distinct from region-specific ERK2 signaling
described above. Lastly, blockade of the PI3K/
Akt pathway was sufficient to offset increased
hippocampal neurogenesis following exercise
[120], and to prevent the antidepressant-like
effects of folicacid [121]and ketamine [122].Since
BDNF acts through the PI3K/Akt pathway (see
Figure 1), this finding suggests the involvement
of BDNF in the antidepressant actions of
ketamine. Interestingly, ketamine treatment
failed to induce synaptogenesis in prefrontal
cortex of BDNFMe"Met mice, and its antidepressant
actions were also impaired in these mice [123].
Similarly, ketamine administration did not
produce antidepressant-like effects in BDNF
conditional knockout mice, but in wild type
mice, ketamine induced BDNF translation by
deactivating eukaryotic elongation factor 2
(eEF-2) kinase, which in turn resulted in fast-
acting antidepressant-like effects [124].

One of the downstream targets of PI3K/Akt
pathway, GSK-3, has drawn much attention
due to its involvement in depression. Akt can
phosphorylate both GSK-3aand GSK-3 isoforms
in their N-terminal domains, thus inhibiting their
activities. In clinical studies, increased GSK-3(3
activity and decreased phosphorylated GSK-3(3
protein levels were observed in ventral prefrontal
cortex of depressed subjects [115,125], and a
GSK-3 polymorphism has been correlated with
altered hippocampal structure in depressed
patients [126]. In rodent studies, intraperitoneal
and intracerebroventricular administration of
GSK-3 inhibitors induces antidepressant-like
behaviors [127,128]. Similar antidepressant-
like effects were also observed in both GSK-3a
and GSK-3(3 deficient mice [129,130]. Moreover,
GSK-3  knock-in mice that lack inhibitory
phosphorylation of GSK-3 (GSK-3 a/[3 21#/21A/9A9R)
were found to be more vulnerable to stress-
induced depressive-like behaviors [131]. Does
GSK also play a role in antidepressant efficacy?
Recent studies demonstrate that ketamine
administration enhances phosphorylation of
both GSK-3a and GSK-3f in hippocampus and
prefrontal cortex, and this inhibition of GSK-3 is
required for the antidepressant effects induced
by ketamine [132]. The effects of GSK-3 on
depressive- and antidepressant-like behaviors
are mediated by phosphorylation of (3-catenin,
resulting in its degradation. Consistent with
the GSK-3 studies described above, reduced
[-catenin protein levels were reported in ventral
prefrontal cortex of depressed patients [125],
mice with a conditional knockout of B-catenin in
the forebrain displayed depressive-like behavior
in the TST [133], and mice with B-catenin
overexpression in brain showed antidepressant-
like effects in the FST [134].

How do neurotrophins and their
signaling pathways modulate
depressive behavior?

Regulation of neuronal plasticity

Disruption of neuronal plasticity has been
linked to impaired learning and memory, as well
as mood disorders such as major depression
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and bipolar disorder [135]. Clinical evidence
has supported reduced hippocampal volumes
in depressed patients [136-141], while animal
studies provide related data demonstrating
that stress induces retraction of pyramidal cell
dendrites in hippocampus [77,142], and the loss
of pyramidal neuron dendritic spines in medial
prefrontal cortex [143,144]. Working in an
opposing manner, antidepressant treatments,
including ECT and drugs, increase plasticity
by inducing hippocampal dendritic sprouting
[145], increasing dendritic spine density [146],
and promoting synaptogenesis [147].

Many studies have explored the role of BDNF
in the regulation of neuronal plasticity. Study of
BDNF*" heterozygous knockout mice revealed
dendritic retraction in the hippocampus and
reduced hippocampal volume [62,77]. Similarly,
BDNF"#Met mice were found to have impaired
spine formation and synaptic function,
and decreased spine density and dendritic
length [62,98,101], in different brain regions,
including hippocampus, prefrontal cortex and
amygdala. These changes in neuronal plasticity
of Met-allele carriers have been attributed to a
deficiency in BDNF mRNA dendritic trafficking
[84], which in turn resulted in impaired local
protein translation that is required for normal
synaptogenesis and spine maintenance [148].
Moreover, BDNF overexpression was shown to
be sufficient to enhance dendritic complexity
of dentate granule cells [149] and dendritic
density in basolateral amygdala, and to prevent
dendritic atrophy in CA3 induced by chronic
stress [69].

The important roles that the Ras/ERK (MAPK)
and PI3K/Akt pathways play downstream of
BDNF/TrkB to modulate depressive behavior
and antidepressant responses are likely realized
in part by modulation of spinogenesis and
synaptogenesis. Overexpression of PI3K or Akt
is sufficient to increase dendritic complexity
and soma size as well as to induce production
of filopodia-like protrusions, whereas mTOR
inhibition has the opposite effects [150].
In addition, Ras/ERK (MAPK) and PI3K/Akt
pathways are believed to be upstream of Rho
family GTPases, including RhoA, Rac and Cdc42,
which are involved in the regulation of actin
polymerization, thus mediating dendritic spine
plasticity [151-153]. Ras/ERK (MAPK) and PI3K/




Akt pathways were also demonstrated to be
necessary for ketamine-induced activation of
mTOR signaling, which is functionally correlated
with synapse formation [122]. Lastly, Ras/ERK
(MAPK) pathway-dependent phosphorylation
of synapsin regulates synaptogenesis [154].
Many of the pro-depressant and antidepressant
effects of BDNF are therefore mediated by
signaling pathways downstream of the TrkB
receptor that impact the plasticity of neural
circuits in a regionally-specific manner.

Regulation of neurogenesis
Malberg and Duman first reported that
fluoxetine could reverse the stress-induced
reduction in hippocampal neurogenesis
[155], establishing a correlation between
neurogenesis and depression. Impaired
neurogenesis in hippocampus, caused by
irradiation, prevented the antidepressant
effects of fluoxetineandimipramine, which were
observed in non-irradiated controls [156]. These
findings were supported by several subsequent
[157,158],

independent

studies although neurogenesis-

effects of antidepressant
treatment were also suggested [159]. In vivo
studies have revealed that BDNF is required
for  antidepressant-induced  hippocampal
neurogenesis. Heterozygous BDNF*~ knockout
mice showed reduced proliferation and survival
of hippocampal neuronal progenitor cells
[160], and reduced hippocampal neurogenesis
induced by dietary restriction or environmental
enrichment [160,161]. Also studying BDNF*"
knockout mice, Sairanen et al. did not find a
major role for BDNF in promoting hippocampal
progenitor cell proliferation induced by
antidepressant treatment, although BDNF was
required for long-term survival of newborn
neurons [162]. On the other hand, viral-
mediated BDNF overexpression was sufficient
to enhance hippocampal neurogenesis [163],
and intraventricular and intrahippocampal
BDNF infusions increased neurogenesis in
rat olfactory bulb [164] and hippocampus
[165], respectively, while intravenous BDNF
administration in a rat stroke model increased
neurogenesis in the dentate gyrus and
improved recovery [166].

In addition to BDNF, NT-3 deletion in dentate

gyrus reduced the number of differentiated

hippocampal progenitor cells [167], while
intracerebroventricular NGF infusion promoted
survival of newborn neurons in adult dentate
gyrus [168]. Downstream of Trk receptors, PI3K/
Akt and Ras/ERK (MAPK) signaling pathways
have been suggested to converge on nuclear
[169],
responsible for regulating expression of genes

transcription factor CREB which is
involved in neurogenesis, such as CCNA (cyclin
A) and CCND2 (cyclin D2) [170]. In addition,
and relevant to the role of Akt signaling in
depression, impaired neurogenesis was also
observed in GSK-3 a/f 21A/21A/9A/9A knock-
in mice [171] and in GSK-33 overexpressing
mice [172].

Secretory and  cytoskeletal
targets of BDNF: potential roles
in depression and antidepressant
responses

BDNF modulates depressive behavior and the
response to antidepressant treatment. Many
of these effects are likely mediated by gene
products that are transcriptionally regulated
by this growth factor. VGF (non-acronymic) is a
secreted protein and neuropeptide precursor
that is robustly regulated by BDNF and NT-3 in
CNS neurons [173]. Hippocampal VGF expression
is decreased by depressive behavior and in pro-
depressive SERT knockout rats, is increased by
exercise and antidepressant treatment, and
intrahippocampal or intracerebroventricular
infusion of C-terminal VGF-derived peptides
AQEE30 or TLQP62 attenuates depressive-
like behavior [174-176]. Consistent with these
TLQP62

hippocampal neuronal progenitor proliferation

antidepressant  effects, regulates
and synaptic plasticity, and heterozygous VGF
knockout mice have increased immobility in the
TST and FST [174,175,177]. The mechanism of
action of VGF in regulating depressive behavior
and antidepressant responses could depend on
autocrine or paracrine effects of VGF peptides on
regulated BDNF secretion [177], or the role that
this chromogranin/secretogranin-like protein
plays in dense core secretory vesicle biogenesis,
both potentially impacting regulated BDNF
secretion, much as does the Val66Met BDNF
polymorphism.
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Arc  (activity-regulated  cytoskeleton-
associated protein), is an immediate
regulated by BDNF
and synaptic activity, and is localized to
neuronal dendrites [178,179]. Chronic, but

not acute,

early gene that is

antidepressant administration
[180-182] and electroconvulsive stimulation
(ECS) [183] induce Arc mRNA expression
in hippocampus and parietal cortex. Arc
mRNA expression in the hippocampus
and frontal cortex was transiently down-
regulated by chronic mild stress [184], and
significantly reduced Arc mRNA expression
was also observed in the medial prefrontal
cortex of mice that were susceptible to
chronic social defeat [185], and also in three
rodent models that manifest depressive-
like behavior [184,186,187]. Although other
studies demonstrate increased Arc mRNA
levels following acute stress and social defeat
[49,181,188,189], findings generally
support a correlation between increased Arc

stress

expression and antidepressant effects, and
decreased Arc levels and depressive behavior,
suggesting that its role in depression is a
result of its function in regulating synaptic
plasticity. Consistent with the importance of
dysregulated synaptic plasticity in depression,
knockdown of neuritin (CPG15), an activity-
and BDNF-regulated gene product that is
involved in synaptic plasticity, maturation,
and stabilization [190] in the hippocampus,
was sufficient to block the antidepressant-like
effects in the FST caused by BDNF infusion
into dentate gyrus [191], indicating that the
antidepressant-like effects of BDNF may
also depend on other regulators of synaptic
plasticity including neuritin.

Conclusions

Neurotrophins in general and BDNF in particular
modulate depressive behavior and the response
to antidepressant treatment, in part through the
regulation of synaptic plasticity, synaptogenesis,
BDNF
levels are affected by depression, stress and

spinogenesis, and  neurogenesis.
antidepressant treatment, in both CNS and
blood. Region-specific modulation of BDNF
levels in brain can lead to depressive behavior

or antidepressant-like responses—Ilocation
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and synaptic circuit are critical. Neurotrophin
actions are transduced primarily via PI3K/Akt
and Ras/ERK (MAPK) signaling pathways, and
importantly the genes they transcriptionally  debilitating disease.
regulate. A better understanding of the
proteins that control synaptic plasticity and the
regulated secretion of neurotrophins, and their
role in the pathogenesis of depression and the

control of antidepressant efficacy, in different
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